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ABSTRACT
We present and describe two new speaker adaptation methods
which apply principal component analysis to maximum likeli-
hood linear regression (MLLR). If we apply MLLR after trans-
forming the baseline mean vectors by their eigenvectors, the
contributions of these eigenvalues to the variance of the estimates
for the MLLR matrix are inversely proportional to their corre-
sponding eigenvalues. In the first new technique, called Principal
Component MLLR (PC-MLLR), we reduce estimator variance (at
the expense of increased bias) by eliminating the contributions of
principal components corresponding to smaller eigenvalues. The
second technique, called Weighted Principal Component MLLR
(WPC-MLLR) makes use of the contributions of all principal
components, but weights them according to the inverse of their
putative variance. In experiments using sentences from Spokes 0
and 3 from the 1994 DARPA Wall Street Journal evaluation, the
use of WPC-MLLR provided a relative reduction in word error
rates of 15.1% for non-native speakers and 6.0% for native speak-
ers compared to conventional MLLR.

1. INTRODUCTION
It is well known that any mismatch between training data and test
data results in a degradation in recognition accuracy in an auto-
matic speech recognition system. In this study we seek to reduce
this mismatch by developing modified statistical models of vocal
productions that better match the characteristics of new speakers.

The new procedures described in this paper are extensions of the
widely-used adaptation procedure maximum likelihood linear
regression (MLLR) (e.g.[6]). In MLLR, the mean of the observed
feature vector for a given new speaker (or environmental condi-
tion) is assumed to be related to the mean of the unadapted base-
line vector by an unknown linear transformation. In our work we
assume that the individual components of the feature vectors can
be modeled by Gaussian mixture probability density functions.

For example, consider , the mean of the mixture density
for one of the cepstral features from a given new speaker (or envi-
ronmental condition). is assumed to be related to the corre-
sponding baseline mean vector  by the linear transformation.

(1)

In the equation above, , andb areD x 1 vectors andA is a
D x D matrix, whereD is the number of components in the feature
vector (39 in our case).

In MLLR we estimate the matrix and the vector from adap-
tation data, and then update the mean vectors using Eq. (1). If the
amount of adaptation data is small then the estimates of and
may not be reliable (or have large variances). In this case, even

though the estimates are obtained from adaptation data, they m
not accurately describe the statistics of the test data, resulting
low recognition accuracy. The goal of this work is to obtain mo
reliable estimates of by estimating and both by basin
the estimations on a smaller number of carefully-chosen feat
parameters, and by weighting the contributions of the paramet
to place greater emphasis on those that are likely to be more r
able.

Let’s consider an arbitrary component of a new mea

vector and the corresponding row vector of the matrix
We can see that each depends on all the components of
corresponding base mean vector  when  is a full matrix,

(2)

It is interesting to note that while we typically assume that ea
component of a mean vector is independent in a speech reco
tion system, we normally obtain better speech recognition ac
racy when  is full (compared to when it is diagonal) [5].

In Eq. (2) some components of a baseline mean vector may
more important than others in estimating . If we ignore le
important terms in the estimation, we can reduce the number
parameters to be estimated, and obtain more reliable estim
when we have a small amount of available adaptation data.

Galeset al. [1] constrained the transformation matrix to a bloc
diagonal structure for this purpose, with feature componen
assumed to have correlation only within a block. Galeset al.used
three blocks consisting of the static, delta, and delta-delta feat
components. However, the block diagonal matrices did not p
vide better recognition accuracy than the full matrix in their tes
This is because they may have enough adaptation data to estim
the full matrix, or because blocks may not be optimal.

We can use principal component analysis (PCA) [3] to reduce t
dimensionality of the data. The original data which consisted
interrelated variables are transformed into a new set of uncor
lated variables by the eigenvectors of the covariance matrix of
original data set. Nouza [8] used PCA for feature selection in
speech recognition system. Kuhnet al. [4] introduced “eigen-
voices” to represent the prior knowledge of speaker variation. H
[2] applied PCA to describe the correlation between phonem
classes for speaker normalization. While the general motivat
for these approaches was similar to the approach described in
paper, none of them are directly related to MLLR.
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In this paper we apply PCA to the MLLR framework to reduce
the variance of the estimates of matrix . We will first review
classical PCA and its application to MLLR. We will then describe
a refinement to the method which we refer to as weighted princi-
pal component MLLR. Finally we compare speaker adaptation
performance obtained using the methods described.

2. PRINCIPAL COMPONENT
REGRESSION

Principal component regression was developed in classical linear
regression theory (e.g. [3, 7]). For example, considern pairs of
samples , where is aD-dimensional row vector, and

are scalars. is assumed to have a Gaussian distribution with

zero mean and variance . We assume and are related by a
linear regression.

Letting be the orthonormal matrix whose columns are the

eigenvectors of the correlation matrix , and be the diago-

nal matrix consisting of the corresponding eigenvalues ,

and defining the new variables and , we
obtain

(3)

The estimate for  is then

(4)

It has been shown that the variance of the individual components
of the estimate is inversely proportional to the eigenvalues of

 [7].

Therefore, components of which are associated with small
eigenvalues have large variances. If we ignore those components
and choose principal components we can obtain a substan-
tial reduction in variance. The resulting equation becomes

(5)

We now havep parameters to estimate rather thanD parameters.
The best value forp will depend on the eigenvalues. If the several
largest eigenvalues are much larger than the others thenp can be

small. If smaller eigenvalues have relatively large values thenp
must be larger.

After we estimate using Eqs. (4) and (5) we can obtain for t
original linear regression by letting

The subscript (p) denotes that only the principal components co
responding to thep largest eigenvalues were used. The resulting
will have smaller variance than that contained using convention
linear regression [7].

3. PRINCIPAL COMPONENT MLLR
The formulation for Principal Component MLLR (PC-MLLR) is
very similar to the discussion of principal components abov

except that we also consider , the probability of the

observation being the Gaussian, as well as the base

variance  and the shift vector .

To estimate the row vector of the matrixA and the ele-
ment of the vectorb in conventional MLLR, we solve the fol-

lowing equations with representing the baseline me

vector, representing the element of the observatio

and  [5].

(6)

(7)

Eq. (7) can be simplified by defining the variables and
according to the equation

(8)

Let be a column vector consisting of the elements and

be the matrix whose rows are all . Let us also define t

diagonal matrix W and vector whose elements are

and respectively, along with a

matrix M with rows equal to the corresponding mean vector
Substituting Eq. (8) into Eq. (6), we can rewrite Eq. (6) in matri
form:

Letting  and , we obtain

(9)

Defining the matrix and diagonal matrix to contain th

eigenvectors and eigenvalues of

(10)
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and defining the variables and in a sim-
ilar fashion as in the previous section, we can write Eq. (9) as

The estimate  will become

(11)

If we ignore the effect of different probability , the vari-

ance of the components of the estimate is approximately

inversely proportional to the eigenvalues of .

As before, we can choose the largest principal components
to reduce the variances of the estimates.

It should be remembered that the matrixW consists of the inverse

variance as well as the probability . The variances are

different for each different component, so in principle differ-
ent eigenvectors should be used for the different row vectors of
matrixA. Because the probabilities will change for different adap-
tation data, we should calculate new eigenvectors for each new
speaker. In this paper, however, we use the same eigenvectors for
each different row of matrixA and for all speakers, for computa-
tional simplicity. We pre-calculated the eigenvectors using all of
the baseline mean vectors. Let contain all values for
everym andr in order on its diagonal. Gaussian mixture weights
in the baseline speech recognition system are used instead of

. The matrix is constructed in a similar fashion. Eigen-
vectors are calculated from these matrices, and the same eigen-
vectors are used for our experiments.

4. WEIGHTED
PRINCIPAL COMPONENT MLLR

Because we eliminate some of the less important components in
PC-MLLR, the estimate becomes biased, which tends to
reduce recognition accuracy. In this section we introduce a modi-
fication referred to as Weighted Principal Component MLLR
(WPC-MLLR) in an attempt to ameliorate this problem. WPC-
MLLR applies weights to the MLLR estimates to reduce their
mean square error.

From Eqs. (3) and (4) in Sec. 2,

Weighting the each component of  by , we obtain

In the usual fashion, the mean square error of  is

and the value of  that minimizes it can be obtained by solving

Hence,  becomes

(12)

The value of approaches 1 for large and approaches 0

small . This is intuitively appealing because we would want

apply larger weights to components of with smaller varianc
and smaller weights to components with larger variance. In th
method, instead of discarding the less significant components

, we use all components but with weighting. Unfortunately, w

don’t know the correct value of the parameter . We may use t

estimated value , or the average value of from prior expe
ments. The formulation for the MLLR case is similar to Eq. (12
In our experiment we use the weight and

set a proper valuek from the experiments.

The steps for the adaptation can be summarized as follows:

(1) Transform baseline mean vectors by their eigenvecto
using Eq. (10) and .

(2) Estimate  and the shift vectorb using Eqs. (8) and (11).

(3) Let  for

(4) Re-calculate the shift vector  with  using Eq. (8).
(5) Transform to produce the multiplication matrixA using

.

(6) Adapt the baseline mean vectors by using

5. TEST RESULTS
We evaluated the success of PC-MLLR and WPC-MLLR usin
sentences from the DARPA 1994 Wall Street Journal Spoke 3 (
94) and Spoke 0 (s0-94) evaluations. We selected 200 senten
for the recognition test from each data set. 10 non-native speak
read 20 sentences each from the s3-94 database while 20 na
speakers read 10 sentences each from the s0-94 database. We
selected 5 adaptation sentences for each speaker which were
ferent from the test sentences, using the correct transcription
supervised adaptation fashion. We used one global MLLR cla
and a small language model weight for the s0-94 data to emp
size the effect of adaptation on the acoustic models. We us
SPHINX-III as a baseline speech recognition system, which us
continuous HMMs with 6000 senones, a 39-dimensional featu
vector consisting of MFCC cepstra, delta cepstra, and delta-de
cepstra, and a 5,000-word trigram language model. Table 1 su
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Adaptation Method
s3-94 data

(Non-native)
s0-94 data
(Native)

Baseline (unadapted) 27.3% 21.9%

Conventional MLLR 23.7% (13.1%) 18.3% (16.4%)

PC-MLLR 20.9% (23.4%) 18.0% (17.8%)

WPC-MLLR 20.1% (26.3%) 17.2% (21.4%)

Table 1. Word error rates for selected data from the 1994
WSJ evaluation after adaptation. (Relative percentage
improvement over the baseline is shown in parenthesis).
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marizes the word error rates obtained using each adaptation
method. WPC-MLLR provides a relative improvement of 15.1%
compared to conventional MLLR for the s3-94 data and a 6.0%
improvement for the s0-94 data. WPC-MLLR provides corre-
sponding relative improvements of 3.8% and 4.4% compared to
PC-MLLR.

Figure 1 depicts the word error rates (WER) for each adaptation
method for s3-94 data, plotted as a function of the number of
components used for PC-MLLR. As expected, the WER for PC-
MLLR decreases and then increases as the number of components
p increases. Ifp is too small, the estimates become highly biased,
producing high WER. As the number of components increases to
39 (i.e. ), the WER obtained with PC-MLLR increases,
asymptoting to that obtained with conventional MLLR.

Figure 2 plots the ratio of sum of thep largest eigenvalues to the
sum of all 39 eigenvalues. The optimum value ofp will depend on
the eigenvalues spread. In this experiment, we get the best recog-
nition accuracy for PC-MLLR whenp equals 15, with the ratio
equal to 0.983. The ratio drops rapidly whenp becomes smaller
than 10, as does recognition accuracy.

As noted in Sec. 3, we pre-calculated eigenvectors and use the
same eigenvectors for different speakers. In other experiments
using different eigenvectors based on the observation probability
P(m,i) we observed similar recognition accuracy. This may be
because the adaptation data are insufficient to estimate proper
eigenvectors or because the variance of is only approximately
inversely proportional to their corresponding eigenvalues, and

ignores the effects of differentP(m,i). Even though WPC-MLLR
provides less relative improvement for native speakers than
does for non-native speakers, it still is consistently better than P
MLLR.

6. SUMMARY
In this paper, we applied principal component analysis to t
MLLR framework for speaker adaptation (PC-MLLR). By elimi-
nating highly variable components and choosing thep principal
components corresponding to the largest eigenvalues we
reduce the variance of the estimates and improve speech reco
tion accuracy. The best value forp depends on the eigenvalues
Choosing fewer principal components increases the bias of
estimates which can reduce recognition accuracy. To compen
for this problem, we developed Weighted Principal Compone
MLLR (WPC-MLLR). We applied weights to the MLLR esti-
mates so that they minimize the mean square error. In our exp
ments, WPC-MLLR provides relative improvements i
recognition accuracy compared to conventional MLLR of 15.1
for non-native speakers (s3-94 data) and 6.0% for native speak
(s0-94 data).
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