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For many years the human auditory system has been an inspiration for devel-
opers of automatic speech recognition systems because of its ability to inter-
pret speech accurately in a wide variety of difficult acoustical environments.
This paper discusses the application of physiologically-motivated approaches
to signal processing that facilitate robust automatic speech recognition in en-
vironments with additive noise and reverberation. We review selected aspects
of auditory processing that are believed to be especially relevant to speech
perception, “classic” auditory models of the 1980s, the application of con-
temporary auditory-based signal processing approaches to practical automatic
speech recognition systems, and the impact of these models on speech recog-
nition accuracy in degraded acoustical environments.

INTRODUCTION

It is well known that human speech processing capabilities far surpass the capabilities
of current automatic speech recognition and related technologies, despite very inten-
sive research in automated speech technologies in recent decades. Indeed, these obser-
vations have motivated the development of feature extraction approaches for speech
recognition systems that are motivated by auditory physiology and perception since
the early 1980s, but it is only relatively recently that these approaches have become
effective in their application to computer speech processing. We begin this paper with
a brief review of some of the major physiological phenomena that have been the object
of attention by developers of auditory-based feature extraction methods. We continue
with a brief review of three seminal “classical” auditory models of the 1980s that have
had a major impact on the approaches taken by more recent contributors to this field.
We then discuss some of the topics that are foci of contemporary auditory models and
provide some examples of current efforts. Finally, we describe the results of a limited
number of representative experiments that demonstrate the effectiveness of auditory
modelling for automatic speech recognition, concluding with a brief discussion of the
attributes of these models that appear to be most effective in improving recognition
accuracy.

RELEVANT AUDITORY PHENOMENA

Most classical and current auditory models are based on capturing a small number of
rather basic physiological phenomena, all of which are quite familiar to researchers in



auditory physiology and perception. We list here the most common such phenomena;
more comprehensive descriptions of them may be found in standard texts such as
Moore (2003), Pickles (2008), or Yost (2006).
Peripheral frequency selectivity. The frequency-specific “tonotopic” response to
sound is preserved at least to some extent at every level of the auditory system, with
individual fibers of the auditory nerve and units at higher centers exhibiting a best
frequency of response or characteristic frequency (CF). Peripheral frequency selec-
tivity is typically modeled by a bank of linear bandpass filters with bandwidths that
are relatively small and approximately constant at low frequencies, and that increase
in proportion to center frequency as the center frequency increases.
Rate-level response. The typical function that relates rate of response to stimulus
intensity is S-shaped in nature, with a relatively flat portion corresponding to intensi-
ties below the threshold intensity for the fiber, a limited range of about 20Ð30 dB in
which the response rate increases in roughly linear proportion to the signal intensity,
and a saturation region in which the response is again essentially independent of the
incoming signal intensity.
Synchrony to low-frequency fine structure. As the intensity of a low-frequency
signal increases above threshold, the neural spikes that are observed are more likely
to take place when the incoming instantaneous pressure is in the rarefaction phase.
This “phase-locking” behavior enables the auditory system to compare arrival times of
signals to the two ears at low frequencies, which is the basis for the spatial localization
of a sound source at these frequencies. At higher frequencies the neural firings tend to
synchronize to the envelopes of these signal components.
Temporal coding is clearly important for binaural sound localization, and it may also
play a role in the robust interpretation of the signals from each individual ear as well.
For example, Young and Sachs (1979) have suggested that a representation based on
the extent to which the neural response at a given best CF is synchronized to the near-
est harmonic of the fundamental frequency of the vowel is more invariant to changes
in input such as intensity than the mean rate of firing. Most conventional feature ex-
traction schemes for automatic speech recognition (ASR) are based on the short-time
energy in each frequency band, which is more directly related to mean rate than tem-
poral synchrony in the physiological responses.
Transient response of auditory-nerve fibers. In general, the auditory-nerve response
to bursts of tones or noise includes an overshoot at stimulus onset prior to settling
down to a steady-state rate of response, and a suppression of response at the signal
offset prior to a return to the spontaneous rate of activity. Collectively these phenom-
ena may be thought of as an enhancement of temporal contrast.
Lateral suppression. The response of auditory-nerve fibers to more complex signals
depends on the nature of the spectral content of the signals. For example, the response
to a “probe tone” presented at CF and about 10 dB above threshold will be inhibited
by the presence of the second tone over a range of frequencies surrounding the CF,
even when the second tone is presented at intensities that would be below threshold
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Fig. 1: Comparison of major functional blocks of the MFCC, PLP-RASTA, and
PNCC processing methods. PNCC processing is discussed below.

if it were presented in isolation. This form of “lateral suppression” has the effect of
enhancing the response to changes in the signal content with respect to frequency.

FEATURE EXTRACTION IN AUTOMATIC SPEECH RECOGNITION

Automatic speech recognition (ASR) systems are a particular type of pattern classi-
fication system. All pattern classification systems have two major stages, which (1)
measure and convert some attribute of the physical world (in this, case sound pressure)
into a set of relevant numbers or features, and (2) guess the class out of a pre-defined
set to which a particular input pattern belongs. Speech recognition technology is de-
scribed in many places, including Rabiner and Juang (1993). The present discussion
concerns only the feature-extraction component of ASR systems.



The overwhelming majority of speech recognition systems today make use of features
that are based on either mel-frequency cepstral coefficients (MFCCs, Davis and Mer-
melstein, 1980) or features based on perceptual linear predictive (PLP) analysis of
speech (Hermansky, 1990). The overall goal of both the MFCC and PLP representa-
tions is to provide a representation of the smoothed short-time magnitude spectrum in
decibels. We briefly describe MFCC and PLP processing, which are summarized in
block diagram form in the left and center columns of Fig. 1.
MFCC analysis consists of (1) short-time Fourier analysis using Hamming windows,
(2) weighting of the short-time magnitude spectrum by a series of triangularly-shaped
functions with peaks that are equally spaced in frequency according to the Mel scale,
(3) computation of the log of the total energy in the weighted spectrum, and (4) com-
putation of a relatively small number of coefficients of the discrete-cosine transform
(DCT) of the log power coefficients from each triangularly-weighted band of fre-
quencies. Expressed in terms of the principles of auditory processing, the triangular
weighting functions serve as a crude form of auditory filtering, the log transformation
mimics Fechner’s psychophysical transfer function for intensity, and the DCT can
be thought of as providing a lowpass Fourier series representation of the frequency-
warped log spectrum. The cepstral computation can also be thought of as a means to
separate the effects of the excitation and frequency-shaping components of the famil-
iar source-filter model of speech production.
The computation of the PLP coefficients is based on a different implementation of
similar principles. PLP processing consists of (1) short-time Fourier analysis using
Hamming windows (as in MFCC processing), (2) weighting of the power spectrum by
a set of asymmetric functions that are spaced according to the Bark scale, and that are
based on auditory masking curves, (3) pre-emphasis to simulate the Fletcher-Munson
equal-loudness curve, (4) a power-law nonlinearity with exponent 0.3 as suggested by
Stevens to describe the rate-level nonlinearity, (5) a smoothed approximation to the
frequency response obtained by all-pole modeling, and (6) application of the linear
recursion that converts the coefficients of the all-pole model to cepstral coefficients.
PLP processing is also frequently implemented in conjunction with the RASTA al-
gorithm (Hermansky and Morgan, 1994), a contraction of relative spectral analysis.
RASTA processing applies a bandpass filter to the spectral amplitudes that emerge
between Steps (3) and (4) of the PLP processing above. RASTA processing was mo-
tivated by the tendency of the auditory periphery to emphasize the transient portions
of incoming signals.

AUDITORY MODELING FOR AUTOMATIC SPEECH RECOGNITION

Classic auditory representations

The first significant attempts to develop models of the peripheral auditory system for
use as front ends to ASR systems occurred in the 1980s with the models of Seneff



(1988), Ghitza (1986), and Lyon (1982), which we summarize in this section.
Seneff’s auditory model. Seneff’s (1988) auditory model consists of three stages: (1)
a bank of bandpass filters that model the frequency analysis of the cochlea, (2) nonlin-
ear rectification, short-term adaptation, lowpass filtering, and a rapid automatic gain
control (AGC) that models the transduction of the inner hair cells, and (3) two parallel
output displays of information. The first output is based on the short-time mean rate
of firing via envelope detection and the second is a “generalized synchrony detector”
that develops in nonlinear fashion a statistic that is related to the autocorrelation of the
output of the second stage at a lag equal to the reciprocal of the CF. This latter statistic
was motivated by the averaged localized synchrony rate (ALSR) measure proposed by
Young and Sachs (1979).
Ghitza’s EIH model. A second classic auditory model developed by Ghitza (1986)
makes use of timing information to develop a spectral representation of the incoming
sound. Specifically, the EIH model records in each frequency channel the times at
which the outputs of the auditory model cross a set of logarithmically-spaced thresh-
olds. Histograms of the reciprocals of the times between the threshold crossings of
each threshold in each channel are summed over all thresholds and channels, produc-
ing an estimate of the internal spectral representation of the signal.
Lyon’s auditory model. The third major model of the 1980s was described initially by
Lyon (1982). As in the case of the Seneff and Ghitza models, Lyon’s model includes
bandpass filtering, nonlinear rectification and compression, along with several types
of short-time temporal adaptation. It also includes a mechanism for lateral suppres-
sion. Lyon also proposed a “correlogram” display that is derived from the short-time
autocorrelation of the outputs of each channel.
Performance of early auditory models. It was generally observed that while con-
ventional feature extraction in some cases provided best accuracy when recognizing
clean speech, auditory-based processing would provide superior results when speech
was degraded by added noise. Early work in our group confirmed these trends for
reverberation as well as for additive noise. We also noted, disappointingly, that the
application of conventional engineering approaches for robustness to additive noise
and linear filtering provided performance that was equally good or better than the
auditory-based features in degraded acoustical environments. The failure of auditory
models to achieve better performance may well have been in part a consequence of
the mismatch between the normally-distributed features that were typically assumed
by the classifiers of the day, and the distinctly non-Gaussian nature of the outputs that
were actually produced by the auditory models. The classical auditory models fared
even worse when computation was taken into account. For example, it was observed
that the Seneff model required about 40 times as many multiplications and 33 times
as many additions as conventional feature extraction procedures.



Modern auditory modeling

By the late 1990s physiologically-motivated and perceptually-motivated feature ex-
traction methods began to flourish once again for several reasons. Computational ca-
pabilities had advanced over the decade to a significant degree, and feature extraction
now consumed only a small fraction of the computation compared to score evaluation,
graph search, etc. The development of fully-continuous hidden Markov models using
Gaussian mixture densities as probabilities for the features, along with efficient train-
ing procedures for them, meant that the non-Gaussian output densities of the auditory
models were no longer a limiting factor in performance.
In this section we describe some of the auditory phenomena that have become im-
portant for feature extraction beginning in the 1990s. We also list a small sample
of auditory front ends from the “modern” era that serve as examples of how these
phenomena are exploited.
Multi-stream processing. Revival of interest in Fletcher’s articulation by Allen (1994)
and others has led to the development of several types of multiband systems with in-
dependent decoders in each channel (e.g. Bourlard et al., 1996). More generally, we
can consider the fusion of information from parallel feature streams that are presumed
to provide complementary information about the incoming speech. This information
can be combined at the input (feature) level, at the level at which the HMM search
takes place, or at the output level by merging hypothesis lattices.
Long-time temporal evolution. An important parallel trend has been the develop-
ment of features that describe the temporal evolution of the envelopes of the outputs
of the bandpass filters that are part of any auditory model. The first such features repre-
sented the frequency components of these envelopes and have been referred to as the
modulation spectrum (Kingsbury et al., 1998)). Subsequently, various groups have
characterized these patterns using non-parametric models as in the TRAPS method
(e.g. Hermansky and Sharma, 1999) or using parametric all-pole models such as
frequency-domain linear prediction (FDLP, Athieos and Ellis, 2003).
Spectro-temporal response fields. Two-dimensional Gabor filters are a reasonable
approximation to the spectro-temporal response fields of A1 neurons, and have been
used to implement features for speech/nonspeech discrimination (Mesgarani et al.,
2006). Similar approaches have been used to extract features for ASR by multiple
researchers (e.g. Kleinschmidt, 2003). In many of these cases, multi-layer perceptrons
(MLPs) are used to transform the filter outputs into a form that is more amenable to use
by Gaussian mixture-based HMMs, typically using the Tandem approach (Hermansky
et al., 2000).

SPEECH RECOGNITION USING CONTEMPORARY AUDITORY MODELS

A number of researchers have developed interesting computational auditory models
based on these observations. These efforts are exemplified by following list of auditory
feature extraction schemes, which is far from comprehensive:
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Fig. 2: Left panel: block diagram of Zhang-Carney model (from Zhang et al., 2001).
Right panel: block diagram of a much simpler computational model of auditory pro-
cessing.

• Tchorz and Kollmeier (1999) developed an early integrated system incorporat-
ing and updating the components of classical auditory models to achieves very
good recognition accuracy over a range of degradations.

• Chi et al. (2005) developed a seminal model that argues for the use of scale-
space representation and spectro-temporal response functions.

• Kil et al. (1999) developed the zero-crossing peak-analysis (ZCPA) model which
uses timing information to provide a representation that provides greater accu-
racy than representations based on mean rate.

• Ravuri (2011) developed a complex model that incorporates hundreds of 2-
dimensional Gabor filters, each with their own discriminatively-trained neural
network to generate noise-insensitive features for ASR.

Speech recognition using complete physiological models. In addition to the “prac-
tical” models proposed by speech researchers including the ones mentioned above,
auditory physiologists have also proposed models of their own that describe and pre-
dict the functioning of the auditory periphery in detail. As an example, the left panel
of Fig. 2 depicts the major functional blocks of a model of auditory-nerve activity
proposed by members of Carney’s group (Zhang et al., 2001). The right panel of Fig.
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Fig. 3: Comparison of speech recognition accuracy obtained using features derived
from the Zhang-Carney model (squares), features obtained from the much simpler
model in the right panel of Fig. 2 (triangles), and conventional MFCC coefficients
(diamonds).

2 describes a much simpler auditory model that consists of a simple cascade of a bank
of bandpass filters, nonlinear rectifiers, and lowpass filters. In both cases the actual
model consists of multiple parallel channels, each tuned to a different CF.
Figure 3 describes a set of unpublished automatic speech recognition results for speech
in white noise obtained by Y.-H. Chiu using feature extraction procedures that were
based on mean rate described in Kim et al. (2006). The CMU Sphinx-3 ASR system
was trained using clean speech for these experiments. The curves in Fig. 3 describe
the recognition accuracy obtained using three types of feature extraction: features de-
rived from the mean rate response based on the complete model of Zhang et al. (2001)
as implemented in Kim et al. (2006) (squares); feature derived from the extremely
simplified model in the right panel of Fig. 3 (triangles); and baseline MFCC process-
ing as described in Davis and Mermelstein (1980) (diamonds). As can be seen from
the figure, the full auditory model provides about 15 dB of effective improvement in
SNR compared to the baseline MFCC processing, while the highly simplified model
provides about a 10-dB improvement. Unfortunately, the computational cost of fea-
tures based on the complete model of Zhang et al. is on the order of 250 times the
computational cost incurred by the baseline MFCC processing. In contrast, the sim-
plified auditory processing consumes only about twice the computation of the baseline
MFCC processing.
Robust speech recognition using power-normalized cepstral coefficients (PNCC).
The extreme computational costs associated with the implementation of a complete
physiological model such as that of Zhang et al. (2001) have motivated numerous re-
searchers, including those cited above, to develop simplified models that capture the
essentials of auditory processing that are believed to be most relevant for speech per-
ception. The development of power-normalized cepstral coefficients (PNCC, Kim and
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Fig. 4: Comparison of recognition accuracy obtained using PNCC processing with
processing using MFCC features, RASTA-PLP features, the ETSI AFE, and MFCC
features augmented by VTS processing. From Kim and Stern (2012).

Stern, 2009, 2010, 2012) is a convenient example of computationally-efficient “prag-
matic” physiologically-motivated feature extraction. PNCC processing was developed
with the goal of obtaining features that incorporate some of the relevant physiological
phenomena in a computationally efficient fashion. A summary of the major functional
blocks of PNCC processing is provided in the right column of Fig. 1. Briefly, PNCC
processing includes the following processing stages: (1) traditional pre-emphasis and
short-time Fourier transformation, (2) integration of the squared energy of the STFT
outputs using gammatone frequency weighting, (3) “medium-time” nonlinear pro-
cessing that suppresses the effects of additive noise and room reverberation, (4) a
power-function nonlinearity with exponent 1/15, and (5) generation of cepstral-like
coefficients using a discrete cosine transform (DCT) and mean normalization.
The power law rather than the more common logarithmic transformation was adopted
because it provides reduced variability at very low signal intensities, and the exponent
of 1/15 was selected because it provides a best fit to the onset portion of the rate-
intensity curve developed by the model of Heinz et al. (2001). The power-function
nonlinearity has the additional advantage of preserving ratios of responses that are
independent of input amplitude.
For the most part, noise and reverberation suppression is introduced to PNCC pro-
cessing through the system blocks labeled “medium-time processing” in the far right
column of Fig. 1. Most noise-robustness schemes that are based on waveform pro-
cessing operate on segments of the waveform on the order of 50-150 ms duration
while compensation algorithms that manipulate cepstral coefficients such as Vector
Taylor Series (VTS, Moreno et al., 1976) operate on a frame-by-frame basis using the
window durations on the order of 20-35 ms, which are typical for speech analysis.
Figure 4 compares the recognition accuracy obtained using PNCC processing with the
accuracy obtained using baseline MFCC processing (Davis and Mermelstein, 1980),
PLP-RASTA processing (Hermansky and Morgan, 1994), MFCC with VTS (Moreno



et al., 1996), and the “Advanced Front End” (AFE), a newer standard feature ex-
traction scheme developed by the European Telecommunications Standards Institute
(ETSI), which also has noise-robustness capabilities (ETSI, 2007). It can be seen from
the panels of Fig. 4 that the recognition accuracy obtained using features derived with
PNCC processing is substantially better than baseline processing using either MFCC
or RASTA-PLP features, MFCC features augmented by the VTS noise-reduction al-
gorithms, or the ETSI Advanced Front End for speech that had been degraded by ad-
ditive white noise and simulated reverberation. A much more thorough discussion of
PNCC processing, including recognition results in the presence of a number of other
types of degradations, is may be found in Kim and Stern (2009, 2010, 2012). We
also note that PNCC processing is only about 30% more computationally costly than
MFCC processing. PNCC is comparable to RASTA-PLP in computation, and all of
these methods require substantially less computation than either the ETSI Advanced
Front End or the VTS approach to noise robustness.
While we have presented results from our own group for reasons of accessibility, it
is fair to say that most physiologically-motivated feature extraction procedures will
provide greater recognition accuracy than conventional signal processing, at least in
degraded acoustical environments. Although there remains no universally-accepted
theory about which aspects of auditory processing are the most important to preserve
in computational models, we may speculate with some confidence about some of the
reasons for the apparent success of the auditory models (cf. Wang and Shamma, 1994).
The increasing bandwidth of the auditory analysis filters with increasing center fre-
quencies enables good spectral resolution at low CFs (which is useful for tracking
formant frequencies precisely) and better temporal resolution at higher CFs (which
is helpful in marking the precise time structure of consonant bursts). The short-time
temporal suppression and lateral frequency suppression provides an ongoing enhance-
ment of change with respect to running time and analysis frequency. The tendency of
the auditory system to enhance local spectro-temporal contrast while averaging the
incoming signals over a broader range of time and frequency enables the system to
provide a degree of suppression to the effects of noise and reverberation, and the
nonlinear nature of the auditory rate-intensity function also tends to suppress feature
variability caused by additive low-level noise. The good success of relatively simple
feature extraction procedures such as PNCC suggests that the potential benefits from
the use of auditory processing are widespread, and that we will continue to improve
robustness in speech technologies as we deepen our understanding of the auditory
processing of natural speech.
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