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ABSTRACT the recognition model parameters in a Bayesian framewark [

) . 1, 2, 6, 7]. Because there are more than thousands of these param-
A new adaptation method called inter-class MLLR has recentlyiars in most speech recognition systems, it may not be effective

been introduced. Inter-class MLLR utilizes relationships among, consider the correlations among only a few parameters with a
different transformation functions to achieve more reliable estismall amount of adaptation data, and it may require too much

mates of MLLR parameters across multiple classes, and it prgpmputation to consider the correlations among all the parame-
duces lower word error rates (WER) than conventional MLLR ingg.

circumstances where very little speaker-specific adaptation data i

are available. This paper describes the application of weights RECeNtly a new adaptation method callater-class MLLRhas.

the neighboring classes to improve the effectiveness with whidjf€n introduced [S]. Inter-class MLLR utilizes relationships
they are combined with the target class in inter-class MLLR2MONG different transformation functions to achieve more reli-
These weights are obtained from the variance of the estimatig?!e estimates of MLLR parameters across multiple classes. In
error considering the weighted least squares estimation in clasilis method, inter-class transformations given by linear regres-
cal linear regression. In our experiments, the weights providegons are used to modify the baseline mean vectors in the neigh-
small improvements in WER for supervised adaptation pJporing classes so that the neighboring classes can contribute to
almost no improvement in unsupervised adaptation using onlthe estimates the.MLLR parameters of the ta.rg.et class. The inter-
small amount of adaptation data. We also discuss the effect glgss transformations are estimated from training data, and func-
decreasing the number of neighboring classes as more adaptaﬁl&ql asa priori |nfor_mat|on. If the inter-class transformations are
data become available, the development of inter-class transfdfi€ntity functions, inter-class MLLR becomes the same as con-
mations from the test speaker, and the combination of inter-cla¥gntional single-class MLLR. This idea also can be applied to
MLLR with principal-component MLLR. None of the feasible other types of transformation-based adaptation and general

variations of weighted inter-class MLLR provided significantP@rameter estimation problems.

improvements to recognition accuracy. In inter-class MLLR, several neighboring classes are considered
for each target class. In this procedure, some neighboring classes

m “closer” to the tar I han other neighboring cl .

1. INTRODUCTION ay be “closer” to the target class than other neighboring classes

In this paper we extend inter-class MLLR by applying different
Adaptation is a process that reduces differences between trainingights to the neighboring classes to incorporate their different
and testing conditions, usually through the use of a small amougentributions to the target class. We also limit the number of
of adaptation data. In transformation-based adaptation such B@ighboring classes to be used as more adaptation data becomes
conventional maximum-likelihood linear regression (MLLR), theavailable.

parameters used in recognition (such as the means of the undeflytne following sections, we first review inter-class MLLR, and
ing Gaussian mixture components) are clustered into transform@we, describe applying weights to the neighboring classes and
tion classes, with all the parameters in a particular transformatiqpyiting the number of the neighboring classes. Finally we

class updated by the same linear transformation function. Thg.scribe our experimental results, and summarize our work.
number of the parameters characterizing the transformation func-

tion is usually much smaller than the number of recognition
model parameters. While we can generally obtain useful esti- 2. INTER-CLASS MLLR

mates of these parameters with only a small amount of adaptatiR)l"LLR assumes that an adapted mean ve@or  for a Gauksian
data, some of the information about individual model parameter P ¢p

is lost, which can impair recognition accuracy. is related to its baseline mean vectpy, by linear regression.

) . ; o _Consider a case in which we try to estimate the MLLR parame-
In conventional MLLR the linear transformation function is esti- W ;
ters(A, b,) for an MLLR class (the “target class”).

mated using adaptation data from within the transformation class
that it represents. Increasing the number of transformation fy = Ampk+bm, k O Classm Q)
classes enables the transformation function for each one to be

modeled more specifically to the data for the class, but witln conventional MLLR,(A,,, b,) are estimated using the MLLR
reduced reliability since the estimates of the transformation fun@iassm only, by maximizing the likelihood, or by minimizing
tions are necessarily based on a smaller amount of adaptation —

data. If the estimates are not reliable, they will not be helpful foQ-(m) = g Zyt(k)(ot—Amuk— by Cy (0= Ak, —b)
improving recognition accuracy. kOm

It is useful to consider relationships among different parametergherey, (k) is thea posterioriprobability of being in Gaussian

when only a small amount of adaptation data is available. Moshixturek at timet, o is the input feature vector at timéadapta-
previous studies use models of correlation or regression amoggy, data), andCy is the covariance matrix of Gausslaf8].



Consider another MLLR class# m  which has a similar relation__,. (mn) . . . .
. . _ mation errore, ,  is easily obtained for each time frame.
given by (A, b,) inconventional MLLR. "h

(mn) (mn)_b

fi = Ay, +by,  kOClassn 2 €t s= O s— Am Hk kO Classn (@)

m, s
Inter-class MLLR assumes that the inter-class transformatiophe variancecémn) of the error is obtained from all training
which relates Class (the target class) and Clasgneighboring k
classes) is given by another linear regression With), ang
and Eq. (2) is written as follows.

speakers using the Baum-Welch method as the Gaussian mix-
tures are reestimated in regular retraining. For the target olass

the estimation erroe, and its varian€, ~ are obtained in

A = An(T okt d) + by, kO Classn () similar fashion.
Defining the modified mean vector to lpé(mn) =T Mt dnn O s = Am it b s+8 g KD Classm (8)
Eq. (3) becomes Considering the weighted least squares estimation in classical
b = A ™ +b . kOClassn (4) linear regression [9], we substitute the varianGgs @ 'kEi”)

for C, in Q-(m) and Q,(m) respectively. These variances can
){)e considered as weights to the Gaussians. Since the inverse of
the variance is used as the weight, an MLLR class with a large
variance of the estimation error will get a small weight.

(A, by) are unknown parameters in Eq. (4). Therefore the
can be estimated from the neighboring classising Q,(m)

which is similar toQe(m) excepal™  and Class
- In our experiment we do not have enough training data to esti-
Qn(m) = g Zyt(k)(ot A ™ =b ) C(0,— A u™"—b ) mate accurately the variance of the error, so we estimate the aver-
KTTn age ratio of the baseline variance to the variance of the error.
L ) Consider a target clags and neighboring clase. The corre-
NOW_’ cpp&denng Egs. (_1) qnd (4 Ay brn) are estimated b%ponding ratiogv,, for the target class, awg,, for the neigh-
maximizing the overall likelihood from the target classand boring class) become

neighboring clasg, or by minimizingQ,(m) .

0,2 O
Q(m) = Qc(m) + Z Q(m) (5) w,, = average E%E 9)
n O Neighbors k O Classm e il
ks
where Qc(m) is the contribution of the target class and 02 O
Q,(m) is the contribution of the neighboring class W, = averageD Zk,| E (10)
The estimates of A, b,) from Eg. (5) will be more reliable ki Classn Egeﬂ””’,im
than those fromQ(m) because more adaptation data are used i 2 2 2 .
Eq. (5). In this procedure(T,, d..)  work aspriori informa- Wﬂereok'i O,i aNdynn ; are the diagonal elementspf
tion, and are obtained from training data in advance [3]. C, , and cg:“”) , respectively.
k
3. APPLICATION OF WEIGHTS The weightsw,,, andv,,, are combined as follows:
In inter-class MLLR as described previously, all the neighboring ~ Quw(m) = w,,Qc(m) + WinnQr(m) (11)
classes contribute equally to updating the target class. In practice, n 00 Neighbors

the neighboring classes are not as important as the target class,
and some neighboring classes may be “closer” to the target clasinter-class MLLR, the number of neighboring classes to be
than other neighboring classes. Therefore we can apply differenged depends on the amount of adaptation data. The neighboring
weights to the neighboring classes to represent their differeftasses are ranked in order of their “closeness” to the target class.
contributions to the target class. In this paper we use estimatidiflaptation data are selected from classes of decreasing proxim-
error to measure the “closeness” of the neighboring classes to tﬁbto the target class until there are sufficient data to estimate the
target class. target function. If only a very small amount of data is available,

. - . then all neighboring classes may be used. As more data becomes
Eq. (4) shows the relation between the modified baseline MedTailable, the number of neighboring classes used declines. In the
vector u(kmn) and the corresponding adapted mean vegtor iimit, no neighboring classes are used and inter-class adaptation

the neighboring class. This equation can be interpreted as a@symptotes to conventional multi-class adaptation.

relationship betweepy"”  and the input feature veotgwith  The varianceC(er:n) is used to measure the closeness of neigh-
estimation erroe(kmt”)s [3lie. boring class to the target class. For each target class, neigh-
i boring classes are sorted according to the variances of their

= A, Su(km“) +by, o+ e(kmt“)g k O Classh (6) errors. Adaptation data from the closest neighboring class are

accumulated first in Eqg. (11), then from the next closest neigh-
where subscrips denotes the training speaker. Since the paraméboring class until sufficient data are used. We can consider

ters (Ap, ¢ by, & are known for each training speaker, the estiwy (k) and wg v (k) in Eqg. (11) as effective counts of the



adaptation data. We accumulate the counts until they exceed[a -
preset threshold. We can control the threshold and the number pf Adaptation 1 Test 3 Test 20 Test

o Method Sentence | Sentences| Sentences
classes accumulated to get better recognition accuracy. The bgst
threshold can be obtained through prior experimentation. Conventional
MLLR 26.7% 25.9% 23.9%
(one class)
4. EXPERIMENTAL RESULTS ntorc]
nter-class 0, 0, 0
The methods described above are evaluated using non-natie  MLLR ig(l)ojo %8240 %géof
. ; - - (10.1%) (19.3%) | (15.9%)
English speakers from the Spoke 3 data in the 1994 DARPA Wa]l Without weights
Street Journal (WSJ) evaluation. The recognition test data con- Inter-class
sisted of 200 sentences, from which 10 non-native speakers read  \1i | 'R 24-3;% 20-9% 19-92/0
20 sentences each. The baseline speech recognition system is|thewith weights (9.0%) (19.3%) (16.7%)

CMU SPHINX-IIl system which used continuous HMMs with
6000 senones, a 39-dimensional feature vector consisting of cepable 2. Word error rates after unsupervised adaptation.
stra (MFCC), delta cepstra, and delta-delta cepstra, and a 5,00@¢Relative improvements over conventional MLLR are shown
word trigram language model. We used 13 phonetic-basedn parentheses.)

MLLR classes which were similar to those used by Leggetter [3].

The inter-class transformation parametdts, ahg, werehe application of weights that are smaller for the neighboring
trained from 9 speakers except the test speaker in the 10 evalatasses than for the target class enables unsupervised adaptation
tion speakers. to focus on the target class, resulting in less smoothing. It also
Table 1 summarizes the word error rates (WER) after superviséﬁduces thg effect.ive amount of input dgta} (because.the co ntribu-
adaptation with 1 or 3 adaptation sentences for each speaker \/\MB“S of neighboring classes are multiplied by their weights).
correct transcriptions. The adaptation sentences and test sais could be a problem especially when the amount of the da}ta
tences were different. The WER in the baseline system withol smal_l. AS we_have more da;a, we can have enough smoothing
adaptation was 27.3%. Inter-class MLLR without weights prolC OPtain benefits from the weights.

vided about 15% improvement in WER over conventionaFig. 1 plots word error rate as a function of the threshold after
MLLR. Applying weights provided further relative improve- supervised adaptation. The value next to each data point is the
ments of 0.8% to 1.3% which were not statistically significanaverage number of classes used to estimate the MLLR parame-
because of the small amount of data considered. ters of the target class. With a very small threshold, only 1 class
(target class itself) is accumulated because the amount of adapta-
tion from the target class exceeds the threshold. With a very large

i 1 Adaptation | 3 Adaptation threshold, all the classes are accumulated. For example, with a
Adaptation Method , . ple,
P Sentence Sentences threshold value of 1500, almost all classes (an average of 12.9
Conventional MLLR out of 13) are used |n_the 3 adaptation sentence case, while only
(one class) 24.1% 23.1% 5.4 classes are used in the 10 adaptation sentence case, because

there is more adaptation data from each class in the 10 adaptation
Inter-class MLLR 20.4% (15.4%)| 19.6% (15.2%) Sentence case (compared to the 3-sentence case). If the threshold
without weights is too small, the WER becomes high because too little adaptation
Inter-class MLLR data are used. We no_te that _if 10 adaptation sentences are avail-
- - 20.2% (16.2%)| 19.3% (16.5%) able, the best WER is obtained at a threshold value of 1000,
with weights . )
which corresponds to the use of about only 3.6 transformation
Table 1. Word error rates after supervised adaptation. classes. If only 3 adaptation sentences are available, however,
(Relative improvements over conventional MLLR are shown
in parentheses.)

26

e --o 3 adaptation sentences
~— 10 adaptation sentences | -

Table 2 shows corresponding results for unsupervised adaptation
on sentences from the test set. As in Table 1, the columns in the 24r |
table indicate the number of sentences used in performing the
adaptation for each speaker (1,3, or 20). The MLLR parameters g
are estimated from blind transcriptions of the sentences by the 22t ||
baseline recognition system, and the test sentences are subse- § |
guently recognized again using the adapted models. The applica- 21 2‘\3,7
tion of weights in unsupervised adaptation appeared to provide 20.&
22

o i 0 111
no benefit with only one adaptation sentence, and only an :,,:f"1:%%19—/7{**7*161”/
extremely modest benefit when 20 sentences were used for adap- 19 36 54 U
tation. We speculate that the limited benefit in unsupervised 18 ‘ ‘

on i it . 0 1000 2000 3000 4000
adaptation is a consequence of transcription errors by the base Threshold for the adaptation data

line system. In other words, unsupervised adaptation needs more ]

smoothing than supervised adaptation to average out the effect ofigure 1. Word error rates as a function of the threshold for

incorrect transcriptions. adaptation data in inter-class MLLR. The value next to each
data point is the average number of classes used.



WER continues to improve until all the data are used, and atect transcriptions. The weights also reduce the effective amount
transformation classes are contributing to the final parametef input data which can be a problem especially when the amount
estimates. of adaptation data is small. As we have more adaptation data, we

The performance of inter-class MLLR will depends on the@" have enough smoothi_ng to_benefit from the weights. We
“quality” of the inter-class transformations. If the inter-clasg®duced the number of neighboring classes as more adaptation

transformations do not match the characteristics of the test daff@ are avallable, setting a threshold to control the amount of
they may not be helpful. Table 3 describes the WER observéifiaptation data used.

when the inter-class transformations were trained from differerwe also performed experiments using inter-class transformations
data. The first row in Table 3 repeats the results from the case obtained from different training data. Inter-class transformations
“Inter-class MLLR without weights” in Table 1. The WER using obtained from training data which have similar characteristics
the inter-class transformations obtained from the native speakgysovide better recognition accuracy. If we prepare several sets of
[5] was worse than the results from the case of the non-nativater-class transformations which represent different type of
speakers. We believe that this is because the native speakers hspeakers, and select an appropriate set for the test speaker, then
different characteristics from the test speakers who are nome can obtain a good improvement in recognition accuracy.

native speakers. Finally we applied principal component MLLR in combination

In comparison, inter-class transformations obtained from the tegiith inter-class MLLR, but without obtaining significant addi-
speakers themselves provided very good WER. This is to k@nal improvement in accuracy. The distribution of the eigenval-
expected because the purpose of the inter-class transformationsés changes in inter-class MLLR, and the benefits of using the
to estimate the priori characteristics of the test speaker. Theprincipal components seems to be smaller.

test speaker is not normally available to train adaptation parame-

ters, but in circumstances where he or she is, substantial ACKNOWLEGEMENTS

improvements in accuracy can be obtained. One approach to

improved recognition accuracy may be to prepare several sets bfis research was sponsored by the Space and Naval Warfare
inter-class transformations representing different type of speaRystems Center, San Diego, under Grant No. N66001-99-1-8905.

sarily reflect the position or the policy of the US Government,

and no official endorsement should be inferred.

daptaton ethod | 1 Adepiation | 3 Adaptaton
6. REFERENCES
Inter-class Transformation 20.4% 19.6% . p ;
f Non-Nati K . . [1] M. Afify, Y. Gong and J.-P. Haton, “Correlation based pre-
fom Non-Native Speakers dictive adaptation of hidden Markov modelsProc. of
Inter-class Transformation 22.0% 21.1% Eurospeechpp. 2059-2062, 1997. . .
from Native Speakers ) ) [2] S. M. Ahadi and P. C. Woodland, “Combined Bayesian and
- predictive techniques for rapid speaker adaptation of contin-
Inter-class Transformation 16.5% 16.8% uous density hidden Markov modelsComputer Speech
from Test Speaker and Languagepp. 187-206, July 1997.

) . . [3] S.-J. Doh,Enhancements to Transformation-Based Speaker
Table 3. Word error rates after supervised adaptation using Adaptation: Principal Component and Inter-Class Maxi-

inter-class transformations trained from different speakers. mum Likelihood Linear RegressioRh.D. Thesis, Carnegie
Mellon University, July 2000.

We also applied principal component MLLR [3] in combination[4] S.-J. Doh and R. M. Stern, “Weighted principal component

with inter-class MLLR, but we did not obtain significant addi- MLLR for speaker adaptationProc. of the IEEE Workshop

tional improvement in accuracy. We believe that the principal ~On Automatic Speech Recognition and Understanding

component approach provides less benefit when applied to the (ASRU) 1999. .

inter-class MLLR than when applied to conventional MLLR[] S--J. Do_h 5}’nd R. M. Stern, Inter-class MLLR for speaker

because the ratio between the largest and smallest eigenvalues is adapta_tlon, Proc. of lEEE. Internatlonal_ Conference on

much smaller for inter-class MLLR than for conventional Acoustics, Speech, and Signal Processfg 1755-1758,

MLLR 2000.
' [6] Q.Huoand C.-H. Lee “On-line adaptive learning of the cor-

related continuous density hidden Markov models for
5. SUMMARY speech recognition/EEE Trans. on Speech and Audio Pro-
cessingvol. 6, no. 4, pp. 386-397, July 1998.
This paper describes the application of weights to neighboring] M. J. Lasry and R. M. Stern, “A posteriori estimation of cor-
classes to characterize more effectively their contributions to the  related jointly Gaussian mean vectol&EE Trans. on Pat-
target class in inter-class MLLR. The weights are proportional to  tern Analysis and Machine Intelligenceol. PAMI-6, no. 4,
the inverse of the variance of the estimation error considering the  pp. 530-535, July 1984.
weighted least squares in classical linear regression. In o{8] C. J. Leggetter and P. C. Woodland, “Maximum likelihood
experiments, the weight provided only small improvements for  linear regression for speaker adaptation of continuous den-
supervised adaptation and virtually no improvement for unsuper- ~ Sity hidden Markov models,Computer Speech and Lan-
vised adaptation. This is because the weights makes the adapta- guage vol. 9, pp.171-185, 1995. _ _ _
tion focus more on the target class while the unsupervisdd] R.H.Myers,Classical And Modern Regression With Appli-
adaptation needs more smoothing to reduce the effect of incor- ~cations PWS-KENT Publishing Company, Boston, 1990.



	USING CLASS WEIGHTING IN INTER-CLASS MLLR
	Sam-Joo Doh and Richard M. Stern
	Department of Electrical and Computer Engineering and School of Computer Science
	Carnegie Mellon University
	5000 Forbes Ave., Pittsburgh, PA 15213, USA
	{sjdoh, rms}@cs.cmu.edu


	ABSTRACT
	1. INTRODUCTION
	2. INTER-CLASS MLLR
	(1)
	(2)
	(3)
	(4)
	(5)

	3. APPLICATION OF WEIGHTS
	(6)
	(7)
	(8)
	(9)
	(10)
	(11)

	4. EXPERIMENTAL RESULTS
	Table 1. Word error rates after supervised adaptation. (Relative improvements over conventional M...
	Table 2. Word error rates after unsupervised adaptation. (Relative improvements over conventional...
	Figure 1. Word error rates as a function of the threshold for adaptation data in inter-class MLLR...

	Table 3. Word error rates after supervised adaptation using inter-class transformations trained f...

	5. SUMMARY

	ACKNOWLEGEMENTS
	6. REFERENCES
	[1] M. Afify, Y. Gong and J.-P. Haton, “Correlation based predictive adaptation of hidden Markov ...
	[2] S. M. Ahadi and P. C. Woodland, “Combined Bayesian and predictive techniques for rapid speake...
	[3] S.-J. Doh, Enhancements to Transformation-Based Speaker Adaptation: Principal Component and I...
	[4] S.-J. Doh and R. M. Stern, “Weighted principal component MLLR for speaker adaptation,” Proc. ...
	[5] S.-J. Doh and R. M. Stern, “Inter-class MLLR for speaker adaptation,” Proc. of IEEE Internati...
	[6] Q. Huo and C.-H. Lee “On-line adaptive learning of the correlated continuous density hidden M...
	[7] M. J. Lasry and R. M. Stern, “A posteriori estimation of correlated jointly Gaussian mean vec...
	[8] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear regression for speaker adaptat...
	[9] R. H. Myers, Classical And Modern Regression With Applications, PWS-KENT Publishing Company, ...



