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Abstract—Conventional microphone-array processing schemes Il. FILTER CALIBRATION
used for speech recognition enhance the output waveform using op- . . . .
timization criteria that are independent of the recognition system.  Filter-and-sum microphone-array processing can be notation-

We present a new filter-and-sum array processing algorithm in  ally expressed as

which the filter parameters are calibrated to maximize recognizer N

likelihoods. The proposed method provides significant improve- _ . ' 4

ment in recognition accuracy over conventional methods. yln] = Z hiln] ® zi[n — 7] (1)
=1

Index Terms—Beamforming, microphone array processing, ro-

bust speech recognition. wherex;[n] represents the signal recorded by tiie micro-

phone;r; represents the delay introduced into tlie channel
to time-align it with the other channels;[n] represents the fi-
. INTRODUCTION nite impulse response (FIR) filter applied to the signal captured

ICROPHONE-ARRAY-BASED  signal processingby theith microphoneR _is the ponvolution operator; aryj_jn]
M schemes provide an effective means of compensatiffg)resems the output signdV. is the total number of micro-
for the effects of noise and reverberation on the performanE
of speech recognition systems deployed in hands-free environ

ments [1]. These algorithms process and combine the multi&grametersh,; [] that optimize the speech recognition perfor-

signals captured by the array to derive an enhanced outpift o obtained with[n]. We can do this by maximizing the
'9 M y y " . méelihood of thecorrect transcription for the utterance, com-
signal that is then used for recognition, e.g., [2]. Typically.

: . uted using the statistical models of the recognizer. However,
such methods are speeehhancementlgorithms that aim to P 9 9

; . ! : _since the correct transcriptions used by utterances to be recog-
improve the signal-to-noise ratio (SNR) or perceptual quallw

fth ‘ 31 A h th AL -~ 'Hized are unknown, we optimize the filters based amalkbra-
of the output wave orm [3]. As suc ! the opt|m|zat|on CrterRsn utterancewith known transcription, which the user records
used by these algorithms bear no direct relation to those u

e ) r to using the system.

by speech recognition systems to determine the words spokefq pose the optimization problem in the context of hidden

In an utterance. _ Markov model (HMM)-based speech recognition systems that
In this letter, we present a new filter-and-sum array prgsperate on frame-based parameterizations of the speech signal.

cessing algorithm that integrates the speech recognition syst@ythis letter, we assume that each frame of speech is parameter-

into the filter design process. Filter parameters are chosenjgd as a vector of Mel-frequency cepstral coefficients (MFCC);

maximize the likelihood of the processed signal as measuredi®ivever, the approach taken is equally applicable to any other

the recognizer, rather than its SNR or perceptual quality. Thigpe of feature vector. Léi represent a vector composed of all

ensures that the designed filters enhance signal componeiisr parameters for all microphones. Lgf(h) represent the

that are important for recognition, without undue emphasis @ignal y[n] in the jth frame of the calibration utterance, ex-

unimportant components. We describe the proposed algoritpnessed as a function & The MFCC vector for the frame,

in Section Il of this letter. Experiments reported in Section Il¢;(h), is computed as

show that the proposed method results in significantly better

ones in the array.
The goal of the proposed algorithm is to estimate the filter

. 2
recognition performance than that achieved with conventional zj(h) = DCT (10’% (M|DFT(yj(h))| )) )
delay-and-sum processing. whereM represents the matrix of weighting coefficients of the
Mel filters. The entire utterance is parameterized into the se-
guence of vectors; (h), z2(h), . .., zr(h) that we represent as

Z(h).
In an HMM-based system, the likelihood of any data se-
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where s, s9,83,...,s7 represents the most likely state TABLE |
. . il . PERCENTAGEWER ON THE CMU_TMS AND THE 5-dB WSJ_SIM DA,
sequence P(z; (h)|s]). re.pre.sents the_ probability .O:fj (h) USING CONVENTIONAL DELAY -AND-SUM PROCESSING AND THEPROPOSED
computed on the distribution of thgth states; in this FILTER CALIBRATION METHODS THE WERSON CLOSETALKING
sequence.P(s, $2,83,...,s7) is determined by the state MICROPHONE RECORDINGS OF THETEST DATA AND ON SIGNALS
transition probabilities of the HMM. RECORDED BY ONE OF THEMICROPHONES AREALSO SHOWN
h (a_)l’?(;lTl’:éartTlloonstolf'ﬁe(F(Zt)a)_tereggIrees I’:ﬁ()) Int estimation O_fn?(;th Array Processing Method WSI_SIM | CMU_TMS
| u 89,83, ...,87. |
y QUENES, 52, 53, . . ., ST Close-talking mic (CLSTK) 16.52 19.36

can be performed by iteratively estimating the optimal state

sequence for a give using the Viterbi algorithm, and ~_Single mic array channel v 9i'i4 gz'zé
optimizing Y° . log(P(z;(h)|s;)) with respect toh for that geﬁ)y a“dfsl‘:m (DS) T 23'33 =5
state sequence. However,; log(P(z;(h)|s;)) cannot be di- e e in (pr s ' '

rectly optimized, and computationally expensive hill-climbing Calibrate filters using CLSTK cepstra 365 3707

methods must be used to solve forTo reduce computational  (, gerive state segmentations
effort, we model state output distributions as Gaussians, ant Galibrate filters using only multimic 202 34.95
we assume that to maximizB(z;(h)|s;)) it is sufficient to adaptation data
minimize the weighted distan¢e; (k) — 115, )" W (z;(h) — p1s,)
betweenz;(h) and p,;, the mean of the output distribution
of s;. Specifically, we assume th# = (IDCT)T(IDCT), corpus.A4 mx5 mx3 mroom with eight microphones around
whereIDCT is the inverse discrete cosine transform matrixa 0.5 mx 0.3 m flat-panel display on one of the walls was
This effectively transforms the maximization &f(z;(h)|s;) simulated using the image method [5]. The speech source was
into the minimization of the Euclidean distance between twocated 1 m from the center of the array, and a white noise
log-spectral vectors. Under these assumptions, maximizatigpurce was placed above, behind, and to the left of the speech
of 37, log(P(z;(h)|s;)) is equivalent to minimization of the source. Recordings were created at a range of SNRs. Both the
objective function CMU_TMS data and the WSJ_SIM data were digitized at a
- sampling rate of 16 kHz.
The SPHINX-III continuous-density HMM-based speech
Q(h) = Z IIDCT (2;(h) - “-“J')||2' ) recognition system was used in all experiments. Five thousand
=1 tied states, each modeled by a single Gaussian, were trained

Q(h) can be optimized with respect fo using hill-climbing with 7000 utterances from the WSJO training set. Cepstral

methods such as the conjugate gradient method [4]. mean normalization was performed on all training utterances.
The entire algorithm for optimizing from a calibration ut- " addition, a second mean vector was computed for each
terance is thus as follows. state from unnormalized cepstra. These unnormalized mean

vectors were used for filter optimization, since the objective

1) Time-align the signals from microphones. . . . .
) e-align the signals from th& microphones function used in the filter design does not account for mean

2) Initialize h ash;[0] = 1/N; hi[k] = 0, k # 0. normalization
3) Process signals usirigand derive recognition features. :

4) Determine optimal state sequence from derived recogni—ln all experiments, 50-point FIR filters were optimized for
tion features each microphone using a single calibration utterance and ap-

5) Use optimal state sequence and (4) to estirhate plied to the entire test set. Only one iteration of steps 1)-6) of
6) If Q(k) has not converged, go to step 3). the.algonthm was performed. Ellter calibration using features

derived from the close-talking microphone recording of the cal-
ibration utterance was also evaluated.

The estimatedh is used to process all future utterances .
during recognition. If the calibration utterance is recordeé Table | shows recognition word error rates (WERs) for the

simultaneously over a close-talking microphone, featur é\AU—TMS and 5-dB SNR WSJ_SIM data. WERs with con-

derived from this cleaner signal can be used either to determ}ﬁeem'onal delay-and-sum processing and the proposed algorithm

the optimal state sequence in step 4), or directly in (4) inste?ar k'kr31 Oﬂrlfcr;gw&rfg;:]edfzrinnclvrxi?; ﬁgségf?si ILZQ?;IO;‘:
of the Gaussian mean vectors. Ing microp ng Icrop y

also shown. Fig. 1 shows WERs obtained on the WSJ_SIM
corpus as a function of the SNR of the test data. For this ex-
periment, the close-talking recording was not used for calibra-
Experiments were conducted on two databases. The firstddtan. Table | and Fig. 1 show that the proposed algorithm out-
base (CMU_TMS) was recorded in a noisy laboratory usingpeerforms conventional delay-and-sum processing significantly
linear array of eight microphones spaced 7 cm apart. Talkénsmost situations. At high SNRs (above 15 dB), delay-and-sum
were seated 1 m from the center of the array. Ten speakprecessing is somewhat better than the proposed method, pos-
recorded 14 utterances each, consisting of alphanumeric aitdy due to the various approximations introduced in the algo-
command-word strings. A close-talking microphone recordingghm for computational efficiency.
of each utterance was captured simultaneously for reference. The proposed algorithm jointly optimizes all filters in the
The second database (WSJ_SIM) is a simulated microphareay. Obvious alternatives are to optimize all filters indepen-
array test set derived from the Wall Street Journal (WSJO0) tekently, or to optimize a single filter that operates on the output

I1l. EXPERIMENT RESULTS
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100 :
. T mic TABLE I

. -~ delay-sum WER FOR THEWSJ_SIM TEST SETWITH AN SNR OF 10 dB
90¢ ) — calib—filters || FOR DELAY-AND-SUM PROCESSING AND THREE DIFFERENT
AN = - close-talk FILTER OPTIMIZATION METHODS

Filter Optimization Method WER(%)

Delay and sum (D & S) 36.43
Optimize single filter applied to D & S output 36.29

Optimize mic array filters independently 48.19

WER (%)

Optimize mic array filters jointly 27.79

aligned using the perfectly known array geometry and talker lo-
cation. Nevertheless, the proposed algorithm resulted in signif-
icantly better performance than delay-and-sum processing. On
this dataset, the results obtained with hand-aligned and automat-

10 ' ! : ' . ; . .-
0 5 10 15 20 25 cally aligned signals were very similar.

SNR (dB) In our experiments, we used only a single utterance to cali-

Fig. 1. Word error rate versus SNR for the WSJ_SIM test set using filtet_gate the array. Since the (fa"_bration data were limited, only rela-
calibrated with the proposed algorithm. tively short filters were optimized. We expect that as the amount
of calibration data is increased, longer filters can be trained to
éHrther improve performance, especially in highly reverberant

of a conventional delay-and-sum beamformer. Table I, whi o . - 7o
nditions. However, minor variations in filter order were not

compares these alternatives, shows that joint optimization ft ST
served to change performance significantly.

sults in the best performance. Finally, it should be noted th%A final point is that feat lizati tandard
only a single pass through the calibration algorithm was used in inal point s that feature mean normalization, a standar

these experiments. Further iterations did not improve recogH(_eprocessmg P rocc_adure us_eq m_recogmtlon sy_stems, was not
tion performance. performed during filter optimization, although it was used

during recognition. Since mean normalization is known to
result in better recognition, it is likely that incorporating it into
the filter design may improve the performance of the proposed
In this letter, we have described a new microphone arrajgorithm further.

processing calibration algorithm that jointly optimizes the
parameters of a filter-and-sum array processor based on in- REFERENCES
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IV. DISCUSSION
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