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ABSTRACT

In this paper, we present a dynamic articulatory model for phone
classification. The model integrates real articulatory information de-
rived from ElectroMagnetic Articulograph (EMA) data into its inner
states. It maps from the articulatory space to the acoustic one using
an adapted vocal tract model for each speaker and a physiologically-
motivated articulatory synthesis approach. We apply the analysis-
by-synthesis paradigm in a statistical fashion. We first present a
fast approach for deriving analysis-by-synthesis distortion features.
Next, the distortion between the speech synthesized from the artic-
ulatory states and the incoming speech signal is used to compute
the output observation probabilities of the Hidden Markov Model
(HMM) used for classification. Experiments with the novel frame-
work show improvements over baseline in phone classification accu-
racy.

Index Terms— Dynamic articulatory modeling, analysis-by-
synthesis, articulatory synthesis for recognition, physical model of
the vocal tract, hybrid physical and statistical models for classifica-
tion

1. INTRODUCTION
Articulatory modeling [1] is used to incorporate speech production
information into automatic speech recognition (ASR) systems. It is
believed that solutions to the problems of co-articulation, pronunci-
ation variations, and other speaking style related phenomena rest in
how accurately we capture the production process.

Our goal in this paper is a dynamic articulatory framework for
speech recognition where the model states are collections of possible
vocal tract shapes. In previous work we presented two key compo-
nents that enable us to address this goal. In [2] we proposed new
features that convey articulatory information. Using a physically-
motivated codebook of vocal tract shapes to derive analysis-by-
synthesis distortion features was shown to provide improvements in
phone classification accuracy. In our recent work [3], we showed
how to derive realistic vocal tract shapes from the EMA data in the
MOCHA database. We solely relied on the EMA data to perform
speech synthesis, in contrast to the more common approach of learn-
ing a statistical mapping between the EMA and acoustic recordings
from parallel recordings of the two [4, 5]. EMA measurements are
insufficient to describe the overall vocal tract shape. The EMA sen-
sors are located on indefinite locations on the lips, tongue, and velum
which vary from a speaker to another and even from one recording
session to another. We used Maeda’s geometric vocal tract model
[6] and adjusted its parameters to superpose vocal tract shapes onto
the EMA measurements and to provide a continuous contour of the
vocal tract. The resulting vocal tract shapes are defined by seven
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Maeda parameters. The adapted Maeda model captures the geome-
try of the vocal tract of each speaker explicitly. The combination of
the adapted vocal tract models and a physiologically-motivated ar-
ticulatory synthesizer, e.g. the Sondhi and Schroeter synthesizer [7],
models the physical speech production process for each speaker.

Previous and current approaches to incorporating articulatory
models into speech recognition [1, 8] have used phonological fea-
tures representation derived from the transcript through linguistic
expert knowledge. This representation may not represent the actual
underlying articulatory phenomena that produced the speech signal.
The same speech may be produced differently. In the work reported
in this paper, we use EMA measurements as means for capturing
the ground truth articulatory phenomena. EMA provides exact in-
formation about the articulators’ movements. Our aim here is to
build upon our previous work [2, 3] and incorporate the distortion
features in a dynamic framework whose inner states are vocal tract
shapes. These vocal tract shapes are derived in a principled geo-
metric fashion as described in [3]. We synthesize speech using the
adapted vocal tract models for each speaker to closely mimic the in-
coming speech signal. The distortion between the incoming speech
and the speech synthesized from the articulatory states is used to dy-
namically traverse the articulator space. This framework not only
constrains the set of possible vocal tract shapes for each phone, but
is also capable of modeling the articulatory dynamics and imposing
further constraints in a probabilistic fashion.

The set of all possible vocal tract shapes is quantized into a
codebook represented by vectors of Maeda parameters. For a given
phone, only a restricted region in the space of vocal tract shapes,
represented by a subset of the codewords, is active. Hence we would
only need the distortion features associated with these codewords.
In this paper, we show how we can learn this subset by estimating
weights for each codeword. We use two approaches, one that uses
the EMA data (i.e. ground truth) and another that is audio driven.
Both approaches yield a solution that zeros out the weights associ-
ated with codewords not relevant to the phone in study.

In order to incorporate the distortion into the probabilistic frame-
work, we need to convert it to a form of probability. The key point
here is to apply a density function that penalizes higher distortions
(e.g. exponential density). The lower the distortion from a given
codeword, the more likely it is to be the codeword that has gener-
ated the incoming frame of speech. Another way of looking at this
is saying that we only care about the codewords that reflect the true
articulatory dynamics of the phone in study. We refer to this as the
“OR” approach. In the “AND” approach [2], we included the dis-
tortion from all the codewords, whether relevant to the phone or not,
and that helped provide better discrimination and classification ac-
curacy.

Using a subset of distortion features for a particular phone is a
way for applying articulatory knowledge to constrain the recogni-

!"#!#$%&"&!'!!&!'#(&()"*)+',-**./'*"*.0111 023445.'*"*



tion problem. It also reduces the amount of computations involved
instead of using all the distortion features as we did in [2]. The spar-
sity in the estimated weights of the codewords for each phone reflects
the amount of computational reduction. Since each HMM state is a
collection of articulatory states, then the state itself has an articu-
latory meaning reflected in the weights attributed to the codewords.
The transition from a state to another then reflects articulatory move-
ments. This framework can be easily expanded to incorporate artic-
ulatory dynamics in different ways.

In this paper, we present our design of the dynamic framework
and the observation probability model used. We present different
ways for model training and initialization. We analyze the sparsity
of the solutions the algorithms converge to and present preliminary
phone classification results.

2. FAST ANALYSIS-BY-SYNTHESIS
DISTORTION FEATURES

In [2], we use the analysis-by-synthesis distortion features derived
from a codebook of Maeda parameters. For each frame of incoming
speech we use Maeda’s model to convert the codeword to area func-
tion and then the Sondhi and Schroeter chain matrices approach to
convert the area function to vocal tract transfer function. We also use
the source information in the frame to synthesize speech. We made
two main modifications that improved the computations with a small
degradation in classification accuracy.

The first modification is to decouple the source model from
the vocal tract transfer function as we explained in [3]. The sec-
ond modification is to use a codebook of transfer functions rather
than a codebook of Maeda parameters. In an off-line procedure,
we use Maeda’s model and Sondhi and Schroeter chain matri-
ces approach to convert the codebook of Maeda parameters to a
codebook of transfer functions h Tract, h Frication for each code-
word. The codebook stores the vocal tract impulse response of
h Tract = {hT

1 , hT
2 , . . . , hT

L} and the frication impulse response
h Frication = {hF

1 , hF
2 , . . . , hF

L}. L is the length of the im-
pulse response and M is the number of codewords. In computing
the analysis-by-synthesis distortion features, we use these transfer
functions in the manner shown in Figure 1. This saves a lot of un-
necessary computations at run-time. The impulses are converted to
frequency domain using the fast Fourier transform (FFT) and multi-
plied by the generated source signals in the “Fast Synthesis” block
using the overlap-add approach to synthesis speech from each code-
word. The Mel-frequency cepstral coefficients (MFCCs) are ex-
tracted from the real and the synthesized speech. The Mel-cepstral
distortion (MCD) between them is computed for each codeword and
frame respectively.

-

-

Fig. 1. A fast analysis-by-synthesis distortion framework.

3. GENERATING A REALISTIC
ARTICULATORY CODEBOOK AND

ARTICULATORY TRANSFER FUNCTIONS
In [3], we adapt Maeda’s geometric model of the vocal tract to the
EMA data of each speaker in the MOCHA database. We then search,
on a frame-by-frame basis, a codebook of Maeda parameters for vo-
cal tract shapes that fit each frame of EMA data. In this paper, we
sample each phone at five positions: the beginning, middle, end, be-
tween beginning and middle, and between middle and end, and read
the corresponding Maeda parameter vectors found in the geometric
search process. We also add the nasal tract opening area as an addi-
tional parameter to the Maeda vector to account for nasal sounds as
described in [3].

We then perform k-means clustering over the set of parameter
vectors obtained in this manner. We designate the vector closest to
the mean of each cluster as the codeword representing the cluster.
This is done to guarantee that the codeword is a legitimate articu-
latory configuration. The set of codewords obtained in this manner
is expected to span the space of realistic articulatory configurations
and also accounts for velum information.

Once we compute the codebook, we convert it to articulatory
transfer functions to be used to derive the analysis-by-synthesis dis-
tortion features described in Section 2. We have the option of using
the adapted Maeda’s model to map the codewords to area functions
then to transfer functions or to use the unadapted model.

4. MIXTURE-DENSITY FUNCTION FOR MODELING THE
STATE OUTPUT OBSERVATION PROBABILITIES

In [2], the dimensionality of the analysis-by-synthesis distortion fea-
tures was the same as the number of codewords (i.e. 1024). We
then used linear discriminant analysis (LDA) to reduce the dimen-
sionality of the features (to 20). Each of the new LDA features is no
more related to a particular codeword, but related to a collection or
even all of codewords due to the transformation. This is the “AND”
approach referred to above.

In order to build a dynamic articulatory framework with the
codewords as its sub-states we follow the “OR” approach. We seek
to find the path of least distortions and most probable articulatory tra-
jectory. Hence, we cannot use the LDA features used in the “AND”
approach and instead use the original distortion features in a larger
topology framework. In this section, we model the set of codewords
as a mixture probability density function. We show how we can learn
the subset of relevant codewords for a given phone.

For state S1 the acoustic distortion between the speech synthe-
sized from each of the codewords CD = {cd1, cd2, . . . , cdM} and
the incoming speech x is D = {d1, d2, . . . , dM}. We follow a soft
decision approach in which we estimate a set of weights for each
phone {w1, w2, . . . , wM} that defines the contribution of each code-
word as follows:

P (x|S1) =
M∑

j=1

P (x, cdj |S1)

=
M∑

j=1

P (cdj |S1)P (x|cdj , S1)

=
M∑

j=1

w1jP (x|cdj , S1) (1)

4.1. Weight Estimation from Audio
We use the EM algorithm to derive the weights for Equation 1 for
a given phone C . The EM derivations for HMMs can be found in
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Table 1. Phone error rates for the two speakers using different features, topologies, and initialization procedures.

Experiment Features (dimension) Adaptation Topology Obser Prob Initialization Sparsity α fsew0 msak0 Both Improvement
Baseline MFCC + CMN (13) 3S-128M-HMM Gaussian VQ 0% 1 61.6% 55.9% 58.8%

Exp HMM 1 Fast Dist (1024) NO 3S-1024M-HMM Exponential Flat 21% 0.2 57.6% 53.7% 55.7% 5.3%
Exp HMM 2 Fast Dist (1024) NO 3S-1024M-HMM Exponential EMA 51% 0.2 58.3% 53.9% 56.1% 4.6%
Exp HMM 3 Fast Dist (1024) YES 3S-1024M-HMM Exponential EMA 51% 0.25 58.4% 53.1% 55.7% 5.3%
Gaus HMM Fast Dist + LDA + CMN (20) NO 3S-128M-HMM Gaussian VQ 0% 0.6 54.9% 49.8% 52.4% 10.9%

Bilmes [9]. In our setup, the set of model parameters to estimate is
φφφ = {w1, w2, . . . , wM , θ1, θ2, . . . , θM}. The exact set of parame-
ters {θj , j = 1 : M} depends on the observation probability used.
We assume derivation from a set of {xu, u = 1 : U} data points be-
longing to phone C and drop the phone identity from the equations.
From Bilmes [9], the maximum likelihood solution for the weights
is:

wt
j =

1
U

U∑

u=1

P (cdj |xu, θt−1
j )

=
1
U

U∑

u=1

wt−1
j P (xu|cdj , θ

t−1
j )

∑M
k=1 wt−1

k P (xu|cdk, θt−1
k )

(2)

Starting with a flat initialization of wj = 1
M , (j = 1 : M) we

can iterate until the values of wj converge.

4.2. Weight Estimation using EMA
Forced-alignment of the audio and the transcript provides the pho-
netic segmentation for the MOCHA database. For each frame we
know which phone C it corresponds to. From the EMA data, we can
also know which codeword it corresponds to. Hence we can count
the codewords for each phone and estimate the probability of being
in one codeword for this phone. This estimate can be used as a prior
to estimating the weights from audio and for initialization purposes
in other databases where the EMA data are not available.

wj =
count frames(phone = C, truecode = cdj)

total frames(phone = C)
(3)

4.3. Output Distortion Probabilities
For each frame of speech xu, we compute the distortion {duj , j =
1 : M} for each codeword {cdj , j = 1 : M}. The lower the
distortion the more likely is the codeword in producing the speech.
This is reflected in our choice of the exponential density functions to
model the output observation probabilities of the HMM:

P (xu|cdj , θj) = λj exp−λjd2
uj (4)

4.4. Estimating the Lambdas of the Exponential Distributions
from Audio
The set of parameters to estimate is {λ1,λ2, . . . ,λM}. Including
the estimation of lambdas in the EM:

λt
j =

∑U
u=1 P (cdj |xu, θt−1

j )
∑U

u=1 d2
ujP (cdj |xu, θt−1

j )

=

∑U
u=1

wt−1
j P (xu|λt−1

j )
∑M

k=1 wt−1
k P (xu|λt−1

k )

∑U
u=1 d2

uj

wt−1
j P (xu|λt−1

j )
∑M

k=1 wt−1
k P (xu|λt−1

k )

(5)

Starting with a flat initialization of λj = 1
mean(d2

uj |phone=C)

we can iterate until the values of λj converge.

4.5. Estimating the Lambdas of the Exponential Distributions
from EMA
As mentioned in Subsection 4.2, using forced-alignment and EMA,
we get the codewords identities. With ground truth information
about the codewords we can estimate {λ1,λ2, . . . ,λM} directly for
each codeword without polluting the estimation with data generated
from other codewords like when using EM. This estimate can be
used as a prior to estimating {λ1,λ2, . . . ,λM} from audio and for
initialization purposes in other databases where the EMA data are
not available.

λj =
1

mean(d2
uj |phone = C, truecode = cdj)

(6)

4.6. HMM Formulation for Exponential Observation Probabil-
ities
To model dynamics, we use a three-state S = {S1, S2, S3} left-
to-right HMM for each phone. The basic formulation of HMM pa-
rameters we use is as in Bilmes [9], with some modification to re-
flect the observation density used to model the distortion features.
To enforce the left-right three state topology we initialize the vec-
tor of initial state probabilities {πi, i = 1 : N}, where N is
the number of states (N = 3), as π = [1, 0, 0]. We also ini-
tialize the transition probabilities matrix {aij , i, j = 1 : N} to
aij = [0.5, 0.5, 0; 0, 0.5, 0.5; 0, 0, 1]. The EM parameters we de-
fine for each segment here are bdi(t), γi(t), and γik(t), where k is
the mixture index {k = 1 : M}. The HMM model parameters com-
puted from all the segments are wik, and λik. Each segment X of
a given phone is made of observations {x(t), t = 1 : T}, where T
is the number of frames in each segment. The output observation
probability from each state and γik(t) are described by Equation 7.
γi(t) is as described in [9]. This formulation is integrated in the
forward-backward code for HMM model estimation.

bdi(t) = P (x(t)|S(t) = i)

=
M∑

k=1

wikλik exp−λikd2
k(t)

γi(t) = P (S(t) = i|X,φφφ)

γik(t) = P (S(t) = i, mixture(t) = k|X,φφφ)

= γi(t)
wikλik exp−λikd2

k(t)

bdi(t)
(7)

4.7. HMM Classification using Estimated Parameters
For scoring each segment, we calculate the likelihood probability
using the sum of α’s of the forward-backward algorithm. The sum
of α’s over all states at the end of segment e is the likelihood of the
segment as shown in [9]: P (X|C,φφφ) =

∑N
i=1 αi(Te). Te is the

length of each segment e.
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5. EXPERIMENTAL RESULTS
We conduct a number of experiments to evaluate the usefulness of
the proposed articulatory framework for speech recognition. In order
to avoid obfuscating our results with the effect of lexical and linguis-
tic constraints that are inherent in a continuous speech recognition
system, we evaluate our features on a simple phone classification
task, where the boundaries of phones are assumed to be known.

We choose as our data set the audio recordings from the
MOCHA database itself, since it permits us to use the exact artic-
ulatory configurations for any segment of sound. We use the data
from nine speakers for our work: “faet0”, “falh0”, “ffes0”, “fjmw0”,
“fsew0”, “maps0”, “mjjn0”, “msak0”, and “ss2404”. Five of the
speakers are females and four are males. We choose to test on the fe-
male speaker “fsew0” and the male speaker “msak0” and train on the
rest. All experiments are speaker independent. The amount of train-
ing utterances is 2569 and testing is 918 composed of 14352 phone
segments from speaker “fsew0” and 14302 from speaker “msak0”
and 28654 in total. Only EMA data from the training speakers were
used to compute the articulatory codebook and to initialize the model
parameters. The codebook consisted of 1024 codewords.

The phone Ĉ for each segment is estimated as:

Ĉ = argmaxCP (C)P (MFCC|C)αP (FastDist|C)(1−α) (8)
where C represents an arbitrary phone, and MFCC and FastDist
represent the set of MFCC features and fast analysis-by-synthesis
distortion features for the segment respectively. α is a positive num-
ber between 0 and 1 that indicates the relative contributions of the
two features to classification. We vary the value of α between 0 and
1.0 in steps of 0.05, and choose the value that resulted in the best
classification in the form of phone error rate (PER). The classifica-
tion results and the optimal value of α are shown in Table 1.

The Baseline experiment reports phone error rates for the two
speakers and both of them using 13-dimensional MFCC features
with cepstral mean normalization (CMN). We use a three-state
HMM with left-to-right topology where the observation probabilities
are a mixture of 128 Gaussian densities. We use vector quantization
(VQ) to initialize the means of the mixtures.

In experiment Exp HMM 1 we use the distortion features derived
as explained in Section 2. We use the articulatory synthesis model
without adaptation to derive these features. We apply a three-state
HMM and mixtures of 1024 exponential density functions for the
output probabilities. We initialize the weights and lambdas of the
exponential distribution from the distortion features (audio only) as
described in Subsections 4.1 and 4.4. Using α = 0.2 and combining
the probabilities of the baseline system with this system yields an
reduction of 5.3% in PER. This shows that our new framework does
indeed improve the classification performance. The sparsity of the
weights is defined as the percent of them that are zeros over the three
states, computed over all the codewords and phones. The codewords
that have zero weights over the three HMM states do not need to be
considered during classification, i.e. there is no need to synthesize
speech from these codewords when considering a particular phone.
Initializing from the distortion features (audio only) results in 21%
of the weights to be zero. This is the “OR” approach we described
above.

In experiment Exp HMM 2 we follow the same approach as Exp
HMM 1 except that now we initialize the weights and lambdas from
EMA as described in Subsections 4.2 and 4.5. The EM starts from
the solution provided by EMA and converges to the most likely so-
lution given the distortion data for each phone. This increases the
sparsity to 51% with small degradation in phone accuracy, yet re-
duces the computations required considerably.

In experiment Exp HMM 3 we follow the same approach as Exp
HMM 2 except that now we use the articulatory synthesis model with
adaptation to derive the distortion features. Table 1 shows the ef-
fect on adaptation on the phone classification. Note that especially
for speaker “msak0”, the adaptation has provided a considerable im-
provement in classification accuracy. The overall classification ac-
curacy is the same as in Exp HMM 1 but with the same sparsity as in
Exp HMM 2. This shows that when the system focuses on a subset of
articulatory configurations related to each phone and closely mimics
the incoming speech through adaptation, it is most effective in clas-
sification. This is more evident in the “msak0” speaker case whose
geometric adaptation is more effective on the synthesis quality than
the adaptation of speaker “fsew0”.

Finally, in experiment Gaus HMM we use a similar setup to our
previous work [2]. We here use all the distortion features in the
“AND” approach. We apply LDA to compress the features to 20 di-
mensions and then apply CMN to them. We use a three-state HMM
with 128 Gaussian Mixtures to model the new features. We com-
bine the probabilities of this system with that of the baseline system.
Using α = 0.6 yields 10.9% reduction in phone error rate. This is
the biggest improvement we achieved and shows that information in
all the distortion features is helpful in discriminating among phones.
The drawback of this topology is that there is no more an articula-
tory meaning attributed to the states. Hence, we can not model the
dynamics explicitly as we can in the previous experiments.

6. CONCLUSIONS AND FUTURE WORK
We have described a dynamic articulatory model for phone classi-
fication that incorporates realistic vocal tract shapes in a statistical
HMM framework. We have shown how to incorporate analysis-by-
synthesis distortion features in a probabilistic pattern recognition ap-
proach. Our new framework attributes articulatory meaning to the
states through a set of weights. We have shown how to initialize
these weights from ground truth articulatory information and to up-
date them from distortion data. Experiments have provided improve-
ments in phone classification over baseline MFCC features. The
framework we presented is a basic prototype of incorporating physi-
cal constraints in a statistical framework and can be expanded in the
future to incorporate further dynamic constraints. Future work will
integrate the trained models into a continuous speech recognition
system.
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