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Summary. It is well known that binaural processing is very useful for separating
incoming sound sources as well as for improving speech intelligibility in reverberant
environments. This chapter describes and compares a number of ways in which
automatic speech recognition accuracy in difficult acoustical environments can be
improved through the use of signal processing techniques that are motivated by our
understanding of binaural perception and binaural technology. These approaches are
all based on the exploitation of interaural differences in arrival time and intensity of
the signals arriving at the two ears to separate signals according to direction of arrival
and to enhance the desired target signal. Their structure is motivated by classic
models of binaural hearing as well as the precedence effect. We describe the structure
and operation of a number of methods that use two or more microphones to improve
the accuracy of automatic speech recognition systems operating in cluttered, noisy,
and reverberant environments. The individual implementations differ in the methods
by which binaural principles are imposed on speech processing, and in the precise
mechanism used to extract interaural time and intensity differences. Algorithms that
exploit binaural information can provide substantially improved speech recognition
accuracy in noisy, cluttered, and reverberant environments compared to baseline
delay-and-sum beamforming. The type of signal manipulation that is most effective
for improving performance in reverberation is different from what is most effective
for ameliorating the effects of degradation caused by spatially-separated interfering
sound sources.

1 Introduction

Automatic speech recognition (ASR) is the key technology that enables nat-
ural interaction between humans and intelligent machines. Core speech recog-
nition technology developed over the past several decades in domains such as
office dictation and interactive voice response systems to the point that it is
now commonplace for customers to encounter automated speech-based intel-
ligent agents that handle at least the initial part of a user query for airline
flight information, technical support, ticketing services, etc. As time goes by,
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we will come to expect the range of natural human-machine dialog to grow
to include seamless and productive interactions in contexts such as humanoid
robotic butlers in our living rooms, information kiosks in large and reverber-
ant public spaces, as well as intelligent agents in automobiles while traveling
at highway speeds in the presence of multiple sources of noise. Nevertheless,
this vision cannot be fulfilled until we are able to overcome the shortcomings
of present speech recognition technology that are observed when speech is
recorded at a distance from the speaker.

Two of the major forms of environmental degradation are additive noise
of various forms and reverberation. Additive noise arises naturally from in-
terfering speakers, background music, or other sound sources that are present
in the environment, and as the signal-to-noise ratio (SNR) decreases, speech
recognition becomes more difficult. In addition, the impact of noise on speech
recognition accuracy depends as much on the type of noise source as on the
SNR. For example, compensation becomes much more difficult when the noise
is highly transient in nature, as is the case with many types of impulsive ma-
chine noise on factory floors and gunshots in military environments. Interfer-
ence by sources such as background music or background speech is especially
difficult to handle, as it is both highly transient in nature and easily confused
with the desired speech signal. Research directed toward compensating for
these problems has been in progress for more than three decades.

Reverberation is also a natural part of virtually all acoustical environ-
ments indoors, and it is a factor in many outdoor settings with reflective sur-
faces as well. The presence of even a relatively small amount of reverberation
destroys the temporal structure of speech waveforms. This has a very adverse
impact on the recognition accuracy that is obtained from speech systems that
are deployed in public spaces, homes, and offices for virtually any application
in which the user does not use a head-mounted microphone. It is presently
more difficult to ameliorate the effects of common room reverberation than it
has been to render speech systems robust to the effects of additive noise, even
at fairly low SNRs. Researchers have begun to make meaningful progress on
this problem only relatively recently.

In this chapter we discuss some of the ways fin which the characteristics
of binaural processing have been exploited in recent years to separate and en-
hance speech signals, and specifically to improve automatic speech recognition
accuracy in difficult acoustical environments. Like so many aspects of sensory
processing, the binaural system offers an existence proof of the possibility of
extraordinary performance in sound localization and signal separation, but as
of yet we do not know how best to achieve this level of performance using the
engineering tools available in contemporary signal processing.

In the next section we restate very briefly the basic binaural phenomena
that have been exploited in contemporary signal enhancement and robustness
algorithms for ASR. In Sec. 3 we summarize for the lay person some of the
basic principles that underly contemporary ASR systems. We survey a number
of computational approaches to impove the accuracy of ASR systems that are
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motivated by binaural processing in Sec. 4 and we discuss some extensions of
these approaches to systems based on deep learning in Sec. 5.

2 Binaural-hearing Principles

The human binaural system is remarkable in its ability to localize single and
multiple sound sources, to separate and segregate signals coming from multiple
directions, and to understand speech in noisy and reverberant environments.
These capabilities have motivated a great number of studies of binaural phys-
iology and perception. Useful comprehensive reviews of basic binaural per-
ceptual phenomena may be found in a number of sources including Durlach
and Colburn (1978), Gilkey and Anderson (1997), Stern et al. (2006), and
Kolrausch et al. (2013), among others, as well as in basic texts on hearing
such as Moore (2012) and Yost (2013).

2.1 Selected Binaural Phenomena

While the literature on binaural processing on both the physiological and
perceptual sides is vast, the application of binaural processing to ASR is based
on a small number of principles:

1. The perceived laterality of sound sources depends on both the interau-
ral time difference (ITD) and interaural intensity difference (IID) of the
signals arriving to the two ears, although the relative salience of these
cues depends on frequency (e.g. Durlach and Colburn, 1978; Domnitz and
Colburn, 1977; Yost, 1981).

2. The auditory system is exquisitely sensitive to small changes of sound, and
can discriminate ITDs on the order of 10 µs and IIDs on the order of 1 dB.
Sensitivity to small differences in interaural correlation of broadband noise
sources is also quite acute, as a decrease in interaural correlation from 1.00
to 0.96 is readily discernible (e.g. Durlach and Colburn, 1978; Domnitz
and Colburn, 1977). The ITDs arise from differences in path length from
a sound source to the two ears, and the IIDs are a consequence of head
shadowing, especially at higher frequencies.

3. The vertical position of sounds, as well as front-to-back differentiation in
location, is affected by changes in the frequency response of sounds that
are imparted by the anatomy of the outer ear, and reinforced by head-
motion cues (e.g. Mehrgardt and Mellert, 1977; Wightman and Kistler,
1989a,b, 1999). The transfer function from the sound source to the ears
is commonly referred to as the head-related transfer function (HRTF).
HRTFs generally depend on the azimuth and elevation of the source rela-
tive to the head, as well as the anatomy of the head and outer ear of the
individual.
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4. The intelligibility of speech in the presence of background noise or some
other interfering signal becomes greater as the spatial separation between
the target and masking signals increases. While some of the improvement
in intelligibility with greater spatial source separation may be attributed
to monaural effects such as a greater effective SNR at one of the two ears,
binaural interaction also appears to play a significant role (e.g. Zurek,
1993; Hawley et al., 1999).

5. The auditory localization mechanisms typically pay greater attention to
the first component that arrives (which presumably comes directly from
the sound source) at the expense of later-arriving components (which pre-
sumably are reflected off the room and/or objects in it). This phenomenon
is referred to as the precedence effect or the law of the first wavefront (e.g.
Wallach et al., 1949; Blauert, 1997; Litovsky et al., 1999).

2.2 Models of Binaural Interaction

A number of models have been developed that attempt to identify and ex-
plain the mechanisms that mediate the many interesting binaural phenomena
that have been observed. For the most part, the original goals of these mod-
els had been to describe and predict binaural lateralization or localization,
discrimination, and detection data, rather than to improve ASR recognition
accuracy. These models are typically evaluated on their ability to describe
and predict the perceptual data, the generality of their predictions, and the
inherent plausibility of the models in terms of what is known about the rele-
vant physiology. Useful reviews of binaural models may be found in Colburn
and Durlach (1978), Stern and Trahiotis (1995, 1996), Trahiotis et al. (2005),
Braasch (2005), Colburn and Kulkarni (2005), and Dietz et al. (2017), among
other sources.

Most theories of binaural interaction (at least for signals that are presented
through headphones) include a model that describes the peripheral response
to sound at the level of the fibers of the auditory nerve, a mechanism for
extracting ITDs, a mechanism for extracting IIDs, a method for combining the
ITDs and IIDs, and a mechanism for developing predictions of lateral position
from the combined representation. Models that describe sound localization in
the free field typically incorporate information from HRTFs.

Models of Auditory-nerve Activity

Models of the response to the sounds at the auditory-nerve level typically in-
clude (1) a bandpass frequency response, with a characteristic frequency (CF)
that provides the greatest response, (2) some sort of half-wave rectification
that converts the output of the bandpass linear filters to a strictly positive
number that represents rate of response, and (3) synchrony or “phase locking”
in the response to the fine structure of low-frequency inputs and to the en-
velopes of higher-frequency inputs. Some auditory-nerve models also include
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(4) enhanced response at the temporal onset of the input and (less frequently)
(5) an explicit mechanism for lateral suppression in fibers with a given CF
to signal components at adjacent frequencies. These models of auditory-nerve
activity can be as simple as the cascade of a bank of bandpass filters, half-wave
rectification, and lowpass filtering; more complex and physiologically-accurate
models are described in Zhang et al. (2001) and Zilany et al. (2009), among
other sources.

Cross-Correlation-Based Models

Most models of binaural interaction include some form of Jeffress’s (1948)
description of a neural “place” mechanism as the basis for the extraction of
interaural timing information. Specifically, Jeffress postulated a mechanism
that consisted of a number of central neural units that recorded coincidences
in neural firings from two peripheral auditory-nerve fibers, one from each ear,
with the same CF. It was further postulated that the neural signal coming
from one of the two fibers is delayed by a small amount that is fixed for a given
fiber pair. Because of the synchrony in the response of low-frequency auditory-
nerve fibers to low-frequency signals, a given binaural coincidence-counting
unit at a particular frequency will produce maximal output when the exter-
nal stimulus ITD at that frequency is exactly compensated for by the internal
delay of the fiber pair. Hence, the external ITD of a simple stimulus could be
inferred by determining the internal delay that has the greatest response over
a range of frequencies. Colburn (1969, 1973) reformulated Jeffress’s hypothesis
quantitatively using a relatively simple model of the auditory-nerve response
to sound as Poisson processes, and a “binaural displayer” consisting of a ma-
trix of coincidence-counting units of the type postulated by Jeffress. These
units are specified by the CF of the auditory-nerve fibers that they receive
input from as well as their intrinsic internal delay. The overall response of an
ensemble of such units as a function of internal delay is similar to the running
interaural cross-correlation of the signals to the two ears, after the peripheral
cochlear analysis (e.g. Stern and Trahiotis, 1995). This general representation
has been used in a number of computational models of binaural processing
for speech recognition, with sound-source locations identified by peaks of the
interaural cross-correlation functions along the internal-delay axis.

Figure 1 illustrates how the Jeffress-Colburn mechanism can be used to
localize two signals according to ITD. The upper two panels of the figure show
the magnitude spectra in decibels of the vowels /AH/ and /IH/ spoken by a
male and a female speaker, respectively. The lower panel shows the relative
response of the binaural coincidence-counting units when these two vowels
are presented simultaneously with ITDs of 0 and -0.5 ms, respectively. The
700-Hz first formant of the vowel /AH/ is clearly visible at the 0-ms internal
delay, and the 300-Hz first formant of the vowel /IH/ is seen at the delay of
-0.5 ms.

It should be noted that the interaural cross-correlation function does not
describe IIDs unambiguously, so some additional mechanism must be em-
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Fig. 1. Upper and central panels: spectrum of the vowels /AH/ and /IH/ as recorded
by a male and female speaker, respectively. Lower panel: response of an implemen-
tation of the Jeffress-Colburn model to the simultaneous presentation of the /AH/
presented with a 0-ms ITD and the /IH/ presented with a −0.5-ms ITD.

ployed to represent the contributions of IID. For example, Stern and Colburn
(1978) multiplied the cross-correlation-based representation of ITD described
above by a pulse-shaped function with a location along the internal-delay axis
that depends on IID. This model, known as the “position-variable model,”
predicts lateral position by computing the centroid of the product of these
“timing” and “intensity” functions along the internal-delay axis and then in-
tegrating this function over characteristic frequency. Shamma et al. (1989)
proposed an alternative implementation of the Jeffress model, called stereau-
sis in which the internal delays are obtained implicitly by comparing inputs
of auditory-nerve fibers with slightly mismatched characteristic frequencies,
as previously suggested by Schroeder (1977).
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Blauert and his colleagues proposed a similar representation (Blauert and
Cobben, 1978; Blauert, 1980). This work was subsequently extended by Lin-
demann (1986a), who added a mechanism that (among other things) inhibits
outputs of the coincidence counters when there is activity produced by co-
incidence counters at adjacent internal delays. This contralateral inhibition
mechanism enables the Lindemann model to describe several interesting phe-
nomena related to the precedence effect (Lindemann, 1986b). Gaik (1993)
extended the Lindemann mechanism further by adding a second weighting to
the coincidence-counter outputs that reinforces naturally-occurring combina-
tions of ITD and IID.

The Equalization-Cancellation model

The Equalization-Cancellation (EC) model of Durlach and colleagues (e.g.
Durlach, 1963, 1972) is an additional important alternate model. The EC
model was initially formulated to account for binaural detection phenomena,
although it has been applied to other psychoacoustical tasks as well (Colburn
and Durlach, 1978). The model assumes that time-delay and amplitude-shift
transformations are applied to the incoming signal on one side in order to
equalize the masker components of the signals to the two ears. The masker-
equalized signals are then subtracted from one another to cancel the masker
components, leaving the target easily detectable. Stochastic “jitter factors”
are applied to the time and amplitude transformations, which limits the com-
pleteness of the equalization and cancellation operations, in a fashion that is
fitted to the observed limits of human detection performance. The EC model
remains popular because of its simplicity and its ability to describe many
phenomena. It has been the inspiration for subsequent models (e.g. Breebaart
et al., 2001a,b,c), and has also been applied to speech recognition, as will be
discussed below.

Detection of Target Presence Using Interaural Correlation

Many phenomena, especially in the area of binaural detection, can be inter-
preted easily by considering the change in interaural correlation that occurs
when a target is added to the masker. The use of interaural correlation was
formalized in one binaural early model (Osman, 1971) and has been the fo-
cus of many experimental and theoretical studies since that time, as reviewed
by Trahiotis et al. (2005) among other sources. While cross-correlation-based
models that represent ITD, the EC model, and correlation-based models differ
in surface structure, it has been shown that under many circumstances they
function similarly for practical purposes (e.g., Colburn and Durlach, 1978;
Domnitz and Colburn, 1976).
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3 Selected Robust Speech-recognition Principles

The field of robust automatic speech recognition is similarly vast, and cannot
be dealt with in any depth in a review chapter of this scope. The purpose of
this section is to provide some insight into the principles of automatic speech
recognition that are needed to appreciate the role that binaural processing
can play in reducing error rates.

Monaural 
Analysis

Monaural 
Analysis

Binaural 
Processing

Feature
Extraction

Decision 
Making

Input
Signals

Speech
Features

(Possible) 
Intermediate Waveform

Recognition
Hypothesis

Binaural Pre-processing Automatic Speech Recognition

Fig. 2. Basic functional elements of a speech recognition system that includes bin-
aural enhancement.

3.1 Basic Speech-recognition Principles

Automatic speech recognition is essentially a special class of pattern classifi-
cation algorithms, that guess which of a number of possible “classes” of input
is actually present. All pattern classification systems operate on the same ba-
sic principles: an initial analysis stage performs a physical measurement (of
a sound pressure wave, in our case) and transforms that measurement into
a set of features, or numbers that are believed to be most indicative of the
classification task to be performed. These features are typically a stochas-
tic representation that depends on which input class is present. A second
decision-making component develops a hypothesis of which of the possible
inputs is most likely, based on the observed values of the features. Figure 2
summarizes the major functional blocks of a generic ASR system with binaural
pre-processing for signal enhancement. While Fig. 2 depicts a binaural pre-
processing module that passes on to the ASR components a restored speech
waveform, some of the algorithms we describe produce a restored set of fea-
tures directly. We briefly discuss the components of the speech recognition
system in this section and defer our discussion of the numerous approaches to
signal and feature enhancement based on binaural processing to Sec. 4 below.

Feature Extraction

Features for pattern classification systems are generally selected with the goals
of being useful in distinguishing the classes to be identified, easy to com-
pute, and not very demanding in storage. With some exceptions, most speech
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recognition systems today extract features by first computing the short-time
Fourier transform (STFT) of the input signal (Allen and Rabiner, 1977), typ-
ically windowing the incoming signal by a succession of Hamming windows of
duration approximately 25 ms, separated by approximately 10 ms. A function
related to the log of the magnitude of the spectrum or its inverse transform,
the real cepstrum, is subsequently computed in each of these analysis frames.
In principle, cepstral coefficients are useful because they are nearly statisti-
cally independent of one another, and only a small number of them (about
12) are needed to characterize the envelope of the spectrum in each analy-
sis frame. In addition, the cepstral representation separates the effects of the
vocal-tract filter (which were believed to be most useful in the early days of
the speech recognition) from the effects of the periodic excitation produced
by the vocal cords (which had been believed not to be useful at that time).

The most common representations used for feature vectors today are all
motivated by crude models of auditory processing. The earliest such represen-
tation, mel frequency cepstral coefficients (MFCC features, Davis and Mermel-
stein, 1980), multiply the energy spectrum extracted from each analysis frame
by a series of triangularly-shaped weighting functions with vertices spaced ac-
cording to the Mel frequency scale (Stevens et al., 1937) and then summing
the product over frequency within each weighting function. With 16-kHz sam-
pling, about 40 Mel weighting functions are typically used. The MFCC coeffi-
cients are obtained by computing the inverse discrete cosine transform (DCT)
of the summed products. A second set of popular features are extracted using
a process known as perceptual linear prediction (PLP features, Hermansky,
1990), which is based on a more detailed and accurate model of the periph-
eral auditory system. A more recently-developed third set of features, power-
normalized cepstral coefficients (PNCC features, Kim and Stern, 2016) are
more robust to certain types of additive noise and reverberation.

The MFCC, PLP, or PNCC features are typically augmented by additional
features that represent the instantaneous power in each analysis frame, as
“delta” and “delta-delta” features that serve to represent crudely the first and
second derivatives in the power spectrum over time. The delta features are
obtained by computing the difference between cepstral coefficients in frames
after and before the nominal analysis frame, and the delta-delta features are
obtained by repeating this operation. Finally, static effects of linear filtering
to the signal are removed by applying either cepstral mean normalization
(CMN), or relative spectral analysis (RASTA) processing (Hermansky and
Morgan, 1994). CMN subtracts the mean of the cepstral coefficients from
each cepstral vector on a sentence-by-sentence basis while RASTA processing
passes the cepstral coefficients through a bandpass filter. Both RASTA and
CMN serve to emphasize temporal change in the cepstral coefficients and
suppress slow drift in their values over time.
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4<latexit sha1_base64="XUFEGAbSfrAvd9MQpN/J1o41RwA=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpoV4alCtu1V2ArBMvJxXI0RyUv/rDmKURSsME1brnuYnxM6oMZwJnpX6qMaFsQkfYs1TSCLWfLS6dkQurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCGz/jMkkNSrZcFKaCmJjM3yZDrpAZMbWEMsXtrYSNqaLM2HDmIXirL6+Tdq3qXVVr9/VKo5bHUYQzOIdL8OAaGnAHTWgBgxCe4RXenInz4rw7H8vWgpPPnMIfOJ8/r+eMwA==</latexit> 5
<latexit sha1_base64="rbggG633snxBJJTlQTzxWwRr5Tk=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoseCF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5lW/XHGr7hxklXg5qUCORr/81RvELI1QGiao1l3PTYyfUWU4Ezgt9VKNCWVjOsSupZJGqP1sfuiUnFllQMJY2ZKGzNXfExmNtJ5Ege2MqBnpZW8m/ud1UxPe+BmXSWpQssWiMBXExGT2NRlwhcyIiSWUKW5vJWxEFWXGZlOyIXjLL6+Sdq3qXVRrzctKvZbHUYQTOIVz8OAa6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ffSuMrQ==</latexit>

Fig. 3. The hidden Markov model for speech recognition for the word “sit.” See
text for details.

Traditional HMM-GMM Decoding

The technologies for determining the most likely word sequence from a spoken
utterance have evolved greatly over the decades, and this section will discuss
only the most basic elements of speech recognition. From the early 1980s
until very recently the dominant speech recognition technology has been the
hidden Markov model (HMM, e.g., Rabiner, 1989; Rabiner and Juang, 1993),
and practical systems based on HMMs remain in widespread use today. The
HMM representation characterizes the incoming speech waveform as a doubly
stochastic process, as depicted in schematic form in Fig. 3. First, the sequence
of phonemes that are produced is characterized as a set of five unobserved
Markov states which presumably represent the various configurations that
the speech production mechanisms may take on and hence the phonemes that
are produced. As is the case for all Markov models, the transition probabilities
depend only on the current state that is being occupied. Each state transition
causes a feature vector to be emitted that is observable, with the probability
density of the components of the feature vector depending on the identity of
the state transition. Spectra representing a sequence of six observations are
shown in the figure. The task of the decoder is to infer the identity of the
unobserved state transitions (and hence the sequence of phonemes) from the
observed values of the features.

The technologies for implementing this model efficiently and accurately
have evolved greatly over decades, and a detailed description is well beyond
the scope of this chapter. Briefly, implementing an HMM requires determining
the probabilities of the observations given the model parameters, choosing the
most likely state sequence given the observations, and determining the model
parameters that maximizes the observation probabilities. Details of how to
accomplish these tasks are described in standard texts such as Rabiner and
Juang (1993) and Gold et al. (2011), as well as in many technical papers. It
has been found that the performance of the system depends more critically on
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the accuracy of the phonetic model (i.e., the probability density function that
describes the feature values given the state transitions) than on the proba-
bilities that characterize the state transitions. Gaussian mixture densities are
currently the form that is most commonly used for the phonetic models, in
part because the parameters of these densities can be estimated efficiently,
typically using a form of the expectation-maximation (EM) algorithm (e.g.,
Dempster et al., 1977). HMMs using Gaussian mixtures for the phonetic mod-
els are frequently referred to as “HMM-GMM” systems.

Input Layer
(Features)

Hidden
Layer #1

Hidden
Layer #1

Hidden
Layer #1

Output
Layer

Fig. 4. Standard structure of a feedforward MLP. The network is considered to be
“deep” if there are two or more hidden layers.

Speech Recognition Using Deep Learning

While the HMM-GMM paradigm has been the dominant speech recognition
technology from the early 1980s through the mid-2000s, new approaches to
speech recognition based on deep learning are becoming more popular. The
structures that implement deep learning are frequently referred to as artificial
neural networks or computational neural networks. The general organization
and function of computational neural networks was originally motivated by
basic neural anatomy and physiology, although the classifiers have evolved
considerably over the years without any necessary tie to neural processing by
living beings.

While the basic approaches to pattern classification using computational
neural networks have been known for some time (e.g., Rosenblatt, 1959; Lipp-
mann, 1987, 1989; Bourlard and Morgan, 1994), these approaches have become
more effective and practical in recent years because of a better understanding
of the capabilities of the underlying mathematics, the widespread availability
of much larger databases for training, and much faster computing infrastruc-
ture, including the availability of graphics processing units (GPUs), which are
particularly well suited for many of the core computations associated with
neural networks.
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Figure 4 is a crude depiction of the simplest type of deep neural network
(DNN) known as the multilayer perceptron (MLP). The system consists of
an input layer of units, one or more “hidden layers,” and an output layer.
Typically the units in a given layer are a weighted linear combination of
the values of the units of the previous layer, with the values of the weights
trained to minimize the mean square error of the result, using a technique
based on gradient descent known as back propagation (e.g., Haykin, 2018). In
many cases DNN classifiers make use of observed values of multiple feature
sets (e.g., Mitra et al., 2017). In general, computational neural networks have
the advantage of being able to model probability density functions of any
form by learning their shape by observing large numbers of training examples.
They have the disadvantage of requiring more training data than conventional
HMM-GMM systems, and they may not generalize as well as HMM-GMM-
based systems. While neural networks were initially used to produce better
phonetic models in a system that incorporated a traditional HMM for the
decoding component (e.g. Hermansky et al., 2000), other architectures are
becoming more popular in which the entire end-to-end speech recognition
process is performed using a chain of deep neural networks (e.g. Miao and
Metze, 2017). Nevertheless, they are increasingly popular because they provide
consistently better acoustic-phonetic models than the traditional Gaussian
mixtures. The technologies of deep learning have undergone explosive growth
and development in recent years, and the reader is referred to standard texts
and tutorials such as Goodfellow et al. (2016) and Nielsen (2016) for detailed
explanations of the technology.

3.2 Signal Processing for Improved Robustness in ASR

We discuss briefly in this section some of the traditional approaches that have
been applied to signals to improve recognition accuracy in ASR systems. This
field is vast, and has been the object of very active research for decades.
Excellent recent reviews of a variety of techniques may be found in Virtanen
et al. (2012). In this section we focus on basic feature enhancement techniques,
missing-feature approaches, and the uses of multiple microphones.

Feature-based Compensation for Noise and Filtering

Many successful approaches to robustness in ASR are direct descendants of
approaches that were first proposed to enhance speech for human listeners. For
example, spectral subtraction (Boll, 1979), reduces the effects of additive noise
by estimating the magnitude of the noise spectrum and subtracting it on a
frame-by-frame basis from the spectrum of the signal, reconstructing the time-
domain signal with the original unmodified phase. This approach was the basis
of dozens if not hundreds of subsequent noise-mitigation algorithms. Stockham
et al. (1975) proposed the use of homomorphic deconvolution to mitigate the
effects of linear filtering by, in effect, subtracting the log magnitude spectrum
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(or its inverse transform, the real cepstrum) of an estimate of the sample
response of the unknown linear filter. A simplified version of this approach
is the basis for the cepstral mean normalization that is widely used in ASR
systems today.

Joint compensation for the effects of noise and filtering is complicated by
the fact that they combine nonlinearly: noise is additive in the time and fre-
quency domains while the effects of filtering are additive in the log spectral
and cepstral domains. One particularly successful approach has been the vec-
tor Taylor series (VTS) algorithm (Moreno et al., 1996), which models the
degraded speech as clean speech passed through an unknown linear filter and
subjected to unknown additive noise. The algorithm estimates the parameter
values that characterize the filtering and noise in a fashion that maximizes
the probability of the observations. A recent review of VTS and a number of
other techniques motivated by it may be found in Droppo (2013). Algorithms
like VTS can provide good improvements to recognition accuracy when the
statistics characterizing the noise and filtering are quasi-stationary while pa-
rameters are being estimated, but they are less effective when disturbances
are more transitory as in the case of background music or a single interfering
speaker. The use of missing-feature approaches as described below has been
more effective for these signals.

Computational Auditory Scene Analysis and Missing-feature Approaches

Modern missing-feature approaches to robust recognition are inspired by Breg-
man’s seminal work (Bregman, 1990) in auditory scene analysis. Bregman ex-
amined the cues that people appear to use in order to segregate and cluster
the various components that belong to individual sound sources while per-
ceiving multiple sources that are presented simultaneously. Cues that have
proved to be useful include commonalities in onset, amplitude modulation,
frequency modulation, and source location, along with harmonicity of com-
ponents, among others.

Computational auditory scene analysis (CASA) refers to a number of ap-
proaches that attempt to emulate the perceptual segregation of sound sources
using computational techniques (e.g. Brown and Cooke, 1994; Cooke and El-
lis, 2001; Wang and Brown, 2006). The implementation of CASA to isolate
the desired signal for an ASR system typically begins by determining which
components of the incoming signal are dominated by the target signal and
hence not distorted or “missing.” In ASR systems, the initial representation
is typically in the form of a spectro-temporal display such as a spectrogram.
Consideration of only those elements that are relevant or undistorted can be
thought of as a multiplication of the components of the spectrogram by a
“binary mask” (if “yes-no” decisions are made concerning the validity of a
particular spectro-temporal component) or by a “ratio mask” (if probabilistic
decisions are made). Once a mask is developed, speech recognition is per-
formed by considering only the subset of components that are considered to
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be “present” (e.g., Cooke et al., 2001), or by inferring the values of the “miss-
ing” features (e.g., Raj et al., 2004) and performing recognition using the
reconstructed feature set.

While signal separation and subsequent ASR using CASA techniques can
be quite effective if the binary or ratio mask is estimated correctly, (e.g. Cooke
et al., 2001; Raj et al., 2004; Raj and Stern, 2005), estimating the mask
correctly is frequently quite difficult in practice, especially when little is known
a priori about the nature of the target speech and the various sources of
degradation. One singular exception to this difficulty in estimating the masks
correctly arises when signals are separated in space and the target location
is known, as components can be relatively easily separated using ITD-based
and IID-based information. For this reason, separation strategies motivated by
binaural hearing have been quite popular over the years for speech recognition
systems that make use of two microphones.

Figure 5 shows sample spectrograms of signals separated according to ITD
in anechoic and reverberant rooms using two microphones. The speech sources
were placed 2 m from the microphones, and at an angle of ±30 degrees from the
perpendicular bisector of a line connecting the microphones. The microphones
were 4 cm apart and the room impulse response (RIR) simulation package
McGovern (2004) was used to develop the simulated impulse responses of the
room. The rows of the figure depict, in order, spectrograms of the left speech
source, the right speech source, the two sources combined, the separated left
source, and the separated right source. By comparing the spectrograms in
rows (a) and (d), and (b) and (e), it can be seen that the separation is much
more effective when the speech is not reverberated.

Conventional Signal Processing using Multiple Microphones

The benefit provided by any approach that attempts to improve ASR accuracy
using binaural approaches must be compared to the improvement produced by
a similar configuration of microphones using conventional techniques. These
conventional approaches, frequently referred to as beamforming algorithms,
attempt to develop a response that is most sensitive to signals coming from
a particular “look direction” while either being less sensitive to sources from
other directions or actively nulling the responses to these other sources. Clas-
sical multi-microphone signal processing techniques are highly developed and
discussed in texts including Johnson and Dudgeon (1993) and Van Trees
(2004). Recent results concerning the application of multi-microphone tech-
niques to ASR are summarized in Kumatani et al. (2012).

The simplest multi-microphone technique is delay-and-sum beamforming
in which the path length differences from the target source to the various mi-
crophones are compensated for by time delays imposed by the system to ensure
that the target signal components from the various microphones always ar-
rives at the same time to the system, creating constructive interference. Signal
components from other directions will combine constructively or destructively
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Fig. 5. Sample spectrograms of two speech signals separated according to ITD. The
original signals in the left column are clean speech, while the signals in the right
column were convolved with a simulated room impulse response with a reverberation
time of 800 ms. The spectrograms represent (a) the signal on the left side, (b) the
signal on the right side, (c) the two signals combined, (d) the signal on the left side
separated from the combined signal according to ITD, (e) the separated signal on
the right side. The horizontal axis is time in s and the vertical axis is frequency in
kHz

across the microphones, and hence they would be reinforced to a lesser degree,
on average. Because the actual directional sensitivity depends on an interac-
tion between the wavelength at a given frequency, the directivity pattern for
delay-and-sum beamforming varies with frequency. Generally the width of the
main lobe decreases as frequency increases, and eventually “spatial aliasing”
will occur when an interfering signal component arrives at a frequency and
azimuth such that the distance between the microphones becomes greater
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than half a wavelength. These frequency effects can be mitigated by the use
of nested arrays with different element spacings (e.g. Flanagan et al., 1985)
and by the use of filter-and-sum beamforming techniques in which the fixed
delays in delay-and-sum beamforming are replaced by discrete-time linear fil-
ters which can in principle impose different delays at different frequencies for
each microphone.

Modern techniques such as the minimum variance distortionless response
(MVDR) method use minimum mean square estimation (MMSE) techniques
that seek to maintain a fixed frequency response in the look direction while at
the same time suppressing the response from the directions of arrival of the
most powerful interfering sources (e.g. Van Trees, 2004). The performance
of these optimum linear signal processing approaches to multi-microphone
beamforming also degrades in reverberant environments because the phase
incoherence imposed by the reverberance causes the estimation of impor-
tant statistics such as the auto- and cross-correlations of the signals across
the microphones to become much less accurate. McDonough and others have
achieved some success with the use of objective functions based on negative
entropy or kurtosis as the basis for optimizing the filter coefficient values (e.g.
Kumatani et al., 2012). These statistics drive the coefficients of the arrays to
produce output amplitude histograms that are “heavier” in the tails, which
corresponds to output that is more speech-like than the Gaussian densities
that characterize sums of multiple noise sources.

4 Binaural Technology in Automatic Speech Recognition

In this section we describe and discuss selected methods by which ASR accu-
racy can be improved by signal processing approaches that are motivated by
binaural processing. Most of the systems considered improve ASR accuracy
by some sort of selective reconstruction of the target signal using CASA-
motivated techniques, which use differing approaches to identify the subset of
spectro-temporal components in the input that are dominated to the greatest
extent by the target signal. The most common approach makes this deter-
mination by comparing measured ITDs and IIDs for each spectro-temporal
component to the values of these parameters that would be observed from a
source arriving from the putative target direction, as described below in Sec.
4.2. A second approach is based on the value of the overall normalized inter-
aural cross-correlation, as spectro-temporal components with high interaural
cross-correlation are more likely to be dominated by a single coherent target
signal, as described in Sec. 4.4. A third approach implements a modification
to the EC model, in which the two inputs are equalized according to the na-
ture of the target signal, and then subtracted from one another, as described
in Sec. 4.5. This causes the spectro-temporal components that are dominated
the most by the target signal to change by the greatest amount.
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In addition to the three methods above used to identify the most relevant
spectro-temporal components of the input, the systems proposed also differ
in other ways including the following:

• The extent to which a particular system is intended to provide a complete
auditory scene analysis, including identification, localization, and classifi-
cation of multiple sources versus simply providing useful enhancement of a
degraded primary target signal for improved speech recognition accuracy.

• Whether the location of the desired target is expected to be estimated by
the system or is simply assumed to be known a priori.

• Whether a particular system is designed to receive its input from two
ears on a human or manikin head rather than two (or more) microphones
in the free field. The use of a real or simulated head provides IIDs and
the opportunity to use them to disambiguate the information provided by
ITD analysis. In contrast, systems that do not include an artificial head
are typically easier to implement, and the absence of a head facilitates the
use of more than two microphones.

• Whether a particular system works by reconstructing a continuous-time
enhanced speech waveform that is processed by the normal front end of an
ASR system or whether it simply produces enhanced features representing
the input such as cepstral coefficients and inputs these enhanced features
directly into the ASR system.

• The nature of the acoustical environment, including the presence or ab-
sence of diffuse background noise, coherent interfering sound sources,
and/or reverberation, etc. within which a particular system is designed
to operate.

It is worth noting that researchers at the University of Sheffield and Ohio
State University, working in collaboration or independently, have provided the
greatest number of contributions to this field over the years, both in terms
of fundamental principles and system development. Interesting contributions
over many years have also been provided by groups at the universities at
Bochum and Oldenburg in Germany, as well as a number of other locations
around the world including our own university.

The representative systems considered do not sort themselves into conve-
nient mutually-exclusive categories, so we somewhat arbitrarily have sorted
our discussion according to how the most relevant spectro-temporal targets
components are identified, as discussed above. We begin with a brief sum-
mary of some of the earliest attempts to apply binaural processing to improve
ASR accuracy. We then summarize the organization of representative systems
based on extraction of ITD and IID information using CASA principles. We
continue with a discussion of the use of onset enhancement to ameliorate the
effects of reverberation, the development of systems based on interaural coher-
ence, and approaches based on the EC model. We conclude with some brief
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comments on various approaches used to extend these approaches to more
than two incoming signals.

4.1 Early Approaches

Lyon (1984) proposed one of the first systems applying binaural hearing princi-
ples, using a computational model of auditory-nerve activity from two sources
as an input to a Jeffress-like network of coincidence-counting units. He sug-
gested that this structure could be applied to multiple applications including
ASR. While Lyon’s system was not evaluated quantitatively because the ASR
systems of the day were mathematically primitive and computationally costly,
he noted that this approach appeared to provide a stable spectral representa-
tion for vowels as well as source separation according to ITD.

Most evaluations of ASR with binaural processing in the early period
consisted of the concatenation of an existing binaural model with a speech
recognition system. For example, Bodden (1993) described an early CASA-
based system, called the Cocktail-Party-Processor (CPP) that had many of
the elements of later systems, implementing a structure suggested by Blauert
(1980). The CPP included HRTFs that introduced frequency-dependent ITDs
and IIDs based on angle of arrival, a relatively simple auditory-nerve model
that included bandpass filtering, half-wave rectification, lowpass filtering, and
saturation of the rate of response. Binaural processing in the CPP incor-
porated the Lindemann (1986a) model with contralateral inhibition, which
predicted certain precedence-effect phenomena and appropriate intereactions
between ITD and IID, and the additional contributions of Gaik (1993), which
developed lateralization information from ITDs and IIDs in a fashion that
was cognizant of the natural combinations of these interaural differences as
observed in HRTFs. In later work, Bodden and Anderson (1995) used a sim-
ple speech recognizer, the self-organizing feature map (SOFM) of Kohonen
(1989), and demonstrated improved ASR accuracy for simple phonemes in
the presence of spatially-separated noise, especially at lower SNRs. DeSimio
et al. (1996) obtained similar results with a different auditory-nerve model
(Kates, 1991) and Shamma’s stereausis model (Shamma et al., 1989) to char-
acterize the binaural interaction.

4.2 Systems Based on Direct Extraction of ITD and IID
Information

By far the most common application of binaural principles to ASR is through
systems that implement computational auditory scene analysis using direct
extraction of ITDs and IIDs in some fashion, as depicted in Fig. 6. In general,
these systems attempt to estimate the extent to which each spectro-temporal
component of the input is dominated by the target signal based on ITDs and
IIDs that are extracted. We summarize in this section a few of the methods
that are used to implement each component in representative systems.
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Fig. 6. Functional blocks of a CASA-based system that extracts ITDs and IIDs
directly. The input may be from free-field microphones or through a real or simulated
head. The source location may be known or estimated.

Extraction of Natural Interaural differences

As noted above, a number of the systems develop their hypotheses from
naturally-extracted interaural differences (e.g., Roman et al., 2003; Palomäki
et al., 2004; Srinivasan et al., 2006; Brown et al., 2006; Harding et al., 2006;
May et al., 2011, 2012). While these systems typically made use of measured
HRTFs (e.g., Gardner and Martin, 1994) obtained through the use of the
KEMAR manikin (Burkhard and Sachs, 1975), they could also have been ob-
tained in principle using small microphones in the ear canals (e.g., Wightman
and Kistler, 1989a). Because the relationship between ITD and the azimuth
of the source location in HRTFs depends weakly on frequency, some systems
(e.g., Roman et al., 2003; Palomäki et al., 2004; May et al., 2011) incorpo-
rated an explicit mapping table that converts ITD into putative arrival angle
in a manner that is consistent across all frequencies. The IIDs show significant
dependencies on both azimuth and frequency. For the most part, the various
sound sources were assumed to be at the same elevation as the microphones.

Other systems (e.g., Aarabi and Shi, 2004; Park and Stern, 2009; Kim
et al., 2009) work from free-field input without an artificial head or HRTFs,
and consequently the masks that are produced cannot make use of IID infor-
mation.

Peripheral Auditory Processing

All binaural processing systems incorporate some abstraction of the frequency-
dependent processing imparted by the peripheral auditory system. The most
common approach (e.g., Roman et al., 2003; Palomäki et al., 2004; Harding
et al., 2006) is to use a bank of 40 to 128 Gammatone filters (Patterson et al.,
1988), followed by half-wave rectification, lowpass filtering (which provides
envelope extraction at higher frequencies), and in some cases nonlinear com-
pression of the resulting signal. Other systems (e.g., Kim et al., 2009) simply
compute the short-time Fourier transforms (STFTs) of the two input signals,
from which ITDs and IIDs can be inferred by comparison of the magnitudes
and phases for each spectro-temporal component.
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Estimation of ITDs and IIDs

There are multiple ways of extracting ITDs from the results of the periph-
eral processing. The most common approach is to compute a variant of the
normalized interaural cross-correlation function at each frequency:

R[m, k] =

∑N−1
n=0 xL,k[n]xR,k[n−m]√∑N−1

n=0 x
2
L,k[n]

√∑N−1
n=0 x

2
R,k[n−m]

where R[m, k] is the normalized interaural cross-correlation as a function of
lag m and frequency index k, and xL,k[n] and xR,k[n] are the left and right
signals, respectively, after peripheral processing at frequency k. The interau-
ral cross-covariance function is a very similar statistic in which the means are
subtracted from xL,k[n] and xR,k[n] before further computation. In both cases,
the ITD is typically inferred by searching for the value of m that maximizes
R[m, k] in each frequency channel (e.g., Roman et al., 2003; Brown et al.,
2006; Harding et al., 2006; May et al., 2011, 2012). Because this maximum
may not occur at an integer value of m, polynomial or exponential interpo-
lation is typically performed in the region of the maximum, with the true
maximum value determined either analytically or via a grid search. In some
systems (e.g., Roman et al., 2003; Palomäki et al., 2004) the cross-correlation
function is summed over frequency before the maximum is obtained. This is
useful because it reduces ambiguity in identifying the true ITD of a source,
particularly for larger ITDs and higher frequencies by emphasizing ITDs that
are consistent over frequency as in human auditory processing (Stern et al.,
1988). In addition, the cross-correlation function may be “skeletonized” by
replacing the normalized cross-correlation function by Gaussians located at
the values of m that maximize R[m, k] at each frequency (e.g., Roman et al.,
2003; Palomäki et al., 2004). This can be helpful in interpreting the responses
to binaural signals that include multiple sound sources.

Systems that use STFTs as the initial stage of processing can infer ITD
by calculating the phase of the product of one STFT multiplied by the com-
plex conjugate of the other (which represents the instantaneous cross-power-
spectral density function), and dividing the phase by frequency to convert to
ITD (e.g., Aarabi and Shi, 2004; Srinivasan et al., 2006; Kim et al., 2009).
ITDs can also be estimated by comparing the times at which zero crossings
in the signals after peripheral processing appear (Park and Stern, 2009).

In contrast, IID estimation is relatively straightforward, and is almost
always estimated as the ratio of signal energies, expressed in decibels for each
spectro-temporal component of the two inputs.

Mask Estimation

As noted above, the masks developed by the systems are intended to repre-
sent the extent to which a given spectro-temporal component is dominated by
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the target component rather than the various interfering sources or maskers
in the input. The target location is either estimated by the system in initial
processing (e.g., Roman et al., 2003; Palomäki et al., 2004; May et al., 2011,
2012), or by assuming a location for the target (typically directly to the front
of a head or at zero ITD for two microphones). The masks are obtained by
evaluating (either explicitly or implicitly) the probability of the observed ITDs
and IIDs given the putative location of the sound source. For many systems
these probabilities are estimated from training data, although the distribu-
tions of ITDs and especially IIDs are affected by the amount of reverberation
in the environment. As noted above, the masks are either binary masks (i.e.
equal to zero or one for each spectro-temporal component) or ratio masks
(which typically take on values equal to a real number between zero and one).
Because the peripheral filters are narrowband, the maxima of the interaural
cross-correlation function repeat periodically along the lag axis, and the IIDs
provide information that is helpful in disambiguating the cross-correlation
patterns.

Another much more simple method approach is to compare the ITD esti-
mated for each spectro-temporal component to the ITD associated with the
target location, and to assign a value of one to those components that are suf-
ficiently “close” to the the target ITD using a binary or probabilistic decision
(e.g., Kim et al., 2009).

System Evaluation and Results

Once the mask that identifies the undistorted target components is developed,
some systems use bounded marginalization (Cooke et al., 2001) to recognize
the target speech based on the components that are most likely to be informa-
tive (e.g., Roman et al., 2003; Palomäki et al., 2004; May et al., 2012). Other
systems (e.g., Kim et al., 2009, 2010, 2012) reconstruct the waveform from a
subset of spectro-temporal components that are deemed to be useful.

The motivations and goals of the systems considered in this subsection
vary widely, making it difficult to compare them (along with other similar
systems) directly. Nevertheless, a few generalizations can be made:

• Objective speech recognition and speaker identification accuracy obtained
follow trends that would normally be expected: recognition accuracy de-
grades as SNR decreases, as the spatial separation between the target
speaker and interfering sources decreases, and as the amount of reverber-
ation increases. Recognition or identification accuracy is invariably sub-
stantially better with binaural processing compared to baseline systems
that use only a single microphone.

• In situations where they can be compared directly, the use of ratio masks
tends to provide greater recognition accuracy than the use of binary masks.
If binary masks are used, we have found in our own work that accuracy
is improved when the binary masks are smoothed over time and over fre-
quency. The temporal smoothing can be accomplished by simply averaging
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the mask values at a given frequency over a few adjacent frames. We have
used “channel weighting” to accomplish the frequency smoothing, which
is in essence a multiplication of the Gammatone frequency response repre-
senting each channel by the corresponding value of the binary masks and
summing over frequency (e.g., Kim et al., 2009).

• In the single case where zero-crossing-based ITD extraction was compared
to ITDs by searching for the maximum of the interaural cross-correlation
function, the zero-crossing approach provided better results (Park and
Stern, 2009).

• Source localization strategies in systems such as those by Roman et al.
(2003), Palomäki et al. (2004), and May et al. (2011) appear to be effective,
and their performance with multiple and moving sources should improve
over time.

4.3 Robustness to Reverberation using Onset Emphasis

As noted in Sec. 2.1, many classic psychoacoustical results indicate that the
auditory localization mechanism places greater emphasis on the first-arriving
components of a binaural signal (e.g. Wallach et al., 1949; Blauert, 1997;
Litovsky et al., 1999), a phenomenon known as the “precedence effect.” More
recent studies (e.g., Stecker et al., 2013) confirm that the lateralization of brief
steady-state sounds such as tones and periodic click trains based on ITDs and
IIDs appears to be strongly dominated by binaural cues contained in the
initial onset portion of the sounds. In addition, Dietz et al. (2013) have shown
that the fine-structure ITD in slow sinusoidal amplitude modulation appears
to be sampled briefly during the rising-envelope phases of each modulation
cycle, and is not accessed continuously over the duration of the sound.

The precedence effect is clearly valuable in maintaining a constant image
location in reverberant environments when the instantaneous ITDs and IIDs
produced by a sound source are likely to vary with time (Zurek et al., 2004).
In addition, Blauert (1983) and others have noted that the precedence effect
is likely to play an important role in increasing speech intelligibility in re-
verberant environments. While precedence has historically been assumed to
be a binaural phenomenon (e.g., Lindemann (1986a)), it could also be medi-
ated by monaural factors such as an enhancement of the onsets of envelopes
of the auditory response to sound on a channel-by-channel basis at each ear
(Hartung and Trahiotis, 2001).

Motivated by the potential value of onset enhancement for improved recog-
nition accuracy in reverberation, several research groups have developed var-
ious methods of enhancing envelope onsets for improved recognition accuracy
in reverberant environments. Palomäki et al. (2004) described an early com-
prehensive CASA-based binaural model that included an explicit mechanism
for onset enhancement for precedence, along with other components including
HRTFs, skeletonization of the cross-correlation representation, and the use of
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IIDs at higher frequencies as a consistency check on the estimated binary
mask. More recent algorithms that incorporate onset enhancement include
the algorithm known as Suppression of Slowly-varying components and the
Falling edge of the power envelope (SSF) (Kim and Stern, 2010), the tempo-
ral enhancement component of the STM algorithm (Kim et al., 2011), and
the SHARP algorithm (Cho et al., 2016). All of these approaches incorporate
nonlinear processing of the energy in the spectral envelopes to enhance tran-
sients, and they can be considered to be improved versions of the envelope
enhancement approach suggested by Martin (1997) that had been used by
Palomäki et al. (2004) and others. The temporal suppression components in
Power-Normalized Cepstral Coefficients (PNCC, Kim and Stern, 2016) pro-
vide similar benefit in reverberation, but to a more limited extent.
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Fig. 7. Comparison of ASR accuracy obtained using the PDCW algorithm (which
separates signals according to ITD) and the SSF algorithm (which enhances onsets
of signal components) in the presence of additive noise and reverberation, plotted
as a function of SNR. See text for further details.

Figure 7 compares selected sample recognition accuracies for the DARPA
Resource Managment (RM1) task using implementations at Carnegie Mellon
University of two of the approaches described above. The phase-difference
channel weighting algorithm (PDCW) (Kim et al., 2009)) improves ASR ac-
curacy by separating the target speech signal from the interfering speaker
according to ITD, as in other algorithms discussed in Sec. 4.2. The SSF algo-
rithm (Kim and Stern, 2010) improves ASR accuracy by enhancing the onsets
and suppressing the steady-state portions of subband components of the in-
coming signals, as described in this section. The data in Fig. 7 consist of a
target signal directly in front of a pair of microphones in the presence of an
interfering speech source at an angle of 30 degrees as well as an uncorrelated
broadband noise source. The figure plots recognition accuracy obtained using
delay-and-sum beamforming, PDCW, SSF, and the combination of PDCW
and SSF. Results are plotted as a function of SNR for simulated reverbera-
tion times of 0 (left panel) and 500 ms (right panel). We note that the PDCW
and SSF algorithms provide complementary benefits in the presence of noise
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and reverberation: PDCW is highly effective, even in the presence of substan-
tial noise if there is no reverberation present, but it provides no benefit when
substantial reverberation is present in the acoustical environment. SSF, on the
other hand, provides substantial benefit in the presence of reverberation for
the reverberation depicted, but it is ineffective in the presence of substantial
additive noise. Remediation for the effects of noise is more effective than for
reverberation, at least for these two algorithms.

These results suggest that the choice of which robustness approach is best
in a given situation will depend on the spatial separation of target and masker
components as well as the degree of reverberation in a given acoustical envi-
ronment. The combination of SSF and PDCW almost always provides better
performance than is observed with either algorithm by itself. While we used
data from our own group for convenience in these comparisons, we believe that
the use of information from ITDs (and more generally IIDs as well) to pro-
vide robustness against spatially-separated interfering sources and the use of
onset enhancement to provide robustness against reverberation are generally
effective across a wide range of conditions.

Pilot results from our laboratory indicate that better recognition accuracy
is obtained when precedence-based onset emphasis is imposed on the input
signals monaurally before binaural interaction, rather than after the binaural
interaction.

4.4 Robustness to Reverberation Based on Interaural Coherence

A number of researchers have developed methods to enhance a target signal
by giving greater weight to spectro-temporal components that are more “co-
herent” from microphone to microphone. The original motivation for much of
this work was the seminal paper by Allen et al. (1977) who proposed that the
effects of reverberation can be removed from a signal by performing a sub-
band analysis, compensating for the ITDs observed in each frequency band,
and applying a weighting in each frequency channel that is proportional to
the normalized cross-correlation observed in each frequency band.

In subsequent work, Faller and Merimaa (2004) proposed that the salience
of a spectro-temporal component representing a particular ITD and frequency
can be characterized by a running normalized interaural cross-correlation func-
tion similar to the equation in Sec. 4.2 but updated using a moving exponential
window in running time. The value of this statistic at the lag that produces
the maximum interaural cross-correlation can be taken as a measure of the
interaural coherence as a function of frequency.

In recent years a number of researchers have developed various models
that predict the coherent-to-diffuse energy ratio (CDR) or the closely-related
direct-to-reverberant energy ratio (DRR) in a given environment (e.g., Jeub
et al., 2009, 2010, 2011a; Thiergart et al., 2012; Westermann et al., 2013;
Zheng et al., 2015). In general, the various authors use a measure similar to
that proposed by Faller and Merimaa to estimate the coherent energy of the
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target speech and a model of the room acoustics to estimate the energy in
the reverberant field. The papers differ in the assumptions that they make
about the acoustics of the room, and about the geometry of the head. As a
representative example we summarize the two-stage processing proposed by
Jeub and colleagues (Jeub et al., 2010, 2011b) for reducing the impact of re-
verberation. In the first stage, steering delays are imposed in the input at each
frequency to compensate for differences in the path lengths from the desired
source to the various microphones, and spectral subtraction is performed to
suppress the effects of late reverberation. In the second stage, the residual
reverberation is attenuated by a dual-channel Wiener filter derived from the
coherence of the reverberant field, considering the effects of head shadowing,
with the objective being suppression of the spectro-temporal components for
which there is little correlation.

The systems described in the studies cited above had all been evaluated in
terms of subjective or objective measures of speech quality rather than speech
recognition accuracy.
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Fig. 8. Comparison of ASR accuracy obtained using the CDRW algorithm (which
emphasizes signal components based on their interaural coherence) and the SSF
algorithm (which enhances onsets of signal components) in the presence of additive
noise and reverberation, plotted as a function of SNR. Signal-to-noise ratios are 10
dB (left panel) and 20 dB (right panel). See text for further details.

We recently completed a series of experiments (Menon, 2018) in which
we compared the speech recognition accuracy obtained using a local imple-
mentation of the second stage of the algorithm of Jeub et al. (2011b), which
enhances binaural signals based on their CDR, to the performance of the SSF
algorithm described in Sec. 4.3. We refer to our implementation of spectro-
temporal weighting based on CDR as CDRW (for Coherent-to-Diffuse-Ratio
Weighting). Some of these results are summarized in Fig. 8, which uses similar
signal sets and processing as in the data depicted in Fig. 7, except that the
acoustical models used to train the ASR system were obtained using deep
neural networks (DNNs). We note that both the CDRW and SSF algorithms
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are individually effective in reducing error rate in reverberant environments in
the presence of an interfering speaker, and that SSF becomes more useful as
the reverberation time increases. Moreover, the impacts of the two approaches
are complementary in that best results are obtained when the two algorithms
are used in combination.

4.5 EC-based Processing

The Equalization-Cancellation (EC) model of Durlach and colleagues (e.g.
Durlach, 1963, 1972) was summarized briefly in Sec. 2.2. In developing pre-
dictions for binaural masking experiments, the EC model typically assumes
that the auditory system attempts to “equalize” the masker components to
the two ears by inserting ITDs and IIDs that compensate for the correspond-
ing interaural differences that are present in the signals, and then “cancel” the
masker by subtracting the signals to the two ears after equalization, leaving
the target more detectable. Various investigators have proposed extensions
to EC processing to accommodate the rapidly-varying fluctuations in over-
all ITD and IID imposed by speech-like maskers and have demonstrated that
this type of processing can predict speech intelligibility (e.g., Beutelmann and
Brand, 2006; Beutelmann et al., 2010; Wan et al., 2010, 2014).

The current applications of EC-based processing to improve speech recog-
nition accuracy differ from the traditional application of the EC model to
predict binaural detection thresholds in that the equalization and cancella-
tion operations are applied to the target signal rather than the masking com-
ponents. This is sensible both because the SNRs tend to be greater in ASR
applications than in speech threshold measurements, and because in practi-
cal applications there tends to be more useful information available a priori
about the nature of the target speech than about the nature of the back-
ground noise and interfering signals. In the first application of this approach,
Roman et al. (2006) employed an adaptive filter to cancel the dominant cor-
related signals in the two microphones, which are presumed to represent the
coherent target signal. A binary mask is developed by selecting those spectro-
temporal components that are the most affected by the cancellation, which are
presumed to be the components most dominated by the target speech. This
approach provided better ASR results for reverberated speech in the presence
of multiple maskers than several other types of fixed and adaptive beamform-
ers. Brown and Palomäki (2011) described a more sophisticated system that
determines the ITD that provides maximum signal cancellation, cancels the
signals to the two mics using that ITD, and again uses the absolute difference
between the cancelled and uncancelled signal as an indicator of the extent to
which a spectro-temporal component is dominated by the target speech. A
complete signal was reconstructed using an ASR system based on bounded
marginalization of the features (Cooke et al., 2001), although only SRT re-
sults were provided in the paper. Mi and Colburn (2016), Mi et al. (2017),
and Cantu (2018), among others, have developed more recent systems that
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enhance speech intelligibility in the presence of interfering sources based on
EC principles.

4.6 Processing Using More than Two Microphones

A small number of systems have been developed that use more than two micro-
phones. In principle, the use of more than two microphones can be useful if the
additional microphones are providing new information beyond what is learned
by comparing the outputs from the first two microphones. In traditional delay-
and-sum beamforming and other fixed approaches such as MVDR, the amount
of processing gain increases as the number microphones (or other sensors) in-
creases. In adaptive array processing, the use of additional microphones also
provides the opportunity to cancel additional interfering sources.

Over the years we have looked into the problem of “multi-aural” process-
ing as an extension to binaural processing in various ways. In an early study,
Sullivan (Sullivan and Stern, 1993; Sullivan, 1996) obtained speech recogni-
tion results using an array of up to 15 microphones, and extracting features
from displays that were N -dimensional extensions of the traditional cross-
correlation function after peripheral auditory processing. The system used
simple peripheral processing consisting of bandpass filtering and rectification,
with steering delays imposed to compensate for differences in path length from
the speaker to the microphones. Performance was obtained for a number of
system configurations and types of inputs. In general, recognition accuracy
improved as the number of microphones was increased up to about eight.
Among the results described in Sullivan (1996), it was noted that the use
of post-processing with an algorithm like the vector-Taylor-series algorithm
(VTS) to compensate for additive noise and spectral coloration was quite
helpful. Most array-processing systems today include some sort of post-filter
for similar reasons.

A second “polyaural processing” algorithm (Stern et al., 2007, 2008) takes
a different approach to the use of multiple microphones by mutiplying the
running outputs of an N -channel binaural processor after steering delays, pe-
ripheral processing and rectification. A time-domain signal was developed in a
clearly non-physiological fashion by repeating this processing for the negative
outputs of each frequency channel and then adding together the positive and
negative results. Because of the rectification and multiplication, this process
produced a great deal of nonlinear distortion in each frequency band which
was mitigated to some degree by passing the output in each channel through
an additional bandpass filter at each analysis frequency. While subjective re-
sults were impressive, especially in reverberation, objective improvement in
recognition accuracy was small, perhaps because of an inability to overcome
the effects of the nonlinear distortion.

More recently, Moghimi considered the extent to which CASA-based se-
lective reconstruction based on ITD using the PDCW algorithm (Kim et al.,
2009) can be extended to more than two microphones (Moghimi and Stern,
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2014; Moghimi, 2014), along with the extent to which CASA-based ITD
extraction outperforms traditional linear beamforming approaches. In gen-
eral, CASA-based approaches provide greater recognition accuracy than linear
beamforming with only two microphones, but as the number of microphones
increases beyond four, linear processing overtakes CASA for the cases con-
sidered, primarily because the ITD information provided by the additional
microphones is somewhat redundant. Moghimi and Stern (2014) demonstrate
that best results are obtained when optimum linear beamforming is followed
by masking based on ITD extraction according to the PDCW algorithm.

5 Binaural Processing Using Deep Learning

As we noted in Sec. 3.1, systems based on deep learning techniques are rapidly
superseding conventional HMM-GMM ASR systems over the last decade, in
part because of the superior ability of deep learning approaches to develop
more general acoustic models. Most of the major current techniques that
enable ASR using DNNs are reviewed in Hinton et al. (2012) as well as in the
more recent book edited by Watanabe et al. (2017), among other resources.

Similarly, there has been great interest in the use of deep neural net-
works (DNNs) to perform the classifications needed to develop the binary
or ratio masks to enable signal separation based on CASA principles. These
approaches are reviewed comprehensively by Wang and Chen (2018), which
considers (among other things) the type of mask to be employed, the choice
of “training target” that is optimized in the process of training the mask
classifier, the input features, the structure of the DNN used for the separa-
tion, and the methods by which the signals are separated and subsequently
reconstructed.

The first system to use DNNs to separate binaural signals based on in-
teraural differences was described by Jiang et al. (2014) and has components
that are found in a number of similar systems. The system includes HRTFs
from the KEMAR manikin, and gammatone-frequency cepstral coefficient fea-
tures (GFCCs, Shao and Wang, 2008), which include 64 gammatone filters
whose outputs are half-wave rectified and passed through square-root com-
pression. ITDs are estimated using both a complete representation of the
normalized cross-covariance function and a single number indicating the esti-
mated correlation lag with maximum magnitude; IID is estimated from the
subband energy ratios. Monaural GFCC features were also employed in the
mask classification. A mask classifier was developed for each subband, using
DNNs with two hidden layers. To avoid convergence and generalization issues
with MLPs, the system was pre-trained using a restricted Boltzmann machine
(RBM) (Wang and Wang, 2013). The performance of this DNN-based CASA
system was compared to that of the contemporary source-separation systems
DUET (Rickard, 2007) and MESSL (Mandel et al., 2010), as well as systems
proposed by Roman et al. (2003) and Woodruff and Wang (2013). Compared
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to the other systems considered, The DNN-based CASA system of Jiang et al.
(2014) was found to produce substantially better approximations to the ideal
binary mask that would separate the sources correctly. This system also pro-
vided improved output SNR in speech enhancement tasks. The use of the
full normalized cross-correlation function (as opposed to a single numerical
estimate of ITD), and with the direct inclusion of monaural features into the
mask-classification process, were found to be valuable contributors to best
performance. The system maintained good accuracy, and generalized to test
conditions that were not included in the training for a variety of types of
interfering sources and reverberant environments.

Other approaches using DNNs have been suggested as well. For example,
Araki et al. (2015) have described the use of a denoising auto-encoder (DAE),
which is trained to convert a degraded representation of a speech signal into a
clean version of it. The DAE is typically structured in a “bottleneck” config-
uration, with at least one hidden layer that is smaller in dimensionality than
the input and output layers. Estimation of a ratio mask was based on infor-
mation at each frequency that included IID, ITD (as estimated from phase
differences from the two inputs), and an enhanced signal was reconstructed
by filtering the input using the mask that was learned by the DAE. Lowest er-
ror rates for keyword recognition in the PASCAL CHiME Speech Separation
Challenge were obtained when the DNN was trained using a combination of
monaural information and a location-based mask, although IID information
was not useful in this particular study. Fan et al. (2016) described a similar
system that uses a DNN with RBM-based pre-training to develop a binary
mask using features that represented monaural information and IID. They
observed better enhanced speech intelligibility when IIDs were extracted on
a subband basis, but this system did not make use of ITD information.

Two more sophisticated binaural-based systems that separate speech us-
ing DNNs were described by Yu et al. (2016) and by Zhang and Wang (2017).
The system of Yu et al. estimated ITD and IID by comparing the magnitudes
and phases of the STFT components from the two microphones, along with
“mixing vectors” that are obtained by combining the two monaural STFT
values for each spectro-temporal component. The DNNs to estimate the mask
were in the form of sparse autoencoders, which were initially trained in un-
supervised fashion and later stacked to estimate the probability that each
component belongs to one of several possible source directions. The system
of Zhang and Wang uses both spectral and spatial features, with the spectral
features obtained from the output of an MVDR beamformer with a known
target location. The spatial features include ITDs represented by the complete
normalized cross-correlation function along with its estimated maximum and
IIDs calculated energy ratios in each frequency band. The two systems pro-
vided dramatic improvements in SNR and/or speech intelligibility for speech
enhancement tasks.

The representative examples above provide merely a superficial charac-
terization of the ever-growing body of work devoted to the development of
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CASA systems using DNNs that are motivated by binaural processing to im-
prove speech recognition accuracy. It is clear that the use of DNNs to develop
the masks for speech separation systems can provide sharply improved perfor-
mance compared to conventional classification techniques. This is particularly
valuable because determining the spectro-temporal components of a complex
input that most clearly represent the target is known to be extremely dif-
ficult, even using binaural ITD and IID information. The use of DNNs to
segregate and enhance the desired target also provides impressive improve-
ments to source localization accuracy, and to speech intelligibility, both for
normal-hearing and hearing-impaired listeners. Nevertheless, this area of re-
search is still in its infancy. For example, there is not yet a clear sense of what
type of DNN architecture is best suited for mask estimation, nor is there yet
a clear understanding of which monaural and binaural features are the best
inputs to the DNN. Furthermore, most of the systems developed have been
evaluated only in terms of measures of speech intelligibility or statistics for
speech enhancement such as putative improvement in SNR. So far there have
been relatively few applications of these approaches to objective tasks such as
speech recognition or speaker verification. Assuming that the most effective
ASR or verification systems use a DNN recognizer, it is not yet clear what is
the best architecture for the purpose, nor the extent to which the form of the
recognizer should be modified to accommodate missing-feature input, nor the
extent to which the complete mask-estimation/recognizer-system architecture
could be made more efficient or more effective by merging the two systems.

6 Summary

We have described a number of methods by which the principles of binaural
processing can be exploited to provide substantial improvements in automatic
speech recognition accuracy, particularly when the target speech and interfer-
ing sources are spatially separated and the degree of reverberation is moder-
ate. In general, most of these approaches implement aspects of computational
auditory scene analysis, using one of four different approaches to determine
the mask which identifies the spectro-temporal components that are believed
to be dominated by the target signal: direct extraction of ITDs and IIDs,
onset emphasis for reverberation, exploitation of the coherent-to-diffuse ratio
or related statistics, and exploitation of principles based on the E-C model.
This is a particularly exciting time to be working in the application of binau-
ral technology to automatic speech recognition because our rapidly-advancing
understanding of how to develop classification techniques based on the prin-
ciples of deep learning is likely to enable the realization of systems that serve
their users increasingly effectively in cluttered and reverberant acoustical en-
vironments.



Binaural Technology for Speech Recognition 31

Acknowledgements

Preparation of this manuscript was partially supported by grants from Honey-
well, Google, and Afeka University. Anjali Menon has been supported by the
Prabhu and Poonam Goel Graduate Fellowship Fund and the Jack and Mil-
dred Bowers Scholarship in Engineering. Richard Stern is deeply grateful to
the many mentors, colleagues, and friends in the binaural hearing and speech
recognition communities that have informed this analysis, including especially
Steve Colburn, Tino Trahiotis, Bhiksha Raj, and Rita Singh. We also thank
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