
ABSTRACT
In transformation-based adaptation, increasing the number of transformation classes

can provide more detailed information for adaptation, but at the expense of greater esti-

mation error with small amounts of data. In this paper we introduce a new procedure,

inter-class MLLR, which utilizes relationships among different classes to achieve more

reliable estimates of the transformation parameters across multiple classes using limited

adaptation data. In this method, the inter-class relation is given by a linear regression

which is estimated from training data. In experiments using non-native English speak-

ers from the Spoke 3 data in the 1994 DARPA Wall Street Journal evaluation, inter-

class MLLR provided a relative reduction in word error rates of 15.3% compared to

conventional MLLR with a small amount of adaptation data.
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SUMMARY
• Conventional transformation-based adaptation

• assumes that each class isindependent
• trades offreliable estimation of the transformation function with the ability

for Gaussian mean vectors to adapt differently from class to class

• We developed a new adaptation algorithm:Inter-class MLLR.
• It utilizes relationships among different classesto achieve bothdetailed and

reliable transformation-based adaptation using limited data.

• In our experiments,inter-class MLLR provides15.3% relative improvement
over conventional MLLR.

RELATED WORK
◆ Some previous work using Correlations/Regressions:

• Lasry & Stern (1984): Extended MAP (EMAP)
• Huo & Lee (1998): Pair-wise correlation
• Cox (1995): Prediction using correlation-based model
• Ahadi & Woodland (1997): Regression-based model prediction
• Bocchieri (1999):Refinement of shift parameters in MLLR using correlation models

◆ Comments:

• Correlations/Regressions among model parameters (Gaussian mean vectors) have

been used mostly in aBayesian framework.
• Bayesian formulationdescribes shift but not rotation of mean vectors

• Because there are thousands of Gaussians in speech recognition systems,
• Consideration of the values ofonly a few neighboring Gaussiansmay not have

much effect on Bayesian estimates of means for a new speaker
• Consideration oflarger numbers of neighboring Gaussiansmay require too

much computation.

EXPERIMENTS
• Speech recognition system: SPHINX-III (continuous HMMs)

• Test data: Spoke 3 of the DARPA 1994 Wall Street Journal evaluation, 10 Non-

native speakersx 20 test sentences

•  Small amount of adaptation data in supervised mode: 1 sentence (5-6 sec.)

• 13 phonetic-based classes for inter-class MLLR

◆ Estimate (Tmn, dmn) from training data

• From a training corpus we estimate speaker-specific values of (Am,s, bm,s) for each

training speakers using conventional MLLR according to

• Since ,

we get , where

•  can be estimated usingconventional MLLR

• Minimize Qmn with all training speaker’s data

where
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TRANSFORMATION-BASED ADAPTATION
◆ Conventional transformation-based adaptation:

• More effective than Bayesian approaches for small amounts of adaptation data

• Eachtransformation class is consideredindependently
• With limited adaptation data we cannot simultaneously achieve both

• highly reliable estimates of the transformation parametersA andb
• estimates of the Gaussian mean vectors that can be different for each transforma-

tion class

◆ Goal of this work:
• Utilize relationships among transformation classesto achieve more reliable esti-

mates of the transformation parameters across multiple classes

INTER-CLASS MLLR
◆ Comparison of the estimates of (Am, bm) for a target classm

(1) Conventional MLLR

• Assumption:

• Estimate (Am, bm) by minimizingQc (from EM algorithm)

where  is the input feature vector at timet (adaptation data)
 is thea posteriori probability of being Gaussiani at timet

 is the covariance matrix of Gaussiani

• Data are considered only from Classm,and small amounts of data may not provide

reliable estimates of (Am, bm).

(2) Inter-class MLLR

• Origianl assumption:

• New assumption:

• Introduce inter-class transformation:

• Estimate (Am, bm) by minimizingQI

• Data are considered from neighboring classes as well as from Classm, and more

reliable estimates of (Am, bm) can be obtained, preserving the details of Classm.
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• Full matrixA and shift vectorb are used in all adaptation methods.

• Different (T, d) are used in inter-class MLLR, as described in the figure above.
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◆ Inter-class transformation gmn(.) relates transformationsfm(.) andfn(.)
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