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ABSTRACT
The human auditory system uses a number of well-identified 
cues to segregate and separate individual sound sources in a 
complex acoustical environment. For example, researchers in 
auditory scene analysis have long identified cues such as com-
mon onset, correlated fluctuations in instantaneous amplitude 
and frequency, harmonicity, and common interaural time and 
amplitude differences as ways of identifying which components 
of a complex signal are derived from a common source. It is 
widely believed that the use of these cues to achieve such 
“grouping” and signal separation should be very useful in 
improving the accuracy of automatic speech recognition in very 
difficult environments such as competing speech, background 
music, and transient noise, and this has been a goal of several 
research groups in computational auditory scene analysis. This 
talk describes and discusses several ways in which signals can 
be separated using physiologically-motivated cues, along with 
the potential benefit to be derived from such separation for auto-
matic speech recognition.

1. INTRODUCTION 1

Signal separation remains one of the most challenging and com-
pelling problems in auditory perception, and a good solution for 
many core signal separation problems is necessary to improve 
the accuracy of contemporary automatic speech recognition sys-
tems in many practical environments.

As technology for automatic speech recognition is transferred 
from the laboratory environment into practical applications, the 
need to ensure robust recognition in a wide variety of acoustical 
environments becomes increasingly apparent. While algorithms 
designed to cope with the effects of unknown additive noise and 
unknown linear filtering are plentiful in number, today’s appli-
cations also demand good performance in many more difficult 
environments. Some of the most challenging environments for 
speech recognition systems today include:

• Speech in high noise, with signal-to-noise ratios (SNRs) at 
or below 0 dB

• Speech in the presence of background speech

• Speech in the presence of background music

• Speech in highly reverberant environments

Conventional signal processing provides only limited benefit f 
these problems, even today.

In the spirit of this meeting, the goal of my talk is to sugge 
ways in which Al Bregman’s huge corpus of creative research 
auditory streaming and auditory scene analysis [3] can be 
exploited to improve the accuracy of automatic speech recog-
tion systems. I will begin by briefly summarizing and 
commenting on some aspects of current state-of-the art spe 
recognition. I will then discuss ways in which cues that may  
useful in separating speech signals can be extracted in ways 
are based on some of the principles of auditory scene analysi

2. ROBUST AUTOMATIC SPEECH
RECOGNITION

The general topic of robust speech recognition has receive 
great deal of attention over the past decade. There are m 
sources of acoustical distortion that can degrade the accurac 
speech recognition systems. For many speech recognition ap-
cations the two most important sources of environmen 
degradation are unknown additive noise (from sources such 
machinery, ambient air flow, and speech babble from ba-
ground talkers) and unknown linear filtering (from a room, an 
spectral shaping by microphones or by the vocal tracts of in-
vidual speakers). Other sources of degradation include trans 
interference to the speech (such as doors slamming or t-
phones ringing), nonlinear distortion (arising from sources su 
as phase jitter in telephone systems), and “co-channel” inter-
ence by individual competing talkers. Similarly, there are ma 
approaches to robust recognition, including the use of statist 
estimation of and compensation for the effects of degradati 
the use of physiologically-motivated signal processing tec-
niques that mimic processing by the human auditory system,  
the use of arrays of microphones. These approaches and o 
are reviewed in (among other places) [10], [18], [19], [20], and 
[21]. Most research in robust recognition has been direc 
toward compensation for the effects of additive noise and lin 
filtering. 

1. This paper is a rough transcription of my talk of the same name at 
the NSF Symposium on Speech Separation in Montreal on Novem-
ber 1, 2003. It is somewhat informal and speculative in nature, and is 
not presented at a level of scholarship and citation that would be 
appropriate for an archival publication.

Figure 1.  A model of environmental distortion including the 
effects of additive noise and linear filtering.
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2.1. Statistical approaches to robust recognition

Figure 1 describes the implicit model for environmental degrada-
tion introduced in 1990 [1] and now used in many signal 
processing algorithms developed at CMU and elsewhere. It is 
assume that the “clean” speech signaL  is first passed 

through a linear filter with unit sample response  whose out-

put is then corrupted by uncorrelated additive noise  to 

produce the degraded speech signal . Under these circum-
stance, the goal of compensation is, in effect, to undo the 
estimated parameters characterizing the unknown additive noise 
and the unknown linear filter, and to apply the appropriate inverse 
operation. The popular approaches of spectral subtraction (e.g. [2]) 
and homomorphic deconvolution [24] are special cases of this 
model, in which either additive noise or linear filtering effects are 
considered in isolation. When the compensation parameters are 
estimated jointly, the problem becomes a nonlinear one, and can 
be solved using algorithms such as codeword-dependent cepstral 
normalization (CDCN) [1] and vector-Taylor series compensation 
(VTS) [14].

Figure 2 shows recognition accuracies for a standard dictation task 
obtained using the CMU SPHINX speech recognition system for 
speech in broadband noise plotted as a function of signal-to-noise 
ratio (SNR) [14]. The curve on the right represents the accuracy 
obtained using features derived from Mel frequency cepstral coef-
ficients (MFCC) using cepstral mean normalization (CMN), which 
represents baseline performance for this particular system on this 
task with no particular compensation scheme used. The curve on 
the far left represents system performance obtained when the sys-
tem is completely retrained for a particular noisy environment, 
which represents in a sense the upper bound in performance 
imposed by the particular noisy environment, given the type of 
signal processing and speech recognition algorithms used. The 
intermediate curves represent the recognition accuracy obtained 
using the CDCN [1] and VTS [14] algorithms, which were intro-
duced in 1990 and 1997, respectively. The use of VTS provides an 
improvement of approximately 7 dB in SNR compared to the 
baseline processing. While that may not appear to be very much 
improvement, it can be the difference between virtually chance 
recognition performance and best possible performance at inter-
mediate SNRs in the range of 5 to 10 dB, which is in important 
operating region. 

Nevertheless, statistical parameter estimation compensation meth-
ods are not without their shortcomings. Figure 3 compares the 
improvement in word error rate (WER) obtained using CDCN for 

a similar speech recognition to that of Figure 2. (Results with VTS 
would be similar). It is expected that the improvement provided 
CDCN and similar algorithms would be small at very high SNR 
(because the interfering signal introduces very little degradation 
those SNRs) and at very low SNRs (because the noise prod 
almost complete degradation no matter what form of compen-
tion is attempted. More interesting is the performance of CDC 
compensation at intermediate SNRs, where the WER is decre 
by almost 50 percent with background noise, but never by m 
than 10 percent in the presence of background music [15]. I 
believe that the failure of CDCN and similar compensation alg-
rithms to provide meaningful compensation in the presence 
background music to several factors including the nonstationa 
of background music as well as its speechlike nature. A wide v-
ety classical noise and channel compensation algorithms  
exhibit similar deficiencies. 

I believe that viable solutions to the problems of speech recog-
tion at low SNRs and in the presence of transient and other ty 
of time-varying interference must be based on the identification 
the speech signal to be recognized, along with its explicit sep-
tion from the interfering signal or signals. This can in principle  
accomplished by a number of techniques including any of sev 
“missing-feature” approaches to noise compensation, as wel 
the techniques that are collectively referred to as “computatio 
auditory scene analysis” (CASA). Researchers in CASA attem 
to develop computational techniques that mimic the processes 
are believed to mediate the identification and separation  
humans of the separate components of a complex acoustical s 
field. These approaches are discussed in the following t 
sections. 

2.2. Missing-feature  approaches to robust rec-
ognition

One potentially useful approach to speech recognition in the p-
ence of the type of transient interference that is not handled w 
by algorithms like CDCN is the use of “missing-feature” tec-
niques. Briefly, in missing-feature approaches, one attempts 
determine which cells of a spectrogram-like time-frequency d-
play of speech information are unreliable (or “missing”) becau 
of degradation due to noise or some other type of interference.  
cells that are determined to be “missing” are either ignored in s-
sequent processing and statistical analysis, or they are “filled 
by optimal estimation of their putative values. While missing-fe-
ture approaches were initially motivated by similar techniqu 
developed in image classification to deal with the problem of p-
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Figure 2.  Comparison of recognition accura-
cies on the DARPA 5000-word Wall Street Journal task using 
CMN, CDCN, VTS, and complete retraining. From [14].
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Figure 3.  Percentage improvement provided
by the CDCN algorithm for speech in the presence of white noi
(circles) and background music (squares). From [15].
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tially-occluded objects and have been developed by a number of 
research groups, it is fair to say that Martin Cooke and his col-
leagues at the University of Sheffield have produced the most 
comprehensive and widely-adopted approaches to the problem 
(e.g. [5]). 

The upper panel of Figure 4 (in the right hand column of this 
page) shows a spectrogram of an utterance recorded in quiet. The 
central panel of that figure shows the same utterance after it is 
mixed with white noise at an SNR of 15 dB. It can be seen that the 
major effect of the noise is to fill in the “valleys” of the spectro-
gram. The lower panel of Figure 4 shows the same spectrogram, 
but the pixels that have an effective SNR of less than zero dB are 
indicated by dark blue solid pixels. 

Figure 5 compares the speech recognition accuracy that is 
obtained using two types of missing-feature reconstruction tech-
niques with baseline processing and simple spectral subtraction in 
the presence of artificially-added white Gaussian noise (upper 
panel) and background music derived from the DARPA Hub 4 
task (lower panel), as a function of SNR [16]. The two missing-
feature techniques that are used in these experiments, cluster-
based reconstruction and covariance-based reconstruction, recon-
struct the incoming feature vectors rather than modify the internal 
representation used by the classifier, as is more common (e.g. [5]). 
Recognition accuracy using missing-feature techniques can be 
quite good, even at low SNRs, while compensation using spectral 
subtraction does not improve performance at all in the presence of 
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Figure 5.  Recognition accuracy using cluster-
based missing feature reconstruction (squares), covariance-based 
missing feature reconstruction (diamonds), simple spectral sub-
traction (triangles), and cepstral mean normalization only (circles) 
techniques for speech in the presence of white noise (upper panel) 
and music (lower panel) when perfect a priori information is avail-
able concerning which incoming features are “missing.” Data 
from [16].

Figure 4.  Spectrograms of speech recorded in quiet (upper pan
and subjected to artificially-added white noise with an SNR of 15
dB (central panel). Pixels that exhibit an SNR of less than zero dB 
are deemed missing and are depicted as solid dark regions. 
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music. (Algorithms like CDCN and VTS would perform similarly 
to spectral subtraction for stimuli like these.) Nevertheless, these 
results were obtained assuming perfect a priori knowledge of 
which pixels in the spectrogram-like representation are “missing” 
and which pixels are “present” (or more accurately which pixels 
are damaged and which are undamaged by the effects of noise). 
This type of information is normally not available in the recogni-
tion process and the blind determination of which pixels are or are 
not missing is in general a very difficult task.

Figure 6 presents a more realistic picture of the current state-of-
the-art in missing feature recognition in that it compares the recog-
nition accuracy obtained with the missing features identified 
blindly using Bayesian techniques [17] with oracle missing-fea-
ture identification, along with results obtained using spectral 
subtraction to obtain missing-feature decisions, and baseline pro-
cessing. The most effective features used by the Bayesian 
classifier track the fundamental frequency of voiced speech seg-
ments and estimate the fraction of total energy in a frame that is 
observed at frequencies that are harmonic multiples of the funda-
mental. The performance obtained with blind estimation of 
missing features approaches that observed with perfect oracle 
missing-feature identification in the case of background noise. 
Recognition accuracy obtained using cluster-based missing-fea-
ture compensation is not quite as good in the presence of 
background music, but it is still quite a bit better than the accu-
racy obtained with statistical estimation techniques like spectral 
subtraction, which do not provide any meaningful benefit at all. 

2.3. Summary

While conventional techniques that compensate for the effects 
additive noise and linear filtering of speech sounds can prov 
substantial improvement in recognition accuracy when the ca 
of the acoustical degradation is quasi-stationary, little improv-
ment is observed at SNRs below approximately +5 dB. The us 
techniques based on missing-feature analysis can provide sub-
tial benefit at lower SNRs, but they are critically dependent on  
ability to identify correctly which pixels actually are missing. Th 
recognition of speech at lower SNRs, and especially speech in 
presence of transient sources of interference including espec 
background speech and background music remain essent 
unsolved problems at present. 

3. APPLICATIONS OF
AUDITORY SCENE ANALYSIS TO 

AUTOMATIC SPEECH RECOGNITION
Over a period of several decades, Al Bregman and his colleag 
have compiled a monumental corpus of experimental results  
schematic modeling that attempt to identify ways in which t 
human auditory system segregates and identifies components 
complex sound field (e.g. [3], [7]). While this work had originally 
been called “auditory streaming” by Bregman, it is now com-
monly known as “auditory scene analysis.” The computation 
simulation and emulation of many of the processes identified 
Bregman and his colleagues has become a popular topic 
research by computer scientists and engineers in recent years 
these efforts are collectively referred to as “computational au-
tory scene analysis (CASA).”

Bregman et al. have identified many types of cues that can be us 
for auditory scene analysis of speech signals, including (am 
several others) fundamental frequency and harmonic relati-
ships, spatial location cues, and correlated frequency  
amplitude changes. In this section I will discuss some attribu 
about these cues and how they may be applied to improve a-
matic speech recognition accuracy.

3.1. Fundamental frequency and harmonic rela-
tionships

It has already been noted that pitch information can be extrem 
useful in the Bayesian determination of which pixels are miss 
in missing-feature analysis. In principle, the accurate identific-
tion and tracking of the fundamental frequency of voiced segme 
can be used to isolate the fundamental frequency and its harm-
ics from the background. In assessing the potential utility of pi 
estimates as the basis for improved signal processing to ach 
robust speech recognition, some key questions are how w 
speech can be separated from noise, how well speech signals 
be separated from one another, and the extent to which this se-
tion can improve recognition accuracy.

In order to assess some of these issues informally I made us 
samples of speech in the Arctic database, which includes a pho-
ically-balanced corpus of read speech combined w 
electrolaryngograph (EGG) recordings collected by John Kome 
and Alan Black as a resource for speech synthesis. Figure 7 shows 
an example sentence from the Arctic database, with the speec 
the upper panel and the corresponding EGG recording in the lo 
panel. It is quite easy to extract an accurate pitch track from  
EGG recordings. 
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Figure 6.  Comparison of recognition accuracy 
using cluster-based missing feature techniques assuming perfect 
“oracle” a priori knowledge of which features are missing 
(squares) and using blind identification of missing features (dia-
monds), using spectral subtraction as the basis for missing-feature 
decisions (triangles), and baseline processing (circles) for speech 
in the presence of while noise (upper panel) and music (lower 
panel). Data from [16], [17].
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In an informal pilot study, I analyzed two utterances from the Arc-
tic database, by one male and one female speaker. The analysis 
and subsequent resynthesis of the speech were explored using two 
methods. The first approach, called synchronous heterodyne anal-
ysis (SHA), multiplies the incoming signal by a sine wave and 
cosine wave at the fundamental frequency, squares, and sums over 
time as shown in Figure 8. 

In the second approach, called comb-filter analysis (CFA), the 
speech signal is passed through a comb filter with the transfer 
function

This filter has a response with sharp peaks at integer multiples of 
the reciprocal of the parameter P, which represents the nominal 
period of the signal. Varying the parameter P in accordance with 
the estimated fundamental frequency, and using values of 0.8 to 
0.9 for the parameter g, it is possible isolate the speech from back-
ground interference. Clearly neither SHA nor CFA provide any 
benefit for unvoiced segments of speech sounds or for whispered 
speech. 

Speech in isolation was analyzed and resynthesized using the SHA 
and CFA methods. For both male and female speakers informal 
listening suggests that intelligibility is fair to good using the SHA 
method and good to excellent using the CFA method. Male and 

femail speech sounds were also added together at 0 dB SNR 
attempted to separate them using SHA and CFA, with the het-
dyne frequency in SHA or the fundamental frequency in CF 
tuned to the target speaker. Using both SHA and CFA, the se-
rated speech of the male was fair to good in intelligibility, whi 
the separated speech of the female was poor to fair. I believe 
this asymmetry in performance is a consequence of the differ 
spectral regions of male and female speech. Specifically, when 
male is the target speaker, the higher fundamental frequency o 
interfering female causes her speech components to be space-
ther apart in frequency, imposing a smaller amount of degrada 
on the upper components of the target male. Conversely, when 
female is the target, the upper partials of the speech of the inte-
ing male are relatively dense, and they are more likely to interf 
with the perceptually-important lower harmonics of the speech 
the target female.

While neither the SHA or CFA technique have yet been used 
actual speech recognition experiments, I regard them as pro-
ing, both for speech at lower SNRs, and for speech in the pres 
of interfering speech and music. Again, it must be stressed tha 
results described above were obtained using perfect “orac 
knowledge of the fundamental frequency of the target spea 
While fundamental frequency extraction continues to be the ob 
of a great deal of attention in recent years (e.g. [8], 12]), pitch 
tracking, and especially tracking the pitch of multiple speech 
music sources, remains a very difficult problem. As noted abo 
these techniques are not useful for unvoiced speech segments.

3.2. Spatial location cues

Sound sources arriving from different azimuths produce interau 
time delays (ITDs) and interaural intensity differences (IIDs)  
they arrive at the two ears. It is well known that human listen 
can use spatial information to improve the intelligibility of spee 
in the presence of other speech or noise interference [26]. The bin-
aural hearing mechanism can focus attention on a target speak 
a complex acoustical environment, or it can focus on the direct 
of arrival of the direct sound field of a target speaker in a reverb-
ant environment. The mechanisms underlying these abilities  
not completely understood, and as Zurek has noted, so 
improvement is to be expected simply by attending solely to  
ear that is closer to the target speech source [26]. 

Most models of binaural perception (e.g. [4], [22]) assume that 
peripheral auditory processing includes bandpass filtering a 
nonlinear rectification of the incoming sounds, followed by  
cross-correlation analysis of the bandpass-filtered and recti 
signals, with subsequent analysis (at least for simple stim 
based on consideration of ITD and IID information as a functi 
of frequency. This processing is summarized by the block d-
gram of Figure 9. Most models of binaural interaction assume th 
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Figure 7.  Examples of recordings from the Arctic database. A 
speech segment is shown in the upper panel, with the corre-
sponding electrolaryngograph (EGG) shown in the lower panel.

Figure 8.  Synchronous heterodyne analysis used for separating 
speech sounds. 

H z( ) z
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Figure 9.   Generic model of binaural processing proposed by 
Colburn and Durlach [4]. The parallel sets of arrows indicate mul-
tiple parallel channels of information in the model.
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ITD information is extracted using a coincidence-analysis mecha-
nism first proposed by Lloyd Jeffress in 1948 [9]. Figure 10 shows 
the putative representation of interaural timing information in 
response to bandpass noise presented with an ITD of –1.5 ms with 
a center frequency of 500 Hz and bandwidths of 50 Hz (upper 
panel) and 800 Hz (lower panel). 

There is some disagreement concerning the extent to which ITD 
information is used by humans as the basis of signal separation. 
While the results of one influential study by Culling and Summer-
field imply that simultaneously-presented unmodulated whispered 
are not separated by their ITDs [6], more recent studies have 
shown that these ITD can be a useful cue in fostering identifica-
tion of simultaneously-presented speech sounds when they are 
presented with natural amplitude and frequency modulations [23]. 
In any case, even if the auditory system does not make efficient 
use of interaural timing information, these physical cues are still 
available for computational auditory processors. In the 1980s and 
1990s, many types of signal processing such as spectral subtrac-
tion that did not improve human intelligibility still proved to be 
useful for improving speech recognition accuracy. My work in this 
area is motivated by the belief that we should be inspired by but 
not limited by our knowledge of the auditory system.

The block diagram of one system that used ITD information to 
improve speech recognition accuracy is shown in Fig. 11 [25]. The 
input signals are first delayed in order to compensate for differ-
ences in the acoustical path length of the desired speech signal to 
each microphone. (This is the same processing performed by con-
ventional delay-and-sum beamforming.) The signals from each 
microphone are passed through a bank of bandpass filters with dif-
ferent center frequencies, passed through nonlinear rectifiers, and 
the outputs of the rectifiers at each frequency are correlated. (The 
correlator outputs correspond to outputs of the coincidence 
counters at the internal delays of the “ridges” in Fig. 10 at –1.5 
ms.) The result of this operation is a form of N-dimensional cross-
correlation, which reduces to conventional cross-correlation opera-
tion for two inputs. The outputs of the multi-dimensional cross-
correlation operation are considered as if they were energy esti-

mates short-time energy estimates in each of the freque 
channels, and they are subsequently converted into 12 cep 
coefficients using the cosine transform. These cepstral coe-
cients along with an additional coefficient representing the pow 
of the signal are used as features for speech recognition in the -
ventional fashion. 

Figure 10.   The putative response of an ensemble of Jeffress-
Colburn coincidence-counting units to low-frequency bandpass 
noise with a center frequency of 500 Hz and an ITD of –1.5 ms. 
Upper panel: response to bandpass noise with a bandwidth of 50 
Hz. Lower panel: response to bandpass noise with a bandwidth of 
800 Hz. From [22].

Figure 11.  Block diagram of multi-microphone cross-correla-
tion-based processing system. From [25]. 
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Figure 12.  Estimates of frequency-warped spectra for the vowel 
segment /a/ for various SNRs using (a) 2 input channels and zer
delay, (b) 2 input channels and 125-µs delay to successive chan-
nels, and (c) 8 input channels and 125-µs delay. From [25].
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Figure 12 demonstrates the validity of the such processing in the 
context of an analysis of a sample of the digitized vowel segment  
/a/ corrupted by artificially-added white Gaussian noise at global 
SNRs of 0 to +21 dB. The speech segment was presented to all 
microphone channels identically (to simulate a desired signal 
arriving on axis) and the noise was presented with linearly increas-
ing delays to the channels (to simulate an off-axis corrupting 
signal impinging on a linear microphone array). The processing of 
such a system was simulated using 2 and 8 microphone channels, 
and time delays for the masking noise of 0 and 125 µs to succes-
sive channels. 

The curves of Figure 12 describe the effect of SNR, the number of 
processing channels, and the delay of the noise on the spectral pro-
files of a sample of the vowel segment /a/. (The frequency 
representation for the vowel is warped in frequency according to 
the nonlinear spacing of the auditory filters.) The upper panel 
summarizes the results that are obtained using 2 channels with the 
noise presented with zero delay from channel to channel (which 
would be the case if the speech and noise signals arrive from the 
same direction). Note that the shape of the vowel, which is clearly 
defined at high SNRs, becomes almost indistinct at the lower 
SNRs. The center and lower panels show the results of processing 
with 2 and 8 microphones, respectively, when the noise is pre-
sented with a delay of 125 µs from channel to channel (which 
corresponds to a off-axis source location for typical microphone 
spacing). As the number of channels increases from 2 to 8, the 
shape of the vowel segment in Figure 12 becomes much more 
invariant to the amount of noise present. In general, it was found 
in these experiments that the benefit to be expected from increases 
sharply as the number of microphone channels is increased. It was 
also observed (unsurprisingly) that the degree of improvement 
increases as the simulated directional disparity between the 
desired speech signal and the masker increases. It was concluded 
from these pilot experiments that the cross-correlation method 
described can provide very good robustness to off-axis additive 
noise, and in practice, this approach did provide a moderate bene-
fit over the recognition accuracy obtained using conventional 
delay-and-sum processing [25]. 

These studies, which were conducted in the early 1990s, were not 
continued because of the lack of available computational resources 
at that time. I believe that further improvements are likely to be 
obtained once greater attention is paid to the nature of the band-
pass filtering, within-channel nonlinearities, and correlation 
operations. Correlation-based approaches such as these can be 
applied to unvoiced as well as to voiced segments of speech.

A final item of note with regard to spatial processing is that high 
levels of reverberation are extremely detrimental to recognition 
accuracy. Frame-based compensation strategies such as those dis-
cussed in Sec. 2.1 fail because the effects of reverberation are 
generally spread over multiple analysis frames. In addition, tradi-
tional adaptive filtering methods, which have also been considered 
for this purpose, depend on the statistical independence of target 
and masker. Since in reverberant environments, the “noise” con-
sists of reflected and attenuated copies of the target speech signals, 
noise-canceling adaptive filter strategies (such as those that use the 
LMS algorithm) are not effective. Sub-band processing in a simi-
lar fashion has been somewhat effective in reverberation, but it has 
not yet been applied to a wide range of problems. I believe that 
techniques based on auditory perception and physiology, missing-
feature recognition, and CASA techniques should be more effec-
tive in characterizing and ultimately ameliorating the effects of 
reverberation.

3.3. Correlated frequency and amplitude changes

Although cues based on fundamental frequency and sound so 
location are potentially extremely valuable in separating sign 
for automatic speech recognition, pitch cues are ineffective  
unvoiced segments and location multichannel recordings w 
location information are not always available. Even with just a s-
gle channel, unvoiced speech segments, and/or imperfect p 
estimates, we expect to be able to separate multiple sound sou 
using by extracting and clustering sounds according to sm 
(“micro”) modulations in frequency and amplitude. The use  
such physical cues for sound separation and auditory scene a-
sis has been supported by many psychoacoustical studies in re 
years (e.g. [3], [7]). 

Figure 13 is a spectrogram of a signal that John Chowning dev-
oped in the early 1980s to demonstrate the perceptual salienc 
correlated frequency modulation in fusing and separating com-
nents of a complex signal. These signals are described in deta 
Bregman’s treatise [3]. The signal from 0 to 1.5 ms consists o 
three sine waves, at 300, 400, and 500 Hz. Taken as individ 
sine waves, these three frequencies form a major triad in the -
ond inversion, but the components are more likely to be heard  
fused complex tone with fundamental frequency 100 Hz. From  
to 3 ms the three sine waves are replaced by three sets of 10-
monics at integer multiples of 300, 400, and 500 Hz, with spec 
envelopes that are derived from three different vowel soun 
Again this signal is perceived as a complex tone with fundame 
frequency 100 Hz, but with a sharper timbre because of the p-
ence of 27 additional upper-frequency partials. Beginning at 3  
the signals consist of the same three overtone series, but ea 
separately modulated at 4.5, 5, and 5.5 Hz, respectively. Once 
frequency modulation is applied, the harmonics associated w 
each fundamental frequency segregate from one another  
become easily perceived as three separate complex tones with-
damental frequencies of 300, 400, and 500 Hz. 

My research group is currently developing ways to devel 
through computational means a form of signal separation base 
the identification of common locations in a time-frequency d-
play like a spectrogram that exhibit covarying amplitude a 
frequency modulation. This is a difficult task because of the ne 
to achieve sharp frequency resolution while allowing for tempo 
fluctuations, but the ability of the human auditory system  
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Figure 13.  Spectrogram of the signal used by Chowning to dem-
onstrate the importance of correlated frequency modulation in 
auditory object formation.



accomplish these tasks remains a powerful existence proof and 
motivation to move this work forward.

4. SUMMARY
I believe that computational auditory approaches are potentially 
extremely useful in ameliorating some of the most difficult speech 
recognition problems, specifically the recognition of speech pre-
sented at low SNRs, speech masked by other speech, speech 
masked by music, and speech in highly reverberant environments. 
The solution to these problems using CASA techniques is likely to 
depend on the ability to develop several key elements of signal 
processing, including the reliable detection of fundamental fre-
quency for isolated speech and for multiple simultaneously-
presented speech sounds, the reliable detection of modulations of 
amplitude and frequency in very narrowband channels, and the 
development of across-frequency correlation approaches that can 
identify frequency bands with coherent micro-activity as they 
evolve over time. I am extremely optimistic that effective solu-
tions for these problems are within reach in the near future.
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