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ABSTRACT
A new adaptation method called inter-class MLLR has recently
been introduced. Inter-class MLLR utilizes relationships among
different transformation functions to achieve more reliable esti-
mates of MLLR parameters across multiple classes, and it pro-
duces lower word error rates (WER) than conventional MLLR in
circumstances where very little speaker-specific adaptation data
are available. This paper describes the application of weights to
the neighboring classes to improve the effectiveness with which
they are combined with the target class in inter-class MLLR.
These weights are obtained from the variance of the estimation
error considering the weighted least squares estimation in classi-
cal linear regression. In our experiments, the weights provided
small improvements in WER for supervised adaptation but
almost no improvement in unsupervised adaptation using only a
small amount of adaptation data. We also discuss the effect of
decreasing the number of neighboring classes as more adaptation
data become available, the development of inter-class transfor-
mations from the test speaker, and the combination of inter-class
MLLR with principal-component MLLR. None of the feasible
variations of weighted inter-class MLLR provided significant
improvements to recognition accuracy.

1. INTRODUCTION
Adaptation is a process that reduces differences between training
and testing conditions, usually through the use of a small amount
of adaptation data. In transformation-based adaptation such as
conventional maximum-likelihood linear regression (MLLR), the
parameters used in recognition (such as the means of the underly-
ing Gaussian mixture components) are clustered into transforma-
tion classes, with all the parameters in a particular transformation
class updated by the same linear transformation function. The
number of the parameters characterizing the transformation func-
tion is usually much smaller than the number of recognition
model parameters. While we can generally obtain useful esti-
mates of these parameters with only a small amount of adaptation
data, some of the information about individual model parameter
is lost, which can impair recognition accuracy.

In conventional MLLR the linear transformation function is esti-
mated using adaptation data from within the transformation class
that it represents. Increasing the number of transformation
classes enables the transformation function for each one to be
modeled more specifically to the data for the class, but with
reduced reliability since the estimates of the transformation func-
tions are necessarily based on a smaller amount of adaptation
data. If the estimates are not reliable, they will not be helpful for
improving recognition accuracy.

It is useful to consider relationships among different parameters
when only a small amount of adaptation data is available. Most
previous studies use models of correlation or regression among

the recognition model parameters in a Bayesian framework [e.g.
1, 2, 6, 7]. Because there are more than thousands of these pa
eters in most speech recognition systems, it may not be effec
to consider the correlations among only a few parameters wit
small amount of adaptation data, and it may require too mu
computation to consider the correlations among all the param
ters.

Recently a new adaptation method calledinter-class MLLRhas
been introduced [5]. Inter-class MLLR utilizes relationship
among different transformation functions to achieve more re
able estimates of MLLR parameters across multiple classes
this method, inter-class transformations given by linear regre
sions are used to modify the baseline mean vectors in the ne
boring classes so that the neighboring classes can contribut
the estimates the MLLR parameters of the target class. The in
class transformations are estimated from training data, and fu
tion asa priori information. If the inter-class transformations ar
identity functions, inter-class MLLR becomes the same as co
ventional single-class MLLR. This idea also can be applied
other types of transformation-based adaptation and gene
parameter estimation problems.

In inter-class MLLR, several neighboring classes are conside
for each target class. In this procedure, some neighboring clas
may be “closer” to the target class than other neighboring class
In this paper we extend inter-class MLLR by applying differen
weights to the neighboring classes to incorporate their differe
contributions to the target class. We also limit the number
neighboring classes to be used as more adaptation data beco
available.

In the following sections, we first review inter-class MLLR, an
then describe applying weights to the neighboring classes a
limiting the number of the neighboring classes. Finally w
describe our experimental results, and summarize our work.

2. INTER-CLASS MLLR
MLLR assumes that an adapted mean vector for a Gaussiak
is related to its baseline mean vector by linear regressio
Consider a case in which we try to estimate the MLLR param
ters  for an MLLR classm (the “target class”).

(1)

In conventional MLLR, are estimated using the MLLR
classm only, by maximizing the likelihood, or by minimizing

where is thea posterioriprobability of being in Gaussian
mixturek at timet, ot is the input feature vector at timet (adapta-
tion data), andCk is the covariance matrix of Gaussiank [8].
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Consider another MLLR class which has a similar relation
given by  in conventional MLLR.

(2)

Inter-class MLLR assumes that the inter-class transformation
which relates Classm (the target class) and Classn (neighboring
classes) is given by another linear regression with and ,
and Eq. (2) is written as follows.

(3)

Defining the modified mean vector to be ,
Eq. (3) becomes

(4)

are unknown parameters in Eq. (4). Therefore they

can be estimated from the neighboring classn using

which is similar to  except  and Classn.

Now, considering Eqs. (1) and (4), are estimated by
maximizing the overall likelihood from the target classm and
neighboring classn, or by minimizing .

(5)

where is the contribution of the target classm, and

 is the contribution of the neighboring classn.

The estimates of from Eq. (5) will be more reliable

than those from because more adaptation data are used in
Eq. (5). In this procedure, work asa priori informa-
tion, and are obtained from training data in advance [3].

3. APPLICATION OF WEIGHTS
In inter-class MLLR as described previously, all the neighboring
classes contribute equally to updating the target class. In practice,
the neighboring classes are not as important as the target class,
and some neighboring classes may be “closer” to the target class
than other neighboring classes. Therefore we can apply different
weights to the neighboring classes to represent their different
contributions to the target class. In this paper we use estimation
error to measure the “closeness” of the neighboring classes to the
target class.

Eq. (4) shows the relation between the modified baseline mean

vector and the corresponding adapted mean vector in
the neighboring classn. This equation can be interpreted as a

relationship between and the input feature vectorot,s with

estimation error  [3],i.e.

(6)

where subscriptsdenotes the training speaker. Since the parame-
ters are known for each training speaker, the esti-

mation error  is easily obtained for each time frame.

(7)

The variance of the error is obtained from all training

speakers using the Baum-Welch method as the Gaussian m
tures are reestimated in regular retraining. For the target classm,
the estimation error and its variance are obtained

similar fashion.

(8)

Considering the weighted least squares estimation in class

linear regression [9], we substitute the variances and

for in and respectively. These variances ca
be considered as weights to the Gaussians. Since the invers
the variance is used as the weight, an MLLR class with a lar
variance of the estimation error will get a small weight.

In our experiment we do not have enough training data to es
mate accurately the variance of the error, so we estimate the a
age ratio of the baseline variance to the variance of the err
Consider a target classm and neighboring classn. The corre-
sponding ratios for the target class, and for the neig
boring classn become

(9)

(10)

where , , and are the diagonal elements of

, and , respectively.

The weights and are combined as follows:

(11)

In inter-class MLLR, the number of neighboring classes to b
used depends on the amount of adaptation data. The neighbo
classes are ranked in order of their “closeness” to the target cla
Adaptation data are selected from classes of decreasing prox
ity to the target class until there are sufficient data to estimate
target function. If only a very small amount of data is available
then all neighboring classes may be used. As more data beco
available, the number of neighboring classes used declines. In
limit, no neighboring classes are used and inter-class adapta
asymptotes to conventional multi-class adaptation.

The variance is used to measure the closeness of nei

boring classn to the target classm. For each target class, neigh-
boring classes are sorted according to the variances of th
errors. Adaptation data from the closest neighboring class
accumulated first in Eq. (11), then from the next closest neig
boring class until sufficient data are used. We can consid

and in Eq. (11) as effective counts of the
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adaptation data. We accumulate the counts until they exceed a
preset threshold. We can control the threshold and the number of
classes accumulated to get better recognition accuracy. The best
threshold can be obtained through prior experimentation.

4. EXPERIMENTAL RESULTS
The methods described above are evaluated using non-native
English speakers from the Spoke 3 data in the 1994 DARPA Wall
Street Journal (WSJ) evaluation. The recognition test data con-
sisted of 200 sentences, from which 10 non-native speakers read
20 sentences each. The baseline speech recognition system is the
CMU SPHINX-III system which used continuous HMMs with
6000 senones, a 39-dimensional feature vector consisting of cep-
stra (MFCC), delta cepstra, and delta-delta cepstra, and a 5,000-
word trigram language model. We used 13 phonetic-based
MLLR classes which were similar to those used by Leggetter [3].
The inter-class transformation parameters and were
trained from 9 speakers except the test speaker in the 10 evalua-
tion speakers.

Table 1 summarizes the word error rates (WER) after supervised
adaptation with 1 or 3 adaptation sentences for each speaker with
correct transcriptions. The adaptation sentences and test sen-
tences were different. The WER in the baseline system without
adaptation was 27.3%. Inter-class MLLR without weights pro-
vided about 15% improvement in WER over conventional
MLLR. Applying weights provided further relative improve-
ments of 0.8% to 1.3% which were not statistically significant
because of the small amount of data considered.

Table 2 shows corresponding results for unsupervised adaptation
on sentences from the test set. As in Table 1, the columns in the
table indicate the number of sentences used in performing the
adaptation for each speaker (1,3, or 20). The MLLR parameters
are estimated from blind transcriptions of the sentences by the
baseline recognition system, and the test sentences are subse-
quently recognized again using the adapted models. The applica-
tion of weights in unsupervised adaptation appeared to provide
no benefit with only one adaptation sentence, and only an
extremely modest benefit when 20 sentences were used for adap-
tation. We speculate that the limited benefit in unsupervised
adaptation is a consequence of transcription errors by the base-
line system. In other words, unsupervised adaptation needs more
smoothing than supervised adaptation to average out the effect of
incorrect transcriptions.

The application of weights that are smaller for the neighborin
classes than for the target class enables unsupervised adapt
to focus on the target class, resulting in less smoothing. It a
reduces the effective amount of input data (because the contri
tions of neighboring classes are multiplied by their weights
This could be a problem especially when the amount of the da
is small. As we have more data, we can have enough smooth
to obtain benefits from the weights.

Fig. 1 plots word error rate as a function of the threshold aft
supervised adaptation. The value next to each data point is
average number of classes used to estimate the MLLR param
ters of the target class. With a very small threshold, only 1 cla
(target class itself) is accumulated because the amount of ada
tion from the target class exceeds the threshold. With a very la
threshold, all the classes are accumulated. For example, wit
threshold value of 1500, almost all classes (an average of 1
out of 13) are used in the 3 adaptation sentence case, while o
5.4 classes are used in the 10 adaptation sentence case, bec
there is more adaptation data from each class in the 10 adapta
sentence case (compared to the 3-sentence case). If the thres
is too small, the WER becomes high because too little adaptat
data are used. We note that if 10 adaptation sentences are a
able, the best WER is obtained at a threshold value of 100
which corresponds to the use of about only 3.6 transformati
classes. If only 3 adaptation sentences are available, howe

Adaptation Method 1 Adaptation
Sentence

3 Adaptation
Sentences

Conventional MLLR
(one class)

24.1% 23.1%

Inter-class MLLR
without weights

20.4% (15.4%) 19.6% (15.2%)

Inter-class MLLR
with weights

20.2% (16.2%) 19.3% (16.5%)

Table 1. Word error rates after supervised adaptation.
(Relative improvements over conventional MLLR are shown
in parentheses.)

Tmn dmn

Adaptation
Method

1 Test
Sentence

3 Test
Sentences

20 Test
Sentences

Conventional
MLLR

(one class)
26.7% 25.9% 23.9%

Inter-class
MLLR

without weights

24.0%
(10.1%)

20.9%
(19.3%)

20.1%
(15.9%)

Inter-class
MLLR

with weights

24.3%
(9.0%)

20.9%
(19.3%)

19.9%
(16.7%)

Table 2. Word error rates after unsupervised adaptation.
(Relative improvements over conventional MLLR are shown
in parentheses.)
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Figure 1. Word error rates as a function of the threshold for
adaptation data in inter-class MLLR. The value next to each
data point is the average number of classes used.
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WER continues to improve until all the data are used, and all
transformation classes are contributing to the final parameter
estimates.

The performance of inter-class MLLR will depends on the
“quality” of the inter-class transformations. If the inter-class
transformations do not match the characteristics of the test data,
they may not be helpful. Table 3 describes the WER observed
when the inter-class transformations were trained from different
data. The first row in Table 3 repeats the results from the case of
“Inter-class MLLR without weights” in Table 1. The WER using
the inter-class transformations obtained from the native speakers
[5] was worse than the results from the case of the non-native
speakers. We believe that this is because the native speakers have
different characteristics from the test speakers who are non-
native speakers.

In comparison, inter-class transformations obtained from the test
speakers themselves provided very good WER. This is to be
expected because the purpose of the inter-class transformations is
to estimate thea priori characteristics of the test speaker. The
test speaker is not normally available to train adaptation parame-
ters, but in circumstances where he or she is, substantial
improvements in accuracy can be obtained. One approach to
improved recognition accuracy may be to prepare several sets of
inter-class transformations representing different type of speak-
ers, and selecting an appropriate set for each test speaker.

We also applied principal component MLLR [3] in combination
with inter-class MLLR, but we did not obtain significant addi-
tional improvement in accuracy. We believe that the principal
component approach provides less benefit when applied to the
inter-class MLLR than when applied to conventional MLLR
because the ratio between the largest and smallest eigenvalues is
much smaller for inter-class MLLR than for conventional
MLLR.

5. SUMMARY
This paper describes the application of weights to neighboring
classes to characterize more effectively their contributions to the
target class in inter-class MLLR. The weights are proportional to
the inverse of the variance of the estimation error considering the
weighted least squares in classical linear regression. In our
experiments, the weight provided only small improvements for
supervised adaptation and virtually no improvement for unsuper-
vised adaptation. This is because the weights makes the adapta-
tion focus more on the target class while the unsupervised
adaptation needs more smoothing to reduce the effect of incor-

rect transcriptions. The weights also reduce the effective amo
of input data which can be a problem especially when the amou
of adaptation data is small. As we have more adaptation data,
can have enough smoothing to benefit from the weights. W
reduced the number of neighboring classes as more adapta
data are available, setting a threshold to control the amount
adaptation data used.

We also performed experiments using inter-class transformatio
obtained from different training data. Inter-class transformatio
obtained from training data which have similar characteristi
provide better recognition accuracy. If we prepare several sets
inter-class transformations which represent different type
speakers, and select an appropriate set for the test speaker,
we can obtain a good improvement in recognition accuracy.

Finally we applied principal component MLLR in combination
with inter-class MLLR, but without obtaining significant addi-
tional improvement in accuracy. The distribution of the eigenva
ues changes in inter-class MLLR, and the benefits of using t
principal components seems to be smaller.
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Adaptation Method 1 Adaptation
Sentence

3 Adaptation
Sentences

Inter-class Transformation
from Non-Native Speakers

20.4% 19.6%

Inter-class Transformation
from Native Speakers

22.0% 21.1%

Inter-class Transformation
from Test Speaker

16.5% 16.8%

Table 3. Word error rates after supervised adaptation using
inter-class transformations trained from different speakers.
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