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Speech-Recognizer-Based Filter Optimization for
Microphone Array Processing

Michael L. Seltzer, Student Member, IEEE,and Bhiksha Raj

Abstract—Conventional microphone-array processing schemes
used for speech recognition enhance the output waveform using op-
timization criteria that are independent of the recognition system.
We present a new filter-and-sum array processing algorithm in
which the filter parameters are calibrated to maximize recognizer
likelihoods. The proposed method provides significant improve-
ment in recognition accuracy over conventional methods.

Index Terms—Beamforming, microphone array processing, ro-
bust speech recognition.

I. INTRODUCTION

M ICROPHONE-ARRAY-BASED signal processing
schemes provide an effective means of compensating

for the effects of noise and reverberation on the performance
of speech recognition systems deployed in hands-free environ-
ments [1]. These algorithms process and combine the multiple
signals captured by the array to derive an enhanced output
signal that is then used for recognition, e.g., [2]. Typically,
such methods are speechenhancementalgorithms that aim to
improve the signal-to-noise ratio (SNR) or perceptual quality
of the output waveform [3]. As such, the optimization criteria
used by these algorithms bear no direct relation to those used
by speech recognition systems to determine the words spoken
in an utterance.

In this letter, we present a new filter-and-sum array pro-
cessing algorithm that integrates the speech recognition system
into the filter design process. Filter parameters are chosen to
maximize the likelihood of the processed signal as measured by
the recognizer, rather than its SNR or perceptual quality. This
ensures that the designed filters enhance signal components
that are important for recognition, without undue emphasis on
unimportant components. We describe the proposed algorithm
in Section II of this letter. Experiments reported in Section III
show that the proposed method results in significantly better
recognition performance than that achieved with conventional
delay-and-sum processing.
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II. FILTER CALIBRATION

Filter-and-sum microphone-array processing can be notation-
ally expressed as

(1)

where represents the signal recorded by theth micro-
phone; represents the delay introduced into theth channel
to time-align it with the other channels; represents the fi-
nite impulse response (FIR) filter applied to the signal captured
by the th microphone; is the convolution operator; and
represents the output signal. is the total number of micro-
phones in the array.

The goal of the proposed algorithm is to estimate the filter
parameters that optimize the speech recognition perfor-
mance obtained with . We can do this by maximizing the
likelihood of thecorrect transcription for the utterance, com-
puted using the statistical models of the recognizer. However,
since the correct transcriptions used by utterances to be recog-
nized are unknown, we optimize the filters based on acalibra-
tion utterancewith known transcription, which the user records
prior to using the system.

We pose the optimization problem in the context of hidden
Markov model (HMM)-based speech recognition systems that
operate on frame-based parameterizations of the speech signal.
In this letter, we assume that each frame of speech is parameter-
ized as a vector of Mel-frequency cepstral coefficients (MFCC);
however, the approach taken is equally applicable to any other
type of feature vector. Let represent a vector composed of all
filter parameters for all microphones. Let represent the
signal in the th frame of the calibration utterance, ex-
pressed as a function of. The MFCC vector for the frame,

, is computed as

(2)

where represents the matrix of weighting coefficients of the
Mel filters. The entire utterance is parameterized into the se-
quence of vectors that we represent as

.
In an HMM-based system, the likelihood of any data se-

quence is largely represented by the likelihood of the most
likely state sequence through the HMMs. The log-likelihood of

can therefore be approximated as

(3)
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where represents the most likely state
sequence. represents the probability of
computed on the distribution of theth state in this
sequence. is determined by the state
transition probabilities of the HMM.

Optimization of requires joint estimation of both
and the most likely state sequence . This

can be performed by iteratively estimating the optimal state
sequence for a given using the Viterbi algorithm, and
optimizing with respect to for that
state sequence. However, cannot be di-
rectly optimized, and computationally expensive hill-climbing
methods must be used to solve for. To reduce computational
effort, we model state output distributions as Gaussians, and
we assume that to maximize it is sufficient to
minimize the weighted distance
between and , the mean of the output distribution
of . Specifically, we assume that ,
where is the inverse discrete cosine transform matrix.
This effectively transforms the maximization of
into the minimization of the Euclidean distance between two
log-spectral vectors. Under these assumptions, maximization
of is equivalent to minimization of the
objective function

(4)

can be optimized with respect to using hill-climbing
methods such as the conjugate gradient method [4].

The entire algorithm for optimizing from a calibration ut-
terance is thus as follows.

1) Time-align the signals from the microphones.
2) Initialize as ; , .
3) Process signals usingand derive recognition features.
4) Determine optimal state sequence from derived recogni-

tion features.
5) Use optimal state sequence and (4) to estimate.
6) If has not converged, go to step 3).

The estimated is used to process all future utterances
during recognition. If the calibration utterance is recorded
simultaneously over a close-talking microphone, features
derived from this cleaner signal can be used either to determine
the optimal state sequence in step 4), or directly in (4) instead
of the Gaussian mean vectors.

III. EXPERIMENT RESULTS

Experiments were conducted on two databases. The first data-
base (CMU_TMS) was recorded in a noisy laboratory using a
linear array of eight microphones spaced 7 cm apart. Talkers
were seated 1 m from the center of the array. Ten speakers
recorded 14 utterances each, consisting of alphanumeric and
command-word strings. A close-talking microphone recording
of each utterance was captured simultaneously for reference.

The second database (WSJ_SIM) is a simulated microphone
array test set derived from the Wall Street Journal (WSJ0) test

TABLE I
PERCENTAGEWER ON THE CMU_TMS AND THE 5-dB WSJ_SIM DATA,

USING CONVENTIONAL DELAY-AND-SUM PROCESSING AND THEPROPOSED

FILTER CALIBRATION METHODS. THE WERsON CLOSE-TALKING

MICROPHONERECORDINGS OF THETEST DATA AND ON SIGNALS

RECORDED BYONE OF THEMICROPHONES AREALSO SHOWN

corpus. A 4 m 5 m 3 m room with eight microphones around
a 0.5 m 0.3 m flat-panel display on one of the walls was
simulated using the image method [5]. The speech source was
located 1 m from the center of the array, and a white noise
source was placed above, behind, and to the left of the speech
source. Recordings were created at a range of SNRs. Both the
CMU_TMS data and the WSJ_SIM data were digitized at a
sampling rate of 16 kHz.

The SPHINX-III continuous-density HMM-based speech
recognition system was used in all experiments. Five thousand
tied states, each modeled by a single Gaussian, were trained
with 7000 utterances from the WSJ0 training set. Cepstral
mean normalization was performed on all training utterances.
In addition, a second mean vector was computed for each
state from unnormalized cepstra. These unnormalized mean
vectors were used for filter optimization, since the objective
function used in the filter design does not account for mean
normalization.

In all experiments, 50-point FIR filters were optimized for
each microphone using a single calibration utterance and ap-
plied to the entire test set. Only one iteration of steps 1)–6) of
the algorithm was performed. Filter calibration using features
derived from the close-talking microphone recording of the cal-
ibration utterance was also evaluated.

Table I shows recognition word error rates (WERs) for the
CMU_TMS and 5-dB SNR WSJ_SIM data. WERs with con-
ventional delay-and-sum processing and the proposed algorithm
are both shown. For reference, WERs on signals from a close-
talking microphone and a single microphone from the array are
also shown. Fig. 1 shows WERs obtained on the WSJ_SIM
corpus as a function of the SNR of the test data. For this ex-
periment, the close-talking recording was not used for calibra-
tion. Table I and Fig. 1 show that the proposed algorithm out-
performs conventional delay-and-sum processing significantly
in most situations. At high SNRs (above 15 dB), delay-and-sum
processing is somewhat better than the proposed method, pos-
sibly due to the various approximations introduced in the algo-
rithm for computational efficiency.

The proposed algorithm jointly optimizes all filters in the
array. Obvious alternatives are to optimize all filters indepen-
dently, or to optimize a single filter that operates on the output
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Fig. 1. Word error rate versus SNR for the WSJ_SIM test set using filters
calibrated with the proposed algorithm.

of a conventional delay-and-sum beamformer. Table II, which
compares these alternatives, shows that joint optimization re-
sults in the best performance. Finally, it should be noted that
only a single pass through the calibration algorithm was used in
these experiments. Further iterations did not improve recogni-
tion performance.

IV. DISCUSSION

In this letter, we have described a new microphone array
processing calibration algorithm that jointly optimizes the
parameters of a filter-and-sum array processor based on in-
formation from a speech recognizer. Speech signals processed
using the proposed algorithm are more accurately recognized
by speech recognition systems than those processed with
conventional delay-and-sum beamforming. The algorithm
also outperforms delay-and-sum beamforming followed by
postfiltering, showing that the optimized filters produce both
spatial and spectral filtering.

The filters can, in principle, also improve the alignment of the
microphone recordings by appropriate selection of filter taps.
However, this is not the primary effect of the filters. In the exper-
iments reported on the WSJ_SIM data, the signals were hand-

TABLE II
WER FOR THE WSJ_SIM TEST SETWITH AN SNR OF 10 dB

FOR DELAY-AND-SUM PROCESSING ANDTHREE DIFFERENT

FILTER OPTIMIZATION METHODS

aligned using the perfectly known array geometry and talker lo-
cation. Nevertheless, the proposed algorithm resulted in signif-
icantly better performance than delay-and-sum processing. On
this dataset, the results obtained with hand-aligned and automat-
ically aligned signals were very similar.

In our experiments, we used only a single utterance to cali-
brate the array. Since the calibration data were limited, only rela-
tively short filters were optimized. We expect that as the amount
of calibration data is increased, longer filters can be trained to
further improve performance, especially in highly reverberant
conditions. However, minor variations in filter order were not
observed to change performance significantly.

A final point is that feature mean normalization, a standard
preprocessing procedure used in recognition systems, was not
performed during filter optimization, although it was used
during recognition. Since mean normalization is known to
result in better recognition, it is likely that incorporating it into
the filter design may improve the performance of the proposed
algorithm further.
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