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ABSTRACT

We present a method to reduce the effect of full-rate
GSM RPE-LTP coding by combining two sets of acoustic
models during recognition, one set trained on GSM-
distorted speech and the other trained on clean uncoded
speech.  During recognition, the a posteriori probabilities
of an utterance are calculated as a sum of the posteriors of
the individual models, weighted according to the
distortion class each state in the model represents. We
analyze the origin of spectral distortion to the quantized
long-term residual introduced by the RPE-LTP codec and
discuss how this distortion varies according to phonetic
class.  For the Research Management corpus, the
proposed method reduces the degradation in frame-by-
frame phonetic recognition accuracy introduced by GSM
coding by more than 20 percent.

1. INTRODUCTION

Speech coding reduces the accuracy of speech
recognition systems [4]. As speech recognition
application in cellular and mobile environments become
more ubiquitous, robust recognition in these conditions
becomes crucial. Even though the speech codec is only
one of the several factors that contribute to the
degradation in recognition accuracy, it is necessary to
understand and compensate for this degradation in order
to achieve a system’s full potential. We focus on the
acoustic distortion introduced by the full-rate GSM codec
[1]. This distortion can be traced to the quantization of
the log-area ratio (LAR) and to the quantization and
downsampling performed in the RPE-LTP process. The
distortion introduced in the residual signal affects
recognition to a larger extent than the quantization that
the LAR coefficients undergo [2].

In Section 2 of this paper, we discuss the origin of the
distortion in the RPE-LTP codec. We observe that based
on the “predictability” of the short-term residual signal,
the RPE-LTP will be able to minimize the error in the
quantized long-term residual. This predictability is later
shown to be related to phonetic characteristics of the
signal. In Section 3 we show that the relative spectral
distortion introduced in the quantized long-term residual
tends to be concentrated around three levels, and that this
amount of relative spectral distortion can be loosely
related to the relative degradation introduced to the frame
recognition accuracy by GSM coding. In Section 4 we

separate the set of phonemes into cluste r
their relative spectral distortion. In Se c
a method to weight two sets of acoustic m o
the distortion categories introduced in S
describe the results of recognition experi
techniques in Section 6.

2.  THE RPE-LTP CODEC AS A SOURCE
OF ACOUSTIC DEGRADATION

The full-rate GSM codec decomposes the sp
into a set of LAR coefficients and a sho r
signal [1]. The LAR coefficients are q u
transmitted to the decoder while the short -
segmented into subframes and coded by a n
coder [3].  In this section we discuss 
degradation that exist in the RPE-LTP code
Figures 1 and 2, a simplified version of 
LTP codec and a simplified version of a r
codec respectively.

Figure 1 depicts an ideal codec able to 
signal that is identical to the origina l
Even though this codec would not achieve a
of the bit rate of the input sequence it h
sources and nature of the distortion of t
introduced by the actual RPE-LTP codec.

The ideal RPE-LTP codec works as follo w
sequence x[n] (the short-term residual) ente r
and is compared to a predicted sequ
reconstructed short-term residual) prod
predictor block (the LTP section). Th e
between these two signals is what the pre d
unable to predict, which we will refe
“innovation sequence”. In the absence of
acoustic degradation, our ideal codec w i
generate a reconstructed time sequence 
together the innovation sequence and t h
sequence.  This reconstructed sequence wi l
to the original time sequence x[n] by definition. 
reality, the RPE-LTP coder, does not t
necessary information for the decoder t
innovation sequence exactly. It sends subsampled and
quantized information that will result in 
innovation sequence (called the reconstru c
residual) that will approximate the orig i
sequence to the extent possible.  The 
degradation in the reconstructed signal w i
the energy of the innovation signal which 
on how good the predictor module (RPE) 



“follow” or predict the next subframe of the time
sequence based on previous reconstructed subframes.
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Figure 1. Simplified block diagram of an ideal RPE-LTP coder.
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Figure 2. Simplified block diagram of an actual RPE-LTP
coder.

3. THE RPE-LTP INDUCED
SPECTRAL DISTORTION

3.1.  Relative log spectral distortion introduced
by the  RPE-LTP coder

We use the relative log spectral distance below to
measure the dissimilarity between the reconstructed and
the original innovation sequence. E(ω) is the power

spectrum of the innovation sequence and E R(ω) is the

power spectrum of the quantized innovation sequence.
We integrate the absolute value of the difference between
both  log power spectra and normalize it  by the integral
of the log of the power spectrum of the original
innovation signal.

1.2.  Distribution of the relative log spectral
distortion

We computed the relative log spectral distortion
introduced by the RPE-LTP codec to the RM corpus.
Figure 3 is a histogram that shows the log of the relative
frequency of observing various levels of log spectral
distortion. The horizontal axis is the amount of relative

distortion observed in a frame.  We obser v
counts are roughly clustered in 3 regions: 
and high distortion, separated by breakpoin t
33 and 67 percent. We also observe that the 
the frames suffer only a small amount of dis t
most of the time the LTP section of the cod e
do a reasonably good job of predicting the 
residual signal.
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spectral distortion introduced to a large sam p

1.3.  Impact of relative log spectral distor
on phonetic recognition
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Figure 4. Relative degradation in frame-b a
phonetic accuracy as a function of the re l
spectral distortion introduced by the RTE -
coder.

In order to analyze the relation that ex i
degradation in recognition performance and t
of relative log spectral distortion introduc e
LTP block, we performed two phonetic rec o
experiments: one training and testing usin gi.e.,

L E E d E dR1 0 0= −∫ ∫log( ( ) log( ( ))) log( ( ))ω ω ω ω ωπ π



non-GSM coded) speech data and a second experiment
using speech that underwent GSM coding.  We computed
the frame accuracy for each amount of relative spectral
distortion both for when GSM was present and when it
was absent. Figure 4 depicts how much the frame-based
phonetic recognition error rate increased due to the
introduction of the GSM coding as a function of the
relative spectral distortion.  We observe that, generally
speaking, the phonemes that produced a greater amount
of distortion due to GSM coding also suffered greater
amounts of frame error rate.

4. RELATING RELATIVE LOG SPECTRAL
DISTORSION PATTERNS TO PHONETIC

CLASSES

4.1.  Clustering Phonetic-classes using the
relative log-spectral distortion

We grouped the 52 phonetic units used by our recognition
system into phonetic clusters by incrementally clustering
the closest histograms of the counts of the relative log
spectral distortion for the frames associated with each
phonetic unit in the corpus.  The distance between each
pair of histograms was calculated using normalized-area
histograms.  The clustering yielded five classes, as shown
in the table below.

Class Phonemes in cl Frame
Acc.

Frame
Acc.,
GSM

%
Degra-
datio n

1 PD KD 46.76% 44.10% 5%

2 IX B BD DD D H
M N JH NG V W
Y DX  ZH AX SH

68.28% 58.34% 31.34%

3 D G K P T TD CH 70.88% 65.94% 16.96%

4 F HH S Z TH TS 72.39% 57.63% 53.43%

5 IY OW OY UW L
R AA AE AH AXR
EH AO IH ER A W
AY UH EY

74.37% 67.90% 25.24%

Table 1.  Phonetic classes generated by automatically
clustering the phonemes distortion histograms

Classes 1, 3, and 4 encompass the majority of the
consonants, Class 4 being mostly fricatives. Class 2
includes the remaining consonants and a couple of
vowels, while Class 5 encompass the vowels, diphthongs
and semivowels. Silence units were omitted from this
analysis. We can see that even though the classes do not
exactly correspond to phonetic classes, they achieve a
reasonable partition between broad classes of sounds.
The pattern of distributions of relative log spectral
distortion introduced by the RPE-LTP is strongly related
to phonetic properties of the signal.

A plot of the normalized histograms of the
shown below. These five classes exhibit
pattern of distortion in each of the three 
defined in Section 3.2.  Classes 1 and 3 
percentage of counts in the high distort
presence in the middle area, while Classe s
more counts in the middle area. Class 5
almost completely concentrated in the l o
region.
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Figure 5.  Histograms of the relative spectral dis t
five phonetic classes of Table 1.

5. ACOUSTIC MODEL WEIGHTING

Acoustic modeling for HMM-based speech r e
commonly makes use of mixtures of G
distribution representing a set of tied st a
probability that an observed vector has be
certain state is thus expressed by

The term c[j, k] expresses the prior probabi k th

Gaussian component of the j th  HMM. For a given st j
the sum of c[j,k] over all k is equal to 1.

We can consider the amount of distortion t
a phonetic class undergoes while evaluatin
probability using several models that 
distortion regions. We can express thi s
introducing a function f that weights t h
probability of the pth  model depending on dt, the
distortion of the observed frame t, and j, which indica t
the model representing a given phonetic
function f also depends on the prior probab i
model cp[j,k]. This function can also be 
weighted version of c p[j,k]. The resulting po
becomes
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The function f can also be dependent on the distortion
class the model represents. This way, f will weight more
the clean models for states that model phonemes that
suffer small average GSM distortion.  Alternatively, one
can make the function f depend on knowledge of the
instantaneous relative distortion of each frame dt if this
information is available. This function should give more
weight to the distorted models when the relative frame
distortion is greater.

6. SPEECH RECOGNITION EXPERIMENTS

Phonetic recognition experiments were performed using
the Resource Management corpus and the SPHINX-3
system.  Our basic acoustic models consisted of 2500 tied
states, each modeled by a mixture of two Gaussians.  One
set of models was trained on clean speech while the other
set of models was trained with speech that underwent
GSM coding. We obtained our reference transcription by
performing automatic forced alignment on the 1600 test
utterances using their pronunciations.  We computed both
the phone accuracy and the frame accuracy. Phone
accuracy is calculated considering insertions and
deletions of phones in the hypothesis. We evaluated the
frame accuracy by making a frame-by-frame comparison
of the output of the phonetic recognizer with the
alignment. Table 2 summarizes recognition accuracy for
clean and GSM speech, using clean and GSM models.
We also show the results when models are trained using
both GSM-coded speech and clean speech (multi-style
trained models).

Testing
data

Training da Phone
Accuracy

Frame
Accuracy

Clean Clean 63.3% 69.86%

GSM Clean 55.7% 61.20%

GSM GSM 60.1% 64.50%

GSM GSM+Clean
Multistyle

60.1% 64.64%

Table 2.  Baseline frame accuracy and phoneme recognition
accuracy in Resource Management

From Table 2 we can see that the effect of having GSM
codec distortion during training and recognition reduces
frame accuracy by 5.35 points.  Recognition accuracy can
improved somewhat by using multi-style trained models.

6.1.  Experiments using weighted acoustic models

We performed recognition experiments using weighted
models by considering different mixing factors for two
acoustic models, trained GSM-coded and clean speech.
Table 3 shows results weighting both models equally. We

also made these weights dependent of the pho n
using three automatically-clustered phonet
While there is a modest advantage of weig
models differently, either of these two weig h
provide better results than using multi-s
models. The 3-class optimized weights re d
degradation in frame error rate introduce d
coding by 27%, from  5.36% to 3.87%.  The 
frame weighting improves recognition a c
approximately equally for all three phonetic c

Weighted modeling Phone
Accuracy

Frame
Accuracy

Equal weights 61.2% 65.77%

3-class optimized weights 61.2% 65.99%

Table 3. Frame accuracy obtained when using equall y
models and when using phonetic-class based weighti n

7. CONCLUSIONS

In this paper we examined the distortion i n
the RPE-LTP GSM codec to the short-term r
signal. We related this distortion to the r e
distortion produced by the quantized long-t e
We observed that this distortion influences 
performance, and that it can be related to 
properties of the speech signal. We introdu c
mix two acoustic models that had been train e
and distorted speech by taking into consi d
amount of distortion suffered by the phonetic 
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