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ABSTRACT

The human auditory system uses a number of well-identified
cues to segregate and separate individual sound sources in a
complex acoustical environment. For example, researchers in
auditory scene analysis have long identified cues such as com
mon onset, correlated fluctuations in instantaneous amplitude
and frequency, harmonicity, and common interaural time and
amplitude differences as ways of identifying which components
of a complex signal are derived from a common source. It is
widely believed that the use of these cues to achieve such
“grouping” and signal separation should be very useful in
improving the accuracy of automatic speech recognition in very
difficult environments such as competing speech, background
music, and transient noise, and this has been a goal of several
research groups in computational auditory scene analysis. This
talk describes and discusses several ways in which signals can
be separated using physiologically-motivated cues, along with
the potential benefit to be derived from such separation for auto
matic speech recognition.

1. INTRODUCTION!

Signal separation remains one of the most challenging and com
pelling problems in auditory perception, and a good solution for

many core signal separation problems is necessary to improve
the accuracy of contemporary automatic speech recognitien sys
tems in many practical environments.

As technology for automatic speech recognition is transferred
from the laboratory environment into practical applications, the
need to ensure robust recognition in a wide variety of acoustical
environments becomes increasingly apparent. While algorithms
designed to cope with the effects of unknown additive noise and
unknown linear filtering are plentiful in number, today’s appli
cations also demand good performance in many more difficult
environments. Some of the most challenging environments for
speech recognition systems today include:

Speech in high noise, with signal-to-noise ratios (SNRs) at
or below 0 dB

Speech in the presence of background speech
Speech in the presence of background music
Speech in highly reverberant environments

1. This paper is a rough transcription of my talk of the same name at
the NSF Symposium on Speech Separation in Montreal on Novem
ber 1, 2003. It is somewhat informal and speculative in nature, and is
not presented at a level of scholarship and citation that would be
appropriate for an archival publication.

Conventional signal processing provides only limited benefit for
these problems, even today.

In the spirit of this meeting, the goal of my talk is to suggest
ways in which Al Bregman’s huge corpus of creative research in
auditory streaming and auditory scene analy8ks dan be
exploited to improve the accuracy of automatic speech recogni
tion systems. | will begin by briefly summarizing and
commenting on some aspects of current state-of-the art speech
recognition. | will then discuss ways in which cues that may be
useful in separating speech signals can be extracted in ways that
are based on some of the principles of auditory scene analysis.

2. ROBUST AUTOMATIC SPEECH
RECOGNITION

The general topic of robust speech recognition has received a
great deal of attention over the past decade. There are many
sources of acoustical distortion that can degrade the accuracy of
speech recognition systems. For many speech recognition appli
cations the two most important sources of environmental
degradation are unknown additive noise (from sources such as
machinery, ambient air flow, and speech babble from -back
ground talkers) and unknown linear filtering (from a room, and
spectral shaping by microphones or by the vocal tracts of indi
vidual speakers). Other sources of degradation include transient
interference to the speech (such as doors slamming or tele
phones ringing), nonlinear distortion (arising from sources such
as phase jitter in telephone systems), and “co-channel” interfer
ence by individual competing talkers. Similarly, there are many
approaches to robust recognition, including the use of statistical
estimation of and compensation for the effects of degradation,
the use of physiologically-motivated signal processing -tech
niques that mimic processing by the human auditory system, and
the use of arrays of microphones. These approaches and others
are reviewed in (among other places)][ [18], [19], [20], and

[21]. Most research in robust recognition has been directed
toward compensation for the effects of additive noise and linear
filtering.
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Figure 1. A model of enironmental distortion including the
effects of additie noise and linearltiering.



2.1. Statistical approaches to robust recognition o
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Figure 1 describes the implicit model for environmental degrada 3

tion introduced in 1990 1] and now used in many signal
processing algorithms developed at CMU and elsewhere. It i
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assume that the “clean” speech signalm] is first passed 530.
through a linear filter with unit sample resporige:] whose out >
put is then corrupted by uncorrelated additive noi§e:] to X

produce the degraded speech sigriak] . Under these circum @

stance, the goal of compensation is, in effect, to undo th 1%3/‘9"—5\5\5_5
estimated parameters characterizing the unknown additive nois ) ) )

and the unknown linear filter, and to apply the appropriate invers: o 5 10 15 2 25
operation. The popular approaches of spectral subtraetmrid]) SNR (dB)

and homomorphic deconvolutior24] are special cases of this Figure 3. Percentage impx@ment proided

model, in which either additive noise or linear filtering effects areby the CDCN algorithm for speech in the presence of white r

considered in isolation. When the compensation parameters gkgrcles) and background music (squares). FrbBh [
estimated jointly, the problem becomes a nonlinear one, and can

be solved using algorithms such as codeword-dependent cepsﬁ&fm”ar speech recognition to that of Fig@r¢Results with VTS

normalization (CDCN) 1] and vector-Taylor series compensationWOUId be similar). It is expected that the improvement provided by

201

CDCN and similar algorithms would be small at very high SNRs
(VTS) [14]
— ' (because the interfering signal introduces very little degradation at
1007 those SNRs) and at very low SNRs (because the noise produces
S o peeccos ] almost complete degradation no matter what form of compensa
S sor tion is attempted. More interesting is the performance of CDCN
3 compensation at intermediate SNRs, where the WER is decreased
(4] . .
g 60 . by almost 50 percent with background noise, but never by more
’ than 10 percent in the presence of background mus$p [
IS VIS (1997) believe that the failure of CDCN and similar compensation-algo
S 40 . - . . ]
S o—o CDCN (1990) rithms to provide meaningful compensation in the presence of
2 B background music to several factors including the nonstationarity
AN CMN of background music as well as its speechlike nature. A wide vari
. . . , ety classical noise and channel compensation algorithms will
0 5 10 15 20 25 exhibit similar deficiencies.

. . N SNR (dB) | believe that viable solutions to the problems of speech recogni
Figure 2. Comparison of recognition accura ) tion at low SNRs and in the presence of transient and other types
cies on the BRPA 5000-word Wall Street Journal task using of time-varying interference must be based on the identification of
CMN, CDCN,VTS, and complete retraining. Frort¥]. the speech signal to be recognized, along with its explicit separa

. . . L tion from the interfering signal or signals. This can in principle be
Figure2 shows recognition accuracies for a standard dictation ta%'écomplished by a number of techniques including any of several

obtained using the CMU SPHINX speech recognition system fof,isging-feature” approaches to noise compensation, as well as
speech in broadband noise plotted as a function of signal-to-nojgg techniques that are collectively referred to as “computational
ratio (SNR) [L4]. The curve on the right represents the aCcur""‘:éguditory scene analysis” (CASA). Researchers in CASA attempt
obtained using features derived from Mel frequency cepstral COg} jeyelop computational techniques that mimic the processes that
ficients (MFCC) using cepstral mean normalization (CMN), whichy e pelieved to mediate the identification and separation by
represents baseline performance for this particular system on tQiSnans of the separate components of a complex acoustical sound

task with no particular compensation scheme used. The curve ]y These approaches are discussed in the following two
the far left represents system performance obtained when the sySqions.

tem is completely retrained for a particular noisy environment,

which represents in a sense the upper bound in performance Missing-feature approaches to robust rec-
imposed by the particular noisy environment, given the type of ...

signal processing and speech recognition algorithms used. T‘P\%mtmn
intermediate curves represent the recognition accuracy obtainefle potentially useful approach to speech recognition in the pres
using the CDCN ] and VTS [L4] algorithms, which were intfo  ence of the type of transient interference that is not handled well
duced in 1990 and 1997, respectively. The use of VTS provides gy algorithms like CDCN is the use of “missing-feature” tech
improvement of approximately 7 dB in SNR compared to thaiques. Briefly, in missing-feature approaches, one attempts to
baseline processing. While that may not appear to be very mugétermine which cells of a spectrogram-like time-frequency dis
improvement, it can be the difference between virtually changgiay of speech information are unreliable (or “missing”) because
recognition performance and best possible performance at intgf degradation due to noise or some other type of interference. The
mediate SNRs in the range of 5 to 10 dB, which is in importaklls that are determined to be “missing” are either ignored in sub
operating region. sequent processing and statistical analysis, or they are “filled in”
Nevertheless, statistical parameter estimation compensation médli optimal estimation of their putative values. While missing-fea
ods are not without their shortcomings. Fig&eompares the ture approaches were initially motivated by similar techniques
improvement in word error rate (WER) obtained using CDCN fordeveloped in image classification to deal with the problem of par



tially-occluded objects and have been developed by a numbet
research groups, it is fair to say that Martin Cooke and his ¢
leagues at the University of Sheffield have produced the me
comprehensive and widely-adopted approaches to the probl
(e.g. [5)).

The upper panel of Figuré (in the right hand column of this
page) shows a spectrogram of an utterance recorded in quiet.
central panel of that figure shows the same utterance after it
mixed with white noise at an SNR of 15 dB. It can be seen that:
major effect of the noise is to fill in the “valleys” of the spectrc
gram. The lower panel of Figukeshows the same spectrogram
but the pixels that have an effective SNR of less than zero dB
indicated by dark blue solid pixels.
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Figure 5. Recognition accuracusing cluster

based missing feature reconstruction (squaregirizmce-based
missing feature reconstruction (diamonds), simple spectral sub
traction (triangles), and cepstral mean normalization only (circles
techniques for speech in the presence of white noise (upper pan
and music (laver panel) when perfect a priori information V&
able concerning which incoming features are “missingta

from [16].

Figure 5 compares the speech recognition accuracy that
obtained using two types of missing-feature reconstruction tec
niques with baseline processing and simple spectral subtractiot
the presence of artificially-added white Gaussian noise (upg
panel) and background music derived from the DARPA Hub

task (lower panel), as a function of SNE§|[ The two missing- ) ) )
feature techniques that are used in these experiments, clustelgure 4. Spectrograms of speech recorded in quiet (upper panel)

based reconstruction and covariance-based reconstruction; rec8Rd subjected to artifially-added white noise with an SNR of 15
struct the incoming feature vectors rather than modify the intern8 (central panel). Pets that ghibit an SNR of less than zero dB
representation used by the classifier, as is more comewifs]).  are deemed missing and are depicted as solid dgidnee
Recognition accuracy using missing-feature techniques can be

quite good, even at low SNRs, while compensation using spectral

subtraction does not improve performance at all in the presence of




music. (Algorithms like CDCN and VTS would perform similarly 2.3, Summary

to spectral subtraction for stimuli like these.) Nevertheless, these ) )
results were obtained assuming perfacpriori knowledge of While conventional techniques that compensate for the effects of

which pixels in the spectrogram-like representation are “missingdditive noise and linear filtering of speech sounds can provide
and which pixels are “present” (or more accurately which pixeRUbstantial improvement in recognition accuracy when the cause
are damaged and which are undamaged by the effects of noiég).the, acoustical degradation is quasi-stationary, little improve

This type of information is normally not available in the recogniMent is observed at SNRs below approximately +5 dB. The use of
tion process and the blind determination of which pixels are or ajgchniques based on missing-feature analysis can provide substan

not missing is in general a very difficult task. tial benefit at lower SNRs, but they are critically dependent on the
ability to identify correctly which pixels actually are missing. The

901 recognition of speech at lower SNRs, and especially speech in the

~8or . presence of transient sources of interference including especially

o' 70t background speech and background music remain essentially

g 6ok unsolved problems at present.
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8 10t Over a period of several decades, Al Bregman and his colleagues

€ . , have compiled a monumental corpus of experimental results and
0 schematic modeling that attempt to identify ways in which the

human auditory system segregates and identifies components of a
complex sound fieldgg. [3], [7]). While this work had originally

been called “auditory streaming” by Bregman, it is now com
monly known as “auditory scene analysis.” The computational
simulation and emulation of many of the processes identified by
Bregman and his colleagues has become a popular topic of
research by computer scientists and engineers in recent years, and
these efforts are collectively referred to as “computational- audi
tory scene analysis (CASA).”

Bregmaret al. have identified many types of cues that can be used
for auditory scene analysis of speech signals, including (among
several others) fundamental frequency and harmonic relation
ships, spatial location cues, and correlated frequency and
amplitude changes. In this section | will discuss some attributes
about these cues and how they may be applied to improve auto
matic speech recognition accuracy.
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Figure 6. Comparison of recognition accuyac
using clustetbased missing feature techniques assuming perfect
“oracle” a priori knavledge of which features are missing
(squares) and using blind idertdtion of missing features (dia i .
monds), using spectral subtraction as the basis for missing-featutéonships

decisions (triangles), and baseline processing (circles) for speecfi haq giready been noted that pitch information can be extremely
in the presence of while noise (upper panel) and musie(io useful in the Bayesian determination of which pixels are missing
panel). Data from1], [17]. in missing-feature analysis. In principle, the accurate identifica
n and tracking of the fundamental frequency of voiced segments
n be used to isolate the fundamental frequency and its harmon
s from the background. In assessing the potential utility of pitch
blindly using Bayesian technique$7] with oracle missing-fea estt)lmates as 't1he basis for improved signal processing to achieve
ip ust speech recognition, some key questions are how well

ture identification, along with results obtained using spectr cech can be separated from noise. how well speech sianals can
subtraction to obtain missing-feature decisions, and baseline p}g P ' P 9

3.1. Fundamental frequency and harmonic rela-

Figure 6 presents a more realistic picture of the current state-otil-0
the-art in missing feature recognition in that it compares the recq;
nition accuracy obtained with the missing features identifie

cessing. The most effective features used by the Bayesi ﬁseparated from one another, and the extent to which this-separa

classifier track the fundamental frequency of voiced speech s bon can improve recognition accuracy.

ments and estimate the fraction of total energy in a frame thatlis order to assess some of these issues informally | made use of
observed at frequencies that are harmonic multiples of the-funds@mples of speech in the Arctic database, which includes a phonet
mental. The performance obtained with blind estimation dtally-balanced corpus of read speech combined with
missing features approaches that observed with perfect oraelectrolaryngograph (EGG) recordings collected by John Komenik
missing-feature identification in the case of background noisand Alan Black as a resource for speech syntheigiare 7 shows
Recognition accuracy obtained using cluster-based missing-fean example sentence from the Arctic database, with the speech in
ture compensation is not quite as good in the presence tbe upper panel and the corresponding EGG recording in the lower
background music, but it is still quite a bit better than the -accpanel. It is quite easy to extract an accurate pitch track from the
racy obtained with statistical estimation techniques like spectr&GG recordings.

subtraction, which do not provide any meaningful benefit at all.
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femail speech sounds were also added together at 0 dB SNR and
attempted to separate them using SHA and CFA, with the hetero
dyne frequency in SHA or the fundamental frequency in CFA
tuned to the target speaker. Using both SHA and CFA, the sepa
rated speech of the male was fair to good in intelligibility, while
the separated speech of the female was poor to fair. | believe that
oer this asymmetry in performance is a consequence of the differing
OfToos 2000 aoos  4ov0 5000 6000 700 6000 spectral regions of male and female speech. Specifically, when the
male is the target speaker, the higher fundamental frequency of the
. . . . . . . interfering female causes her speech components to be spaced far
ther apart in frequency, imposing a smaller amount of degradation
on the upper components of the target male. Conversely, when the
female is the target, the upper partials of the speech of the interfer
ing male are relatively dense, and they are more likely to interfere
with the perceptually-important lower harmonics of the speech of
the target female.

While neither the SHA or CFA technique have yet been used in
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Figure 7. Examples of recordings from tiectic databaseA actual speech recognition experiments, | regard them as promis
speech ggment is shan in the upper panel, with the corre ing, both for speech at lower SNRs, and for speech in the presence
sponding electrolaryngograph (EGG) simoin the laver panel.  of interfering speech and music. Again, it must be stressed that the

) ) results described above were obtained using perfect “oracle”
In an informal pilot study, | analyzed two utterances from the Argnowledge of the fundamental frequency of the target speaker.
tic database, by one male and one female speaker. The analygifile fundamental frequency extraction continues to be the object
and subsequen_t resynthesis of the speech were explored using gy great deal of attention in recent yeags.([8], 12]), pitch
methods. The first approach, called synchronous heterodyne angdcking, and especially tracking the pitch of multipie speech or
ysis (SHA), multiplies the incoming signal by a sine wave anghysic sources, remains a very difficult problem. As noted above,
cosine wave at the fundamental frequency, squares, and sums @¥gke techniques are not useful for unvoiced speech segments.
time as shown in Figur@

In the second approach, called comb-filter analysis (CFA), th2. Spatial location cues
speech signal is passed through a comb filter with the transigsng sources arriving from different azimuths produce interaural

function time delays (ITDs) and interaural intensity differences (IIDs) as
_p they arrive at the two ears. It is well known that human listeners
H(z) = = can use spatial information to improve the intelligibility of speech
—P . . . .
1—gz in the presence of other speech or noise interfer@tgeThe bin

L . . ) aural hearing mechanism can focus attention on a target speaker in
This filter has a response with sharp peaks at integer multiples DEomplex acoustical environment, or it can focus on the direction
the reciprocal of the paramet®r which represents the nominal of grrival of the direct sound field of a target speaker in a reverber
period of the signal. Varying the paramefem accordance with ant environment. The mechanisms underlying these abilities are
the estimated fundamental frequency, and using values of 0.8 g completely understood, and as Zurek has noted, some

0.9 for the parametey; it is possib_le isolate the speech from baCkimprovement is to be expected simply by attending solely to the
ground interference. Clearly neither SHA nor CFA provide angyy that is closer to the target speech so@ee |

benefit for unvoiced segments of speech sounds or for whispered

speech. |
Speech in isolation was analyzed and resynthesized using the SH e F% oo s e

and CFA methods. For both male and female speakers informe L L
listening suggests that intelligibility is fair to good using the SHA mﬂ;&‘mfﬂﬁ moaea H nscrsion }_,
method and good to excellent using the CFA method. Male an ==
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0F Figure 9. Generic model of binaural processing proposed b
Colburn and Durlach4]. The parallel sets of am indicate mul
tiple parallel channels of information in the model.
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Most models of binaural perceptior.d. [4], [22]) assume that

peripheral auditory processing includes bandpass filtering and
oF nonlinear rectification of the incoming sounds, followed by a
cross-correlation analysis of the bandpass-filtered and rectified
signals, with subsequent analysis (at least for simple stimuli)
based on consideration of ITD and IID information as a function
Figure 8. Synchronous heterodyne analysis used for separatingof frequency. This processing is summarized by the block dia
speech sounds. gram of Figured. Most models of binaural interaction assume that

sinfw(n)n)



ITD information is extracted using a coincidence-analysis meche

nism first proposed by Lloyd Jeffress in 1948 Figure10shows

the putative representation of interaural timing information in
response to bandpass noise presented with an ITD of —1.5 ms w
a center frequency of 500 Hz and bandwidths of 50 Hz (uppe

panel) and 800 Hz (lower panel).

N 01
Internal Delay [ms)
Bandwidth 50 Hz

-1 [ 1
Internal Delay [(ms)
Bandwidth 800 Hz

Figure 10. The putatie response of an ensemble ofrésks-
Colburn coincidence-counting units toAdrequengy bandpass
noise with a center frequenof 500 Hz and an ITD of -1.5 ms.
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Figure 11. Block diagram of multi-microphone cross-correla
tion-based processing system. Fr&@§| [

mates short-time energy estimates in each of the frequency
channels, and they are subsequently converted into 12 cepstral
coefficients using the cosine transform. These cepstral €oeffi

cients along with an additional coefficient representing the power
of the signal are used as features for speech recognition in the con

Upper panel: response to bandpass noise with a bandwidth of 5@ntional fashion.

Hz. Lower panel: response to bandpass noise with a bandwidth of

800 Hz. From22].

There is some disagreement concerning the extent to which ITD
information is used by humans as the basis of signal separation.
While the results of one influential study by Culling and Summer
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field imply that simultaneously-presented unmodulated whispered
are not separated by their ITD6],[ more recent studies have
shown that these ITD can be a useful cue in fostering identifica
tion of simultaneously-presented speech sounds when they are
presented with natural amplitude and frequency modulat2sjs [

In any case, even if the auditory system does not make efficient
use of interaural timing information, these physical cues are still
available for computational auditory processors. In the 1980s and
1990s, many types of signal processing such as spectral subtrac
tion that did not improve human intelligibility still proved to be
useful for improving speech recognition accuracy. My work in this
area is motivated by the belief that we should be inspired by but
not limited by our knowledge of the auditory system.

The block diagram of one system that used ITD information to
improve speech recognition accuracy is shown in Fid25]. The

input signals are first delayed in order to compensate for differ
ences in the acoustical path length of the desired speech signal to
each microphone. (This is the same processing performed by con
ventional delay-and-sum beamforming.) The signals from each
microphone are passed through a bank of bandpass filters with dif
ferent center frequencies, passed through nonlinear rectifiers, and
the outputs of the rectifiers at each frequency are correlated. (The
correlator outputs correspond to outputs of the coincidence
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counters at the internal delays of the “ridges” in Hig.at —1.5
ms.) The result of this operation is a formNaflimensional cross-

Figure 12. Estimates of frequegewarped spectra for thewel
segment /a/ for @rious SNRs using (a) 2 input channels and :

correlation, which reduces to conventional cross-correlation opergelay (b) 2 input channels and 125-delay to success chan
tion for two inputs. The outputs of the multi-dimensional crossnels, and (c) 8 input channels and 125delay From P5].
correlation operation are considered as if they were energy esti



Figure 12 demonstrates the validity of the such processing in trf®.3. Correlated frequency and amplitude changes

context of an analysis of a sample of the digitized vowel segment

/al corrupted by artificially-added white Gaussian noise at globAfthough cues based on fundamental frequency and sound source
SNRs of 0 to +21 dB. The speech segment was presented tol3gation are potentially extrer_n_ely va_luable in sepa_ratlng slgnals
microphone channels identically (to simulate a desired signif @utomatic speech recognition, pitch cues are ineffective for
arriving on axis) and the noise was presented with linearly increa§voiced segments and location multichannel recordings with
ing delays to the channels (to simulate an off-axis corruptiH cation information are not always available. Even with just-a sin
signal impinging on a linear microphone array). The processing g€ _channel, unvoiced speech segments, and/or imperfect pitch
such a system was simulated using 2 and 8 microphone channgéfiimates, we expect to be able to separate multiple sound sources

and time delays for the masking noise of 0 and 1250 succes USing by extracting and clustering sounds according to small
sive channels. (*micro”) modulations in frequency and amplitude. The use of

such physical cues for sound separation and auditory scene analy

The curves of Figur&2 describe the effect of SNR, the number Ofgjs has been supported by many psychoacoustical studies in recent
processing channels, and the delay of the noise on the spectral goys ¢.. [3], [7]).

files of a sample of the vowel segment /a/. (The frequenc

representation for the vowel is warped in frequency according *0% IR
the nonlinear spacing of the auditory filters.) The upper pan
summarizes the results that are obtained using 2 channels with i
noise presented with zero delay from channel to channel (whi s000 JU
would be the case if the speech and noise signals arrive from g
same direction). Note that the shape of the vowel, which is cleat sooo |
defined at high SNRs, becomes almost indistinct at the low
SNRs. The center and lower panels show the results of process
with 2 and 8 microphones, respectively, when the noise is pr
sented with a delay of 12s from channel to channel (which
corresponds to a off-axis source location for typical microphon 2000
spacing). As the number of channels increases from 2 to 8, t
shape of the vowel segment in Figur2 becomes much more 1000
invariant to the amount of noise present. In general, it was four
in these experiments that the benefit to be expected from increa
sharply as the number of microphone channels is increased. It v Time
also observed (unsurprisingly) that the degree of improvemep. . .
increases as the simulated directional disparity between tﬁ'égure 13. Spectrogram of the signal used by @hmg_ to glem
desired speech signal and the masker increases. It was conclufiggrate th'? importance of correlated freqyemodulation in
from these pilot experiments that the cross-correlation methGditory object formation.

described can provide very good robustness to off-axis additive . . .
noise, and in practice, this approach did provide a moderate befi@Ure 13 is a spectrogram of a signal that John Chowning devel

fit over the recognition accuracy obtained using conventionQP€d in the early 1980s to demonstrate the perceptual salience of
delay-and-sum processingd. correlated frequency modulation in fusing and separating compo

i i ) nents of a complex signal. These signals are described in detail in
These studies, which were conducted in the early 1990s, were Bpégman'’s treatise3]. The signal from 0 to 1.5 ms consists of
continued because of the lack of available computational resourgggee sine waves, at 300, 400, and 500 Hz. Taken as individual
at that time. | believe that further improvements are likely to bgine waves, these three frequencies form a major triad in the sec
obtained once greater attention is paid to the nature of the baggd inversion, but the components are more likely to be heard as a
pass filtering, “within-channel nonlinearities, and correlatiofysed complex tone with fundamental frequency 100 Hz. From 1.5
operations. Correlation-based approaches such as these canobg ms the three sine waves are replaced by three sets of-10 har
applied to unvoiced as well as to voiced segments of speech.  monics at integer multiples of 300, 400, and 500 Hz, with spectral

A final item of note with regard to spatial processing is that higanvelopes that are derived from three different vowel sounds.
levels of reverberation are extremely detrimental to recognitiofgain this signal is perceived as a complex tone with fundamental
accuracy. Frame-based compensation strategies such as thosefigiguency 100 Hz, but with a sharper timbre because of the pres
cussed in Sec2.1 fail because the effects of reverberation ar@nce of 27 additional upper-frequency partials. Beginning at 3 ms,
generally spread over multiple analysis frames. In addition-tradhe signals consist of the same three overtone series, but each is
tional adaptive filtering methods, which have also been considergéparately modulated at 4.5, 5, and 5.5 Hz, respectively. Once the
for this purpose, depend on the statistical independence of tarfjeguency modulation is applied, the harmonics associated with
and masker. Since in reverberant environments, the “noise” cagtach fundamental frequency segregate from one another and
sists of reflected and attenuated copies of the target speech sigri@§ome easily perceived as three separate complex tones with fun
noise-canceling adaptive filter strategies (such as those that usedagental frequencies of 300, 400, and 500 Hz.

LMS algorithm) are not effective. Sub-band processing in asim'my research group is currently developing ways to develop
lar fashion has been somewhat effective in reverberation, but it Rggough computational means a form of signal separation based on
not yet been applied to a wide range of problems. | believe th@fe identification of common locations in a time-frequency dis
techniques based on auditory perception and physiology, missifay |ike a spectrogram that exhibit covarying amplitude and
feature recognition, and CASA techniques should be more-effegequency modulation. This is a difficult task because of the need
tive in characterizing and ultimately ameliorating the effects af achieve sharp frequency resolution while allowing for temporal
reverberation. fluctuations, but the ability of the human auditory system to
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accomplish these tasks remains a powerful existence proof and Extraction: Possible Role of a Repetitive Structure in Sounds,

motivation to move this work forward.

4. SUMMARY

| believe that computational auditory approaches are potential
extremely useful in ameliorating some of the most difficult spee
recognition problems, specifically the recognition of speech pre
sented at low SNRs, speech masked by other speech, speech

C

Speech Communication, 27: 175-185, 1999.

[13]J. Komenek and A. Black CMU_ARCTIC Databases, 2003. Avail-
able atht t p: / / www. f est vox. org/ crmu_arcti c.
HnY4]P. J. Moreno, B. Raj, and R. M. Stern, A Vector Taylor Series

Approach For Environment-Independent Speech Recognition,
Proc. ICASSP, Atlanta, GA, May 1996.

masked by music, and speech in highly reverberant environmert’]B. Raj, V. N. Parikh, and R. M. Stern, The Ef fects Of Background
The solution to these problems using CASA techniques is likely to  Music On Speech Recognition Accuracy, Proc. ICASSP, Munich,
depend on the ability to develop several key elements of signal Germany, April 1997.

processing, including the reliable detection of fundamental fr
quency for isolated speech and for multiple simultaneousl
presented speech sounds, the reliable detection of modulations of
amplitude and frequency in very narrowband channels, and the

16]B. Raj, M. L. Seltzer, and R. M. Stern, Reconstruction of Missing
Features for Robust Speech Recognition, Speech Communication
Journal, accepted for publication, 2004.

development of across-frequency correlation approaches that ¢&HM. L. Seltzer, B. Raj, and R. M. Stern, A Bayesian Framework
identify frequency bands with coherent micro-activity as they for Spectrographic Mask Estimation for Missing Feature Speech

evolve over time. | am extremely optimistic that effective solu

tions for these problems are within reach in the near future.
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