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Abstract

Speech enhancement under highly non-stationary noise condi-
tions remains a challenging problem. Classical methods typi-
cally attempt to identify a frequency-domain optimal gain func-
tion that suppresses noise in noisy speech. These algorithms
typically produce artifacts such as “musical noise” that are
detrimental to machine and human understanding, largely due
to inaccurate estimation of noise power spectra. The optimal
gain function is commonly referred to as the ideal ratio mask
(IRM) in neural-network-based systems, and the goal becomes
estimation of the IRM from the short-time Fourier transform
amplitude of degraded speech. While these data-driven tech-
niques are able to enhance speech quality with reduced artifacts,
they are frequently not robust to types of noise that they had
not been exposed to in the training process. In this paper, we
propose a novel recurrent neural network (RNN) that bridges
the gap between classical and neural-network-based methods.
By reformulating the classical decision-directed approach, the
a priori and a posteriori SNRs become latent variables in the
RNN, from which the frequency-dependent estimated likeli-
hood of speech presence is used to update recursively the la-
tent variables. The proposed method provides substantial en-
hancement of speech quality and objective accuracy in machine
interpretation of speech.

Index Terms: robust speech enhancment, a priori SNR estima-
tion, decision-directed, recurrent neural networks.

1. Introduction

Speech enhancement (SE) has been one of the enabling tech-
nologies for robust speech processing applications for decades.
SE algorithms strive to improve speech quality and intelligibil-
ity of speech signals degraded by additive noise [1]. Enhanced
speech signals will benefit subsequent human listening experi-
ence or performance of machine tasks, such as automatic speech
recognition and speaker verification. Classical signal process-
ing methods for SE typically work in the frequency domain with
optimization criteria associated with the spectral component of
the enhanced speech. The technique ranges from heuristically
estimating the power spectra [2], finding a linear filter that opti-
mizes the mean squared error of the complex spectra [3], to min-
imum mean-squared error estimators (MMSE) that optimizes
the (log) short-time spectral amplitude (STSA) [4, 5].

A priori signal-to-noise ratio (SNR) and a posteriori SNR
arise as two important concepts from the derivation of the
MMSE-STSA estimator [4]. The a priori SNR can be under-
stood as the true instantaneous power ratio between each spec-
tral component of clean speech and noise, while the a posteriori
SNR can be viewed as the instantaneous power ratio between
each spectral component of observed noisy speech and noise.
Within this framework, the optimal gain function in the STSA

domain for the well-known methods such as spectral subtraction
[2], Wiener filter [3], maximum likelihood (ML) estimator [6],
and MMSE estimation [4] can all be expressed in terms of a pri-
ori and a posteriori SNRs [7]. The enhancement problem thus
becomes a priori SNR and a posteriori SNR estimation prob-
lem. For estimating the a priori SNR, a closed-form maximum-
likelihood method and a recursive “decision-directed” method
are proposed [4]. For estimating the a posteriori SNR, or
equivalently the noise power, the minima-controlled recursive-
averaging (MCRA) algorithm can be employed [7, 8, 9]. De-
spite the robustness of the decision-directed approach even in
highly nonstationary noise environments, inexact heuristics in
the estimation procedure often produce artifacts called musical
noise, which is sometimes even more detrimental to machine
tasks and human listening experience than noisy speech.

Independent of the classical approaches, researchers in the
neural network (NN) community formulate the speech enhance-
ment task to be a supervised learning problem. Recognizing the
ideal ratio mask (IRM) in the STSA domain as a better training
target than clean signal power or magnitude spectra [10], var-
ious neural network architectures have been explored to learn
the IRM for SE. Some examples are feedforward deep neural
networks [11, 12], deep denoising autoencoders [13], and re-
current neural networks (RNN) with long short-term memory
[14]. Although these NN-based SE algorithms work well under
noise conditions that appear in the training set, they typically
suffer from degraded performance in unseen noise types as they
attempt to learn a nonlinear mapping between noisy speech and
the IRM.

A fusion system that combines the robustness and inter-
pretability of the classical approach and the learning ability of
the NN approach is clearly desirable. One previous study that
attempts this fusion [15] proposes a NN version of spectral sub-
traction by having dedicated NNs for estimating noise alone,
noise in noisy speech, and the enhanced speech. Although their
NN structure is reminiscent of spectral subtraction, our exper-
iments show that the latent variables do not learn the intended
representation. Others [16, ?] have attempted to improve a pri-
ori SNR estimation using NNs, but their systems are shallow
combinations of multiple approaches at the input and output
levels.

We propose a novel RNN that addresses these issues. We
slightly modify the decision-directed approach to form a recur-
rent estimation of both the a priori SNR and a posteriori SNR,
eliminating the need to estimate noise explicitly. This refor-
mulation leads to a ratio-based representation for all variables,
which have already proven to be superior training targets for
neural network learning [10]. Among them, the a priori SNR,
a posteriori SNR, and the speech-presence likelihood ratio are
interpreted as latent recurrent cells of a recurrent neural net-
work. This enables us to insert feedforward NNs to learn pa-



rameters that are normally heuristically determined using clas-
sical approaches. In addition, we introduce a learning objective
function that jointly optimizes the MSE of STSA as well as the
frame-level speech-presence detection accuracy.

2. The Signal-to-noise Ratio Recurrent
Neural Network (SNRNN)

Our signal-to-noise ratio recurrent neural network (SNRNN)
consists of a slightly modified version of the classical decision-
directed a priori SNR estimation and a neural network compo-
nent. Throughout the discussion, we assume additive noise in
the short-time Fourier transform (STFT) domain:

X[m, k] = S[m, k] + N[m, k] (1)

where X [m, k], S[m, k], and N[m, k| denote the STFT at time
frame m and frequency bin k of the observed noisy speech,
clean speech, and noise, respectively. The end goal is to seek for
the optimal gain function or IRM in the STSA domain, G[m, k],
such that the clean speech estimate S [m, k] can be obtained
from the modified STSA and the phase from the noisy input:

Sim, k] = G[m, k]| X [m, k]|’ £ X4 )

The a priori SNR £[m, k] is defined by the ratio of the expected
value of clean speech power to the expected value of the noise
power:

E[|S[m, k]*]
E[|N[m, k]|?]
The a posteriori SNR ~[m, k] is defined by the ratio of the in-
stantaneous noisy speech power to the expected value of the
noise power:

§lm, k] = 3)

| X[m, k]|?
A, ] = @
E[|NTm, k]|?]
In estimating the a priori and a posteriori SNRs, we replace the
expected values by the corresponding instantaneous values:
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Assuming that S[m, k] and N[m, k] are statistically indepen-
dent zero-mean complex Gaussian random variables, Eq. 1 im-
plies an additive relationship in the spectral power domain:

E[IX[m, K)|*] = E[|S[m, K]|*] + E[[N[m,k]|*] ~ (6)
which leads to the definition of [m, k] in terms of v[m, k]:

The decision-directed approach [4] calculates £[m, k] by lin-
early averaging the past and present estimates of a priori SNR:

Elm, k] = aGPlm — 1, k]3[m — 1,k] + (1 — a)maz{3[m, k] — 1,0} (8)

where 0 < a < 1 is the weighting coefficient, and maz{-} is
the element-wise maximum operator that prevents the current
estimate from going below 0. The gain function G [m, k] is ex-
pressed in terms of £[m, k| depending on the method to be used
[7]. We use the Wiener estimate solution [3, 7], because the
partial derivative of G[m, k] with respect to [m, k] does not
involve potential division by zero, which would result in gradi-
ent explosion during training:

A é[m» k]

G[m, k] = k] 41 ©))

Noise estimation is needed to calculate 4[m, k| by definition.
Acknowledging the importance of the decision-directed ap-
proach, we adopt the MCRA algorithm [7, 8, 9] for noise power
estimation. Specifically, the speech-absence (H§) hypothesis
and speech-presence (HY) hypothesis are assumed for each fre-
quency bin k of each frame m of the noisy signal:

HE - |N[m, k]|*= b|N[m — L E][*+(1 - b)|X[m — 1,k]|* (10)
HY : |[N[m, k]|*= [N[m — 1, k]|?

where 0 < b < 1 is the weighting coefficient. In other words,
the noise power in a specific frequency bin is recursively up-
dated by a fraction of signal power from the previous frame
only if it is classified as speech-absent. This decision is made
by thresholding the likelihood ratio of speech-presence uncer-
tainty:
P(X[m, k]| HY)
Alm, k] & 1/ 11
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The previous assumption that the noise and speech DFT coeffi-
cients are independent, complex, and Gaussian leads to:
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Alm, k] = € 1H&0m k]

e 12
1+ &[m, k] (12)

In our system, we replace the hard threshold used in Eq. 10 by
a soft threshold to enable gradient backpropagation. We also
rewrite §[m, k] as a recursive function, eliminating the notion
of noise estimation completely. Finally, we introduce the neural
network component, along with the loss function.

2.1. Recurrent A Priori and A Posteriori SNR Estimation

The noise update rule in Eq. 10 can be interpreted as a re-
current nonlinear activation function. Specifically, let § be a
hard threshold of the log-likelihood ratio of speech-presence
uncertainty above which the noisy frame is classified as speech-
present. The update rule can then be rewritten as:

WNImkE — B(A[m — 1,K]) + (1 — B(Alm — 1, K])A[m — 1,k (13)

where 8(A[m, k]) is the scaled and shifted unit step function:
B(A[m, k]) = b+ (1 = bjullog(Alm, k]) =] (14)

To enable gradient backpropagation in our RNN, we propose
two nonlinearities, sigmoid and piecewise-linear, that have non-
zero gradients around the decision boundary ¢ to replace the
unit step function:

1
Boig(Alm, k]) = b+ (1 = 0) T~ s

Bpwi(A[m, k]) = min{1, maz{b, 152[log(A[m, k]) — (6 — €)] + b}}

? 2

(15)

where ¢ is a small positive constant that controls the width of
the linear region. Combining the new update Eq. 13 with Eq. 5
we obtain:

. X [m, E])? 4lm — 1, k]
M = R~ LAE A+ (- A — LA

where 3 is shorthand for 8(A[m — 1, k]). Equations 8, 12, and
16 complete the recurrent estimation of both a priori and a pos-
teriori SNR, without the need to explicitly estimate noise power.
This distinction is important from the neural network learning
perspective, as estimating a ratio mask rather than direct signal
is desirable [10]. We now present the full system.

(16)



2.2. RNN for A Priori SNR Estimation

The recurrent structure described in the previous subsection
naturally lends itself to a recurrent neural network framework.
Specifically, we place a feedforward neural network immedi-
ately after each weighting factor, so that the RNN can learn the
recursive averaging coefficients rather than applying heuristics:

£[m, k] = aly kG [m — 1, kJ4[m — 1, k]
+ aAQm,kmaw{‘y[m, k] — 1,0}
. | X [m, k]|? Flm — 1, k]
K] = _ -
’V[m7 ] |X[m - 17 k]|2 blm,k + b2m,kﬁ/[m - 17 k] (17)
almi = FF(a[m, k), a2m x = FF(1 — a[m, k)
bl ik = FF(B(Am, k])), 02m 1 = FF(1 — B(A[m, k]))

where F'F'(-) represents a feedforward neural network. Al-
though the equations look very similar to Egs. 8 and 16, we note
two key differences. First, each coefficient is now parametrized
by both time and frequency. Because of the interconnection of
the neural network, these coefficients depend not only on the
frequency bin they belong to, but also all other frequency bins.
This is a useful generalization that is hard to carry out systemati-
cally in the classical framework due to the lack of a closed-form
solution, but is easily realized in the neural network framework.
Second, the heuristic constraint that weighting coefficients add
up to 1 is removed.

The loss function of the SNRNN is twofold. We adopt
the mean squared error in the STSA domain of the enhanced
speech, not only because it is a popular objective function in
deep learning SE methods, but also because it is the principle
upon which the a priori SNR estimation is derived [4]:

K—-1

> (Sm, k]|=|S[m, K])*  (8)

k=0

1
Emse[m] =K
In addition to the MSE-STSA loss, we introduce frame-level
voice activity detection (VAD) loss. Because the recurrent
structure is derived directly from the decision-directed ap-
proach, we can obtain the frame-level speech-presence log-
likelihood ratio assuming statistical independence across fre-
quency:

K—1
logA[m] = Z logA[m, k] (19)
k=0
where K is the total number of frequency bins. Assuming equal
prior probability of speech presence and absence, the speech-
presence probability given the noisy frame can be expressed as:
Alm]

P(speech|X[m]) = m (20)

We define the VAD loss for this two-class classfication prob-
lem as the cross entropy between the true and predicted speech-
presence probability:

Eyada[m] = —vad[m]log(P(speech|X[m]))

~ (1~ vadim))log(1 — P(specchl X[m]))

where vad[m] € {0, 1} is the true speech-presence probability
for frame m. The overall objective function is:

E[m] = aEmse[m] + (1 — @) Eyaa[m] (22)

where 0 < o < 1 is the weighting coefficient.

Figure 1: SNRNN computation at frame m in the dashed box.
Octagons hold input and output. Latent variables are bounded
by rings. Feedforward networks are highlighted by bold cap-
sules. Rectangles and circles are element-wise operations.

We conclude our description of the SNRNN from the neural
network perspective. From the zoomed-in view of the recurrent
structure shown in Fig. 1, a priori SNR, a posteriori SNR, and
speech-presence likelihood ratio are interpreted as latent vari-
ables that carry information across time frames. The four feed-
forward neural networks interact with instantaneous power ra-
tios rather than direct speech or noise power, which potentially
makes the system robust against unseen noise types. In fact, all
variables in the network are represented as ratios, motivated by
the finding that ratio masks are superior learning targets [10].

3. Experimental Results and Discussions

We conducted experiments using the RATS speech activity de-
tection dataset [17] and the TIMIT dataset [18]. We selected the
RATS dataset to train our system because it contains extremely
challenging noise conditions. It also contains ample exam-
ples of both speech-present and speech-absent regions that are
needed for training. To demonstrate the enhancement quality of
our system, we choose speakers from four of the RATS channels
for a speaker verification (SV) evaluation. To demonstrate the
robustness of our system against other unseen noise types, we
performed the global and local signal-to-distortion ratio (SDR)
test [19] on the speech segments from the TIMIT dataset with
digitally added noise samples taken from the NOIZEUS dataset
[20]. In both experiments, we compared the SNRNN’s perfor-
mance (denoted NN in all tables and figures) with the classical
Wiener solution using decision-directed a priori SNR estima-
tion with MCRA noise estimation (denoted DD).

To train the SNRNN, we used a total 56 hours of 320 audio
recordings sampled at 16 kHz from Channels A and H in the de-
velopment partition of the RATS SAD dataset. For the SV task,
we also used Channel D in training. During the training phase,
1000 320-ms audio segments were randomly sampled from all
recordings to form one minibatch. We used oracle VAD in-
formation to maintain approximately equal numbers of speech-
present and speech-absent frames within each minibatch. Next,
we computed the STFT of each segment with a 32-ms Hamming



Table 1: Improvement of SDR and 512-point Segmental SDR on 6300 TIMIT Utterances

SNR Cafeteria Babble Train Flight Car

(dB) SDR SegSDR SDR SegSDR SDR SegSDR SDR SegSDR
DD | NN | DD | NN | DD | NN | DD | NN | DD | NN | DD | NN | DD | NN | DD | NN
10 225 | 096 | 521 | 820 | 330 | 1.76 | 5.60 | 830 | 425 | 2.68 | 5.17 | 853 | 692 | 401 | 7.13 | 10.5
5 305 | 288 | 7.09 | 943 | 420 | 411 | 753 | 9.76 | 525 | 524 | 6.86 | 9.90 | 883 | 7.66 | 9.18 | 12.7
0 3.67 | 3.90 | 893 | 104 | 485 | 5.61 | 931 | 11.0 | 6.19 | 688 | 9.01 | 114 | 10.7 | 10.7 | 11.6 | 15.3
-5 344 | 3.65 | 954 | 10.5 | 527 | 637 | 10.7 | 11.9 | 7.00 | 7.69 | 11.3 | 12,5 | 12.3 | 13.1 | 13.8 | 17.5
-10 1.39 | 1.66 | 941 | 9.80 | 439 | 557 | 11.0 | 123 | 6.72 | 7.24 | 124 | 13.1 | 13.1 | 145 | 148 | 184
Mean | 2.76 | 2.61 | 8.04 | 9.67 | 440 | 4.68 | 883 | 10.7 | 588 | 5.95 | 895 | 11.1 | 104 | 999 | 11.3 | 14.9

Table 2: Speaker Verification Performance on RATS Speakers

EER(%) Noisy | DD NN | Clean
Channel A | 28.6 | 32.2 | 249 10.7
Channel B 36.6 | 37.2 | 36.6 11.5
Channel C | 44.8 | 40.1 | 36.7 | 7.93
Channel H | 432 | 29.7 | 23.9 10.8

window, 75% overlap between frames, and 512-point DFTs. Fi-
nally, we computed the magnitude STFT, retaining the first 257
frequency dimensions as the input to SNRNN.

For each neural network inside the SNRNN, we used a 3-
layer feedforward network with 257 neurons in each of the in-
put, hidden, and output layers. We used rectified linear units
(ReLUs) as the activation function at all layers because SNRs
are non-negative. We used the sigmoid function in Eq. 15. We
chose constants ¢ = 0.98, b = 0.98 and 6 = 0.15, which
are effective for the classical DD approach [1]. The network
parameters were initialized so that each network is an identity
function prior to learning. 4, é , and A are initialized the same
way as the decision-directed method [1]. @ = 0.2 is a good
weighting constant for the loss function. We used stochastic
gradient descent with a learning rate of 10~* and a momentum
of 0.9 to update all network weights.

We evaluated our enhancement system in terms of the equal
error rate (EER) obtained for the SV task. The baseline SV
system was trained using the ALIZE i-vector system setup de-
scribed in [21]. Farsi speakers in the training partition of the
RATS SAD dataset were used for evaluation. The enrollment
consisted of 30, 28, 28, and 30 speakers from RATS Channels
A, B, C, and H, respectively. 28, 35, 25, and 37 recordings from
Channels A, B, C, and H, respectively, were tested against ev-
ery enrolled speaker from their corresponding channels. Table
2 shows that the NN provides significant improvement for all
channels except Channel B. The improvement for unseen chan-
nel C is even greater than the improvement for Channel A. In
addition, NN provides better performance than DD in all cases.
One notable finding in our experiment is that G[m, k] in Eq. 8
and 9 no longer need to be identical in SNRNN. The results in
Table 2 were obtained using the power subtraction rule [7] for
Eq. 8, and the Wiener filter rule for Eq. 9.

Table 1 shows the improvement of global and 512-point
segmental SDR after applying DD and NN on noisy TIMIT
utterances. The four types of noise we include are perceptu-
ally very different from the noise in RATS channels. Our re-
sults show that SNRNN consistently improves segmental SDR
under all conditions, even though the global SDR sometimes
is worse than DD in high SNRs (which are rare in our train-
ing data). We illustrate this phenomenon in Fig. 2, where we
show compensated waveforms after DD and NN processing, re-
spectively. The impulse-like speech waveform at around 3.8s is

: Time (s)

0 2 4 6 8 10 0 0.5 1

Figure 2: Denoised waveforms. Top left and bottom left: de-
noised signal using DD and NN, respectively. Top right and
bottom right: residual noise at 4-5s after 39.3dB amplification.

wrongly suppressed by NN. However, the burst of noise during
0-3s and 5-10s is better contained using NN. In addition, NN
produces far fewer musical artifacts during 4-5s. The parameter
« controls the tradeoff between speech smearing and noise sup-
pression. Using MSE-STSA loss alone yields almost an identi-
cal system as the decision-directed approach, while using VAD
loss alone results in a system that heavily suppresses noise and
smears speech. Overall, the robustness of SNRNN processing
was expected, as we note in Sec. 2, because the neural networks
“see” only instantaneous SNRs.

4. Conclusions

In this paper, we have proposed a neural-network equivalent
of the decision-directed a priori SNR estimation. We strongly
advocate the use of instantaneous SNRs as internal represen-
tations in neural networks to accompany the use of IRMs as
learning targets [10] for noise robustness. Our system preserves
the robustness of the classical method while improving the ac-
curacy of the recurrent approximations of a priori and a pos-
teriori SNRs. Our results have shown that SNRNN processing
can preserve speech and greatly suppress noise, while produc-
ing very few residual artifacts. In addition, our system can han-
dle unseen nonstationary noise conditions when trained on very
few noise types. We introduce the joint STSA-MSE and VAD
loss function, and highlight the importance of VAD loss for bal-
ancing the level of noise suppression and speech distortion. In
the future, we will attempt to improve the quality of enhanced
speech in the speech-present regions, and extend the additive-
noise framework to linear filtering for channel compensation.
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