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ABSTRACT
This paper describes an algorithm that performs a simple form of
computational auditory scene analysis to separate multiple speech
signals from one another on the basis of the modulation frequencies
of the components. The most novel aspect of the algorithm is the
use of the cross-correlation of the instantaneous frequencies of the
components of a signal to identify and separate those components
that are likely have been produced by a common sound source. The
putative desired target speech signal is reconstructed by choosing
those components that have the greatest mutual correlation, and
then using extrinsic information such as fundamental frequency
or speaker identification to determine which component clusters
belong to which speaker. The system was evaluated by comparing
speech recognition accuracy of a target speech signal that was
extracted from a mixture of two speakers. It was found that
recognition accuracy obtained when the separation was based on
cross-correlation of changes in instantaneous frequency was better
than the accuracy obtained when the separation was performed on
the basis of fundamental frequency alone, for both the DARPA
Resource Management Database and the Grid database used in the
2006 Speech Separation Challenge.1

Index Terms— speech analysis, speech recognition, time-
frequency analysis, modulation frequency

I. INTRODUCTION

While the recognition of clean speech has been extensively
examined and reasonably good recognition accuracy has been
achieved, clean speech is often corrupted by different types of
noise, such as background music, mechanical noise, or interfer-
ing speech. Mismatches between training and testing conditions
produce degradation of recognition accuracy. Among the different
types of additive noise, interfering speech is considered to be one
of the most challenging sources of degradation, especially since
speech-like interference is frequently difficult to distinguish from
the target speech.

This paper describes a new approach to single-channel signal
separation based on the detection of modulation frequencies, and
the grouping of sets of frequencies that appear to be co-modulated,
regardless of the extent to which they are harmonically related to
each other.

1This research was supported by NSF Grant IIS-0420866.

I-A. Computational auditory scene analysis
Computational auditory scene analysis (CASA) seeks to exploit

the inherent features contained in speech itself as cues to separate
speech. Fundamental frequency, which is commonly referred to by
its perceptual correlate pitch, is widely used in CASA systems as a
cue to separate combined speech. As long as the pitch of the target
and masking speech are different in a short time segment, the target
speech can be resynthesized only from those components related to
its pitch and harmonics. Multi-pitch tracking algorithm have been
utilized to extract pairs of pitch trajectories (e.g. [1] [2]), and a
CASA system based on pitch tracking was also built to separate
speech based on estimated pitch (e.g. [3] [4]). One could develop
a system to reconstruct the target speech from its fragments or
perform the decoding based on the fragments alone (e.g. [5] [6]).

There are many different types of inherent information contained
in speech, such as pitch, onset/offset, time/frequeny continuity, etc.
Among all the various features, modulation frequency has been the
object of much attention and has been used to detect pitch, separate
speech, and modify speech, as will be discussed in the next section
(e.g. [7]).

I-B. Uses of mdulation frequency
A narrowband signal can be represented by a higher frequency

carriers modulated in amplitude and phase at lower frequencies.
Consider, for example, the continuous-time representation of a
sinusoid with time-varying amplitude A(t) and phase θ(t),

y(t) = A(t) cos(θ(t)) = A(t) cos(ω0t +

Z t

0

ω(τ)dτ + θ0) (1)

The instantaneous frequency ωi(t) is the derivative of the instan-
taneous phase with respect to time

ωi(t) =
dθ
dt

= ω0 + ω(t) (2)

where ω0 is the carrier frequency and ω(t) is the modulation
frequency, which represents deviations from the nominal frequency
value ω0. If a signal is a complex tone with multiple harmonics,
the nth harmonic of the fundamental would exhibit the same
instantaneous frequency as the component at the fundamental
frequency, but multiplied by the scaling factor n:

ωn(t) = nω0 + nω(t) (3)

Many studies have focused on modulation frequency in the fields
of psychoacoustics and speech production, and it is beginning to
be exploited for speech processing and recognition. For example,



the impact of modulation frequency on speech recognition was
discussed in [8]. Filter design based on modulation frequency has
also been proposed for preprocessing to mitigate the effects of
reverberation [9]. Modulation frequency can also be combined with
nonnegative matrix factorization to estimate pitch explicitly [10].

The potential exploitation of modulation frequency can con-
tribute greatly to improved source separation. Traditional signal
processing techniques such as short-time Fourier analysis (STFA)
separate signals according to time and frequency. If modulation
frequency can be consistently extracted, it provides a potential
third orthogonal dimension along which signal components can be
separated and clustered. The target speech signal can potentially be
reconstructed by selecting those localized time-frequency regions
that exhibit a particular common modulation frequency [11]. Nev-
ertheless, accurate estimation of modulation frequency can be quite
difficult for natural signals.

In the next section we will describe ways in which cross-channel
correlation based on instantaneous frequency can be used to detect
and cluster frequency bins that belong to a common sound source.
Experimental results are discussed in Sec. III and our results are
summarized in Sec. IV.

II. SIGNAL SEPARATION BASED ON MODULATION
FREQUENCY

Voiced speech is perceived as having a pitch at the fundamental
frequency of vibration of the vocal chords. Nevertheless, humans
can never maintain truly constant pitch because of physiological
limitations in the production mechanism, so the speech excitation
signal is in practice non-stationary and only quasi-periodic.

While it is nominally worthwhile to estimate modulation fre-
quency instead of (or in addition to) fundamental frequency, the
modulation frequency of natural speech is limited to about 16 Hz,
so changes evolve over a relatively long time, and one cannot
observe a complete period of modulation without a very long
analysis frame. Unfortunately, an analysis frame that is long enough
to retain an entire modulation period will inevitably average out
frequency fluctuations of shorter duration. Rather than attempting
to estimate modulation frequency itself (as in [11]), we attempt
to estimate correlations in the short-time frequency modulation
over distinct frequency channels, with the goal of identifying
frequency bins that are highly correlated with one another in terms
of instantaneous frequency. This method requires the estimation of
neither multi-pitch trajectories nor the modulation frequency itself.
Instead, it provides system developers with the option of using
either pitch or modulation as the basis for sound separation.

Figure 1 illustrates the system design. The combined speech
x[n] is first decomposed into a two-dimensional time-frequency
representation Xm[n, k] using short-time Fourier analysis (STFA),
where m is the frame index, n is the time sample index within a
frame and k is the index of frequency bins. Each frequency bin can
be considered to be the output obtained by passing the original input
through a narrow bandpass filter. The instantaneous amplitude and
phase in each frequency bin will be slowly time varying. The phase
information θm[n, k] is obtained easily from the inverse tangent of
the quotient of the imaginary and real parts of the filter output
Xm[n, k]:

θm[n, k] = arctan(
imag(Xm[n, k])
real(Xm[n, k])

) (4)

Fig. 1. System that implements the modulation-frequency-based
(in the upper block) and pitch-based (in the lower block) speech
separation algorithms.

The instantaneous frequency ωI,m[n, k] is estimated by taking the
first difference of the instantaneous phase, with care taken to deal
appropriately with the effects of phase wrapping.

ωI,m[n, k] = θm[n, k]− θm[n− 1, k] (5)

Once the instantaneous frequency is obtained for each time-
frequency location, a pair-wise short-time cross-channel correlation
of instantaneous frequency is computed across all the frequency
bins. Rω,m(k0, k1) is the cross-channel correlation, evaluated for
two frequency channels represented by the indices k0 and k1.

Rω,m(k0, k1) =
Cm(k0, k1)p

Cm(k0, k0)Cm(k1, k1)
(6)

where Cm(k0, k1) is the covariance of the instantaneous frequency
in two bins k0 and k1:

Cm(k0, k1) = E[(ωI,m[n, k0]− ωI,m[n, k0])

(ωI,m[n, k1]− ωI,m[n, k1]] (7)

where the statistical averages in the equations above are approxi-
mated by time averages within the analysis frame. This approach
differs from that described in [1], in that we use cross-channel
correlation over all frequency channels and do not use it to estimate
fundamental frequency directly, while in [1] correlations are cal-
culated only between adjacent frequency channels and correlation
values are used as a tool to estimate pitch.

Figure 2 shows a cross-channel correlation pattern across all
frequency bins for an actual voiced segment of speech with a
fundamental of 135.5Hz. The small red-colored (bright) rectangles
are frequency bins that are highly related to the fundamental
frequency and all its harmonics. Since the correlation pattern is
symmetric, either the horizontal or vertical axis can be used to
collect the correlated frequency bins. If a frequency bin contains
the fundamental frequency, it will have high correlation with all
frequency bins containing its harmonics. Each column is averaged
and the averaged value is compared to a preset threshold which is
database dependent but not very sensitive. This threshold is always
set to 0.25 in all of our experiments. Those frequency bins retained
for further processing are selected from those elements of the cross-
correlation representation for which the average correlation exceeds
the preset value.



The cross-correlation matrix identifies components that belong
together, but it does not indicate the speaker to which each
frequency-component cluster belongs. A standard speaker identi-
fication (SID) system based on Gaussian mixture models (GMMs)
[12] on a frame-by-frame basis to determine which frames are
dominated by the target speaker or the interfering speaker. For
each frame that is dominated by the target speaker, the frequency
bins are selected that have high correlation with other frequencies,
and the other frequencies are suppressed. For those frames that
are identified as representing the interfering speaker, frequency
bins with high correlation are suppressed while the other frames
are retained. We note that no current algorithms deals perfectly
with frames in which the fundamental frequency from different
speakers is the same. Finally, a reconstruction of the target speaker
is obtained through the inverse short-time Fourier transform of the
retained time-frequency components only.
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Fig. 2. Cross-channel correlation over all the frequency bins for a
short voiced segment at frequency 135.5Hz, where red and yellow
regions represent high correlation, while blue and green regions
represent low correlation.

The system shown in Fig. 1 supports two parallel signal separa-
tion approaches, one based on correlations of modulation frequency
(contained in the green box) and the other based on fundamental
frequency alone (contined in the yellow box), both using the same
peripheral signal processing and speech recognition software. The
pitch-only separation algorithm uses de Cheveigné’s YIN algorithm
[2], which attempts to estimate the pitch value from the dominant
speaker and resynthesize the entire utterance by only selecting the
estimated pitch and its harmonics. In our experiments, the speech
signal is windowed using 50-ms Hamming windows with 75%
overlap for the modulation-frequency-based approach and 30-ms
windows with 50% overlap for the pitch-only separation approach.

III. EXPERIMENTAL RESULTS
The modulation-frequency-based separation algorithm was eval-

uated by using the CMU SPHINX-III system and comparing its
performance with three types of signal processing: (1) a baseline
system using conventional MFCC processing, (2) the signal sep-
aration system based on modulation frequencies described in this

paper, and (3) a simple signal separation system based on pitch
tracking alone, for comparison. Two standard speech corpora were
used for the evaluation, the Grid database which had been used
used in the Speech Separation Challenge of 2006 [13] [14], and the
familiar DARPA Resource Management (RM) database. The Grid
corpus includes 34 speakers, each providing 500 clean utterances,
for a total of 17,000 clean training utterances. The testing utterances
are degraded at various SNRs. All utterances in the Grid database
have a fixed format as specified in Table I. For example, a typical
sentence could be “bin white at d 1 again”. We only worked with
speech with an SNR of +6 dB in the present work. The DARPA
RM database consists of 1600 training utterances and 600 testing
utterances. The vocabulary size of RM database is nominally 1000
words.

The evaluation methods for the two corpora are quite different.
As noted above, sentences in the Grid database all consist of a
verb followed by a color, a preposition, a letter, a digit, and an
adverb in precisely that sequence. The only errors tabulated are
substitutions of the digits and letters in the speech data. The task
remains a difficult one, as digits and letters are frequently confused
even by human listeners when competing speakers are present. We
used the scoring tool prepared by the University of Sheffield to
score recognition results for the Grid database.

Figure 3 summarizes the word recognition accuracies (100%−
WER) obtained using the Grid database, tabulated separately for
interfering speakers of the same gender and the opposite gender
of the target speaker. As is seen in the figure, separation based
on modulation frequency provided better accuracy than separation
based on pitch only and baseline MFCC processing. Differences
between accuracies obtained using the MF and MFCC methods
were always statistically significant, but the differences between
scores obtained for the MF and Pitch methods are significant
only for the ‘different gender’ and ‘average’ cases. The absolute
level of performance was worse than the two CASA systems
presented at Interspeech 2006 by groups at the University of
Sheffield [6] and Ohio State University [4], but the present system
does not yet include many of the modules that are known to
be important in these more mature systems, including fragment
decoding, sequential grouping, missing-feature reconstruction and
methods for dealing with unvoiced segments.

VERB COLOR PREPOSITION LETTER DIGIT ADVERB
bin blue at a-z 1-9 again
lay green by (no ‘w’) and zero now

place red on please
set white with soon

Table I. Structure of the sentences in the Grid database.

Since speaker ID information was not available for the RM
database, we limited our comparisons to the ‘different gender’
case, using pitch tracking from the YIN algorithm only for gender
separation in the MF configuration. Since same-gender competing
speakers share a very similar pitch range with the target speaker,
pitch estimation is not very useful for the same gender case.
Conventional word error rates (WERs) were tabulated, including
substitution, insertion, and deletion errors. Figure 4 summarizes
the results for these experiments, and again separation based on
modulation frequency provided the best recognition accuracy, with
statistically significant differences between processing types. It is
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Fig. 3. Recognition accuracy obtained using the Grid database,
comparing speech separation using modulation frequency (MF),
speech separation using pitch only (Pitch), and baseline MFCC
processing without speech separation (MFCC). The SNR in all
three cases was 6 dB.

worth noting that both the modulation-frequency and pitch-only
separation approaches provide worse performance than baseline
MFCC processing for the two highest SNRs. The task of reducing
WERs at low SNRs while retaining good performance for clean
speech is still quite challenging.
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Fig. 4. Word error rates (WERs) obtained using the DARPA
Resource Management Corpus, comparing speech separation using
modulation frequency (MF), speech separation using pitch only
(Pitch), and baseline MFCC processing without speech separation
(MFCC).

IV. CONCLUSIONS
In this paper, a new single-channel speech-separation approach

based on modulation-frequency detection and cross-channel corre-

lation of instantaneous frequency is presented and evaluated. Using
two different databases, we demonstrated that separation using
instantaneous modulation frequency provided better recognition
accuracy than separation based on fundamental frequency alone
and baseline processing using MFCC features. We expect to ob-
serve further improvements by incorporating more accurate speaker
identification and methods for dealing with unvoiced segments.
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