
ABSTRACT

It is well known that a higher-than-normal speech rate will cause
the rate of recognition errors in large vocabulary automatic speech
recognition (ASR) systems to increase [1]. In this paper we
attempt to identify and correct for errors due to fast speech. We
first suggest that phone rate is a more meaningful measure of
speech rate than the more common word rate. We find that when
data sets are clustered according to the phone rate metric, recogni-
tion errors increase when the phone rate is more than 1 standard
deviation greater than the mean. We propose three methods to
improve the recognition accuracy of fast speech, each addressing
different aspects of performance degradation. The first method is
an implementation of Baum-Welch codebook adaptation. The sec-
ond method is based on the adaptation of HMM state-transition
probabilities. In the third method, the pronunciation dictionaries
are modified using rule-based techniques and compound words
are added. We compare improvements in recognition accuracy for
each method using data sets clustered according to the phone rate
metric. Adaptation of the HMM state-transition probabilities to
fast speech improves recognition of fast speech by a relative
amount of 4 to 6 percent.

1. INTRODUCTION

Speech rate has been shown to have a significant effect on recog-
nition [1]. When speech rate exceeds a threshold, recognition
accuracy drops. It is difficult to pinpoint this threshold as there is
no standard metric for quantifying speech rate. The first part of
this paper is concerned with computing speech rate and this
threshold.

In addition, the compensation of fast speech can potentially make
use of analyses of speech modeling errors at many levels of the
recognition process, as the presence of fast speech can impair both
acoustic and language models. The second part of this paper
addresses a small subset of the possible compensation procedures,
focussing on easily-implemented procedures that do not require
complete retraining of the ASR system. Since these procedures
provide only limited benefit, we also suggest a number of fruitful
avenues for future research.

We used the Wall Street Journal (WSJ1) training corpus [2] which
contains a total of 29,000 testing utterances. In all experiments a
fast and somewhat less accurate version of the CMU SPHINX-II
recognition system [3] with a 20,000-word vocabulary, 10,000
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sex-dependent senone models, and a trigram language model was
used.

2. MEASURES OF SPEECH RATE

Pallett et al. [1] used the word rate measure to compute the speech
rate of utterances from the WSJ1 corpus. In their experiments,
word rate was calculated by dividing the number words in the
transcript by the total length of the utterance in minutes. We
repeated these experiments and confirmed their results.

Figure 1 compares recognition errors observed for subsets of the
WSJ1 corpus with different word rates. Each subset contains 100
unique utterances of the corpus having the same word rate. It can
be seen that error rate increases when the word rate is greater than
two standard deviations from the norm.

It has been pointed out that word rate is unsatisfactory “because
of unpredictability in the structure and length of a word, which
may be monosyllabic or polysyllabic, and because of the indeter-
minacy of any pause durations between words” [4]. A more pre-
cise measure of speech rate must characterize the rate of
information using a much smaller unit than the word. In this work
we have chosen the phone as the unit of measurement.

For each phone in an utterance we define the instantaneous phone
rate to be the inverse of the phone duration. In this paper the mean
phone rate over the entire utterance, excluding silence periods,
was used to classify an utterance. Since the phone rate is not
directly related to word length, it is unaffected by the preponder-
ance of long versus short words in a given utterance. A scatter plot
of word rate versus phone rate is shown in Figure 2. The correla-
tion between the two is rather low (0.5), so the grouping of the

Figure 1.  Recognition error rates for subsets of 100 utterances 
from the WSJ1 corpus grouped by word rate. The bell-shaped 
curve shows the distribution of utterances in the entire corpus.
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corpus differs according to which measure of speech rate was
used.

Figure 3 shows recognition error rate as a function of phone rate,
again based on subsets of 100 utterances of similar phone rate
from the original WSJ1 corpus. In fast speech, increases in both
deletion and substitution errors were responsible for the overall
increase in error rate. In comparing Figures 1 and 3, it appears that
error rate is more sensitive to phone rate than word rate. The
phone rate need only be one standard deviation above the mean for
error rate to increase, while the word rate must be above two stan-
dard deviations.

Computation of both the word rate and phone rate requires the
correct transcription for the utterance. To compute phone rate,
forced alignment is first used to determine the phone segmentation
and then phone durations are computed from this segmentation.

In many situations, it is important to be able to detect fast speech
without knowing the transcript a priori. We investigated the use of
the recognition system’s transcript hypothesis containing time-
alignment information. Figure 4 compares estimated phone rates
(produced by the recognition system) to actual phone rates
(derived from the written transcripts). Although negatively biased,
the estimate of the phone rate is monotonically related to the
actual phone rate, and therefore can be used to predict the pres-
ence of fast speech. 

Figure 2.   Scatter plot of word rate versus phone rate for utter-
ances from the WSJ1 corpus. The line shows the best linear fit to 
the points.
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Figure 3.  Recognition error rates for subsets of 100 utterances 
from the WSJ1 corpus grouped by phone rate. The bell-shaped 
curve shows the distribution of utterances in the entire corpus. 
Please note that the data sets are different than in Figure 1.
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3. COMPENSATION FOR THE EFFECTS 
OF HIGH SPEECH RATE

Degradation of recognition accuracy due to high speech rate may
occur when the acoustic models and language models obtained
from training with average speech fail to describe the correspond-
ing characteristics of fast speech. In this section, we describe mod-
ifications made to three components of the recognition system to
compensate for the effects of high speech rate: the models of the
acoustical characteristics of speech sounds, the models of the
HMM state-transition probabilities, and the pronunciations of
words in the dictionary. These procedures were selected for con-
sideration in this work because they are relatively easy to imple-
ment without complete retraining of the speech recognition
system. Since we find, unfortunately, that these methods provide
only very limited benefit, we also suggest several other more com-
putationally-intensive approaches that may be more effective. 

3.1. Modification of Acoustic Models

If the production of fast speech differs from the production of
speech at a normal rate, the acoustical characteristics of the output
will differ as well. In previous research, recognition accuracy has
been improved through the use of VQ codebooks that were spe-
cific to gender, pitch, and environment (e.g. [5,8]). We developed
rate-specific codebooks by performing Baum-Welch codebook
reestimation for fast speech. Figure 5 is a scatter plot comparing
the values obtained for the C-0 and C-1 VQ codeword locations,
for the original speech and for speech derived from the fastest
1000 utterances in the database. As can be seen, there is little dif-
ference between the two sets of codeword locations. The higher-
order coefficients of the two codebooks were even more similar.

Recognition accuracy of fast speech using the codebooks derived
from fast speech did not improve compared to baseline accuracy.

Figure 4.  Estimated versus actual phone rates for each of eight 
100-utterance sets having the same actual phone rate. Error bars 
represent  standard deviation in the estimate. The dotted line 
shows the unbiased predictor.
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The fact that the use of rate-specific codebooks was unsuccessful
in this experiment suggests that the long-term average acoustical
characteristics of normal speech and fast speech are similar. How-
ever, it is also known that codebook variations can depend on pho-
netic class [e.g. 6], so it is possible that the use of codebook
modifications based on phoneme class as well as on speech rate
may be more successful.

3.2. Modification of HMM State-Transition 
Probabilities

Since faster speech is typically less carefully articulated, it is
expected that recognition accuracy could be improved by modify-
ing representations of duration of the various phonetic productions
in the HMMs. It has been shown that when speech rate increases
the change in duration of vowels is greatest [7]. We used forced-
alignment techniques to confirm this observation for the WSJ1
corpus. Obtaining state and phone segmentations for all utter-
ances, we noticed a very high occurrence of extremely short (30-
ms) durations in the fast speech.

Figure 6 compares histograms of vowel durations for normal and
fast speech in the WSJ1 corpus, along with the duration statistics
of vowel segments in the original HMM representation for normal
speech. It can be seen that the phone durations of the vowel seg-
ments of the HMMs more closely resemble average than fast
speech. 

Based on the comparisons shown in Figure 6, we believe that more
explicit modeling of phone duration would improve recognition
accuracy, which can be most easily accomplished by modification
of the state-transition probabilities in the HMMs. In the SPHINX-
II system, only monophone transition probabilities are trained
because they are assumed to be relatively unimportant in recogni-
tion [8].

Figure 5.  Codebooks entries for baseline, and fastest 1000 
utterances computed from Baum Welch adaptation.
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Figure 6.  Histogram of vowel durations for a random set of 
500 utterances, the fastest 1000, and as modeled by the HMMs.
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We evaluated the importance of state-transition probabilities by
creating two new sets of state-transition models. The state-transi-
tion probabilities in the first set were made equal, which tended to
shorten the average model phone duration. The second set of mod-
els had transition probabilities adapted to the fastest 1000 utter-
ances, by counting state-transitions from segmentation of these
utterances. Recognition error rates obtained using these probabili-
ties are compared with the original baseline probabilities in Figure
7. The relative decrease in error rate obtained using rate-specific
unequal probabilities is 4 percent for speech with phone rates from
18 to 22 phones/second, and 6 percent for speech with phone rates
from 20 to 22 phones/second. Equal transition probabilities pro-
vided a lower error rate for fast speech, but they were of no impact
on normal-rate speech. The adapted models provide an even lower
error rate for fast speech, and a slight increase in error rate for
speech spoken at the normal rate. 

3.3. Modification of Pronunciation Dictionaries

Fast speech frequently produces changes in word pronunciation as
well as in phone articulation, and it has been shown that these
changes occur both within and between words [9]. In this section
we focus on both intra-word and inter-word transformations in fast
speech, and methods to compensate for them. 

3.3.1 Intra-Word Transformations

A speech recognition system developed using average-rate speech
may not be able to identify a rapidly-spoken word spoken if the
dictionary entry for that word is different than as pronounced. A
linguist helped us to identify possible pronunciation differences
for fast speech. The rules governing intra-word transformations are
numerous and complex [9].

Because we found deletions of unstressed vowels to be very com-
mon in fast speech, we selected two simple rules involving trans-
formations of the schwa. In each case, we modified the dictionary
and repeated recognition of the fast speech. The rules were:

1. Eliminate the schwa between two consonants. 

2. Eliminate all non-initial and non-final schwas.

300 of the 20,000 words in the database were modified by Rule 1,
and 7,000 words were modified by Rule 2. For each rule, recogni-

Figure 7.  Comparison of recognition error rates using the orig-
inal state-transition probabilities, equal transition probabilities, 
and probabilities adapted to fast speech. Smooth curves indicate 
the best exponential fit to the baseline and adapted models.
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tion was performed using the new dictionary, and a union of the
new and original dictionary. Neither rule resulted in a significant
change in the overall word error rate.

3.3.2 Inter-Word Transformations

The pronunciation of a sequence of words is often different than
the words spoken in isolation [8], and if they are of short duration
and have few phones, deletions can occur. In our observations of
recognition performance of fast speech, the fraction of errors that
are deletions is approximately 33 percent. In comparison, word
deletions comprise only 5 to 10 percent of all errors for normal
speech. For the fast-speech utterances that we examined, only 10
different spoken words, THE, AND, TO, A, OF, IN, THAT, WERE,
ARE, and I, represented 55 percent of all word deletions even
though they represented only 20 percent of all words in the tran-
scripts. 33 percent of these deletions were merges of the form

“X Y” -> “X” and “X Y” -> “Z”

where X,Y, and Z are words from the short word set. For example,
there were many occurrences of the following merges:

“OF THE”->”OF” and “AND A”->”THE” 

Because it is not possible to reduce deletion errors due to merges
of short words by changing their individual pronunciation, we
added compound words to the dictionary instead. These com-
pound words are of the form “IN_THE”, “AND_IN” and have
slightly different pronunciations than each word separately. From
20,000 words in the dictionary, 164 new compounds representing
the most frequent merges were added.

Other sites [10] have obtained a slight decrease in error rate using
dictionaries with compound words for the Switchboard corpus
[11]. Nevertheless, we found that adding compound words to our
dictionary did not improve recognition accuracy.

4. DISCUSSION

In this paper, we selected phone rate over word rate as a more pre-
cise measure of speech rate and found that recognition errors
increase when the phone rate exceeds 1 standard deviation from
the mean. As some studies have found that vowel durations are
most sensitive to speech rate [7], it is also possible the average
vowel rate would be a superior metric.

We explored several methods in three different domains of speech
modelling to reduce recognition errors for fast speech. Although
the first method, codebook adaptation, failed to improve the recog-
nition performance of fast speech, we believe better results may be
obtained using a combination of separate phone-dependent and
rate-dependent codebooks.

The second method, HMM state-transition probability adaptation,
demonstrated that state-transition probabilities do indeed affect
recognition, and that adaptation can reduce error rates for fast
speech by a relative amount of 4 to 6 percent.

We applied a small number of rules that manipulated a large num-
ber of pronunciations to compensate for some of the effects of
intra-word transformations. While these simple rules did not yield
improvements in accuracy, it is possible that such an approach
could be more successful with a more complete and systematic set
of transformation rules.

Finally, we added compounds words to the dictionary based on
observations of pronunciations of pairs of short words to compen-
sate for inter-word transformations.  While we observed no
increase in recognition accuracy, retraining the acoustic models
after manipulating the dictionary should  reduce recognition
errors.
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