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D
espite decades of focused research on the problem, the accuracy of automatic speech recog-
nition (ASR) systems is still adversely affected by noise and other sources of acoustical vari-
ability. For example, there are presently dozens, if not hundreds, of algorithms that have
been developed to cope with the effects of quasistationary additive noise and linear filtering
of the channel [16], [23]. While these approaches are reasonably effective in the context of

their intended purposes, they are generally ineffective in improving recognition accuracy in many more
difficult environments. Some of these more challenging conditions, which are frequently encountered in
some of the most important potential speech recognition applications today, include speech in the pres-
ence of transient and nonstationary disturbances (as in many factory, military, and telematic environ-
ments), speech in the presence of background music or background speech (as in the automatic
transcription of broadcast program material as well as in many natural environments), and speech at very
low signal-to-noise ratios (SNRs).

Conventional environmental compensation provides only limited benefit for these problems even today.
For example, Raj et al. [29] showed that while codeword-dependent cepstral normalization is highly effective
in dramatically reducing the impact of additive broadband noise on speech recognition accuracy, it is rela-
tively ineffective when speech is presented to the system in the presence of background music, for reasons
that are believed to be a consequence of the nonstationary nature of the acoustical degradation.
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This article describes and discusses alternative robust recog-
nition approaches that have come to be known as missing fea-
ture approaches [9], [10], [20]. These approaches are based on
the observation that speech signals have a high degree of redun-
dancy—human listeners are able to comprehend speech that has
undergone considerable spectral excisions. For example, normal
conversation is possible with speech that has been either high- or
low-pass filtered with a cutoff frequency of 1,800 Hz [17].

Briefly, in missing feature approaches, one attempts to deter-
mine which cells of a spectrogram-like time-frequency display of
speech information are unreliable (or missing) because of degra-
dation due to noise or to other types of interference. The cells
that are determined to be unreliable or missing are either
ignored in subsequent processing and statistical analysis
(although they may provide ancillary information), or they are
filled in by optimal estimation of their putative values.

The application of missing feature techniques to robust auto-
matic speech recognition has been strongly influenced by two
complementary fields of signal analysis. Many of the mathemati-
cal approaches to missing feature recognition were first devel-
oped for the task of completing partially occluded objects in

visual pattern recognition [1]. In addition, there is a strong
interchange of techniques and applications between missing fea-
ture recognition and the field of computational auditory scene
analysis (CASA), which seeks to segregate, identify, and recog-
nize the separate components of a complex sound field [8]. The
mathematics developed for missing feature recognition can be
applied to other types of signal restoration implicit in CASA, and
the analysis approaches developed in CASA can be useful for
identifying degraded components of signals that can potentially
be restored through the use of missing feature techniques.

SPECTRAL MEASUREMENTS 
AND SPECTROGRAPHIC MASKS
Missing feature methods model the effect of noise on speech as
the corruption of regions of time-frequency representations of
the speech signal. A variety of time-frequency representations
may be used for the purpose. Most of them follow the same basic
procedure: the speech signal is first segmented into overlapping

frames, typically about 25 ms wide. From each frame, a power
spectrum is estimated as

Zp(m, k) =
∣∣∣∣∣

N−1∑

n= 0

w(n − mL)x(n)e− j2π(n−mL)k/N

∣∣∣∣∣

2

, (1)

where Zp(m, k) represents the k th frequency band of the power
spectrum of the m th frame of speech, w(n) represents a win-
dow function, x(n) represents the n th sample of the speech sig-
nal, L represents the shift in samples between adjacent frames,
and N represents the number of samples within the segment.
The power spectral components are often reduced to a smaller
number of components using triangular weighting functions
that represent the frequency responses of the filters in a filter
bank that is designed to mimic the frequency sensitivity of the
human ear

Xp(m, k) =
∑

j

hk( j)Zp(m, j), (2)

where hk( j) represents the
frequency response of the
k th filter in the filter bank.
The most commonly used
filter banks are the Mel fil-
ter bank [13] and the ERB
filter bank [21].
Alternately, Xp(m, k) may
be obtained by sampling
the envelope of signals at
the output of a filter bank
[25]. We will refer to both
the power spectra given by
(1) and the combined
power spectra of (2) gener-
ically as power spectra.

The power spectral components are compressed by a nonlin-
ear function to obtain the final time-frequency representation,
X(m, k) = f(Xp(m, k)), where f(·) is usually a logarithm or a
cube root. We assume, without loss of generality, that f(·) is a
logarithm. The outcome of the analysis is a two-dimensional
representation of the speech signal, which we will refer to as a
spectrogram. Figure 1(a) shows a pictorial representation of
the spectrogram for a clean speech signal.

When the speech signal is corrupted by uncorrelated additive
noise, the power spectrum of the resulting signal is the sum of
the power spectra of the clean speech and the noise

Yp(m, k) = Xp(m, k) + Np(m, k), (3)

where Yp(m, k) and Np(m, k) represent the k th frequency
bands of the power spectrum of the noisy speech and the noise,
respectively, in the m th frame of the signal. Since all power

[FIG1] (a) The “mel’’ spectrogram for an utterance of clean speech. (b) The mel spectrogram for the same
utterance when it has been corrupted by white noise to an SNR of 10 dB. (c) Spectrographic mask for
the noise-corrupted utterance using an SNR threshold of 0 dB.
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spectral terms are nonnegative, Yp(m, k) is nearly always
greater than or equal to Xp(m, k). (In reality, finite-sized sam-
ples of uncorrelated processes are rarely perfectly orthogonal,
and the power spectra of two uncorrelated processes do not sim-
ply add within any particular analysis frame. To account for this,
an additional factor of 2

√
Xp(m, k)Np(m, k) cos(θ) must be

included in (3), where θ is the angle between the k th term of
the complex spectra of the speech and the noise. In practice,
however, this term is usually small and can safely be ignored.)
The SNR of Yp(m, k), the (m, k)th component of the spectro-
gram of the noisy signal, is given by Xp(m, k)/Np(m, k). The
SNR of the spectrogram varies with both time and frequency.
Typically, for any level of noise, the spectrogram includes
regions of very high SNR (which are dominated by contribu-
tions of the speech component), as well as regions of very low
SNR (which represent the characteristics of the noise more than
the underlying speech). The low SNR regions of the spectro-
gram adversely affect speech recognition accuracy. As the overall
SNR of a noisy utterance decreases, the proportion of low SNR
regions increases, resulting in worse recognition accuracy.

In missing feature methods, it is assumed that all compo-
nents of a spectrogram with SNR above some threshold T are
reliable estimates of the corresponding components of clean
speech. In other words, it is assumed that the observed value
Y(m, k) of such components is equal to the value X(m, k)
that would have been obtained had there been no noise.
Spectral components Y(m, k) with SNRs below the thresh-
old, however, are assumed to be unreliable and assumed not
to represent X(m, k). They merely provide an upper bound
on the true value of X(m, k), i.e., X(m, k) ≤ Y(m, k). The set
of tags that identify reliable and unreliable components of
the spectrogram are referred to as the spectrographic mask
for the utterance. Recognition must now be performed with
the resulting incomplete measurements of the speech signal,
where only some of the spectral components are reliably
known and the rest are essentially unknown. Figure 1(b)
shows the spectrogram for the utterance in Figure 1(a) after
it has been corrupted to 10 dB by white noise. Figure 1(c)
shows the spectrographic mask for the utterance when a
threshold of 0 dB is used to identify unreliable elements, with
the black regions representing the values of m and k, for
which the corresponding spectral values Zp(m, k) are to be
considered reliable. While in practice there is no single opti-
mal threshold [28], [33], Cooke et al. and Raj et al. have typi-
cally used thresholds that lie between 5 and −5 dB.

Before we proceed, we must establish some of the notation
and terminology used in the rest of the article. We represent
the observed power spectrum for the m th frame of speech as a
vector Yp(m) and the individual frequency components of
Yp(m) as Yp(m, k). We assume that the final time-frequency
representation consists of sequences of log-spectral vectors
derived as the logarithm of the power spectrum. We represent
the m th log spectral vector as Y(m) and the individual fre-
quency components in it as Y(m, k). For noisy speech signals,
the observed signal is assumed to be a combination of a clean

speech signal and noise. We represent the power spectrum of
the clean speech in the m th frame of speech as the vector
Xp(m), the corresponding log-spectral vector as X(m), and the
individual frequency components of the two as Xp(m, k) and
X(m, k), respectively. In addition, we represent the power spec-
trum of the corresponding noise and its frequency components
as Np(m) and Np(m, k). We represent the sequence of all spec-
tral vectors Y(m) for any utterance as Y and the sequence of all
corresponding X(m) as X. For brevity, we refer to Y(m), X(m),
and N(m) as spectral vectors (instead of log-spectral vectors)
and to Y and X as spectrograms. We refer to the time and fre-
quency indices (m, k) as a time-frequency location in the spec-
trogram and the corresponding components X(m, k) and
Y(m, k) as the spectral components at that location.

Ideally, recognition would be performed with X, the spec-
trogram for the clean speech (or with features derived from it).
Unfortunately, the spectrogram X is obscured by the corrupt-
ing noise, resulting in the observation of a noisy spectrogram
Y which differs from X. Every vector Y(m) in Y has a set of
reliable components that are good approximations to the cor-
responding components of X(m). We represent the spectro-
graphic mask that distinguishes reliable and unreliable
components of a spectrogram by S. The elements of S may be
either binary tags identifying spectral components as reliable
or not with certainty, or they may be real numbers between
zero and one that represent a measure of confidence in the
reliability of the spectral components. For the rest of this sec-
tion, we assume that the elements of S are binary. The spectro-
graphic mask vector that identifies unreliable and reliable
components of a single spectral vector Y(m) is represented as
S(m). We arrange the reliable components of Y(m) into a vec-
tor Yr(m) and the corresponding components of X(m) into a
vector Xr(m). Each vector Y(m) also has a set of unreliable
components that provide an upper bound on the value of the
corresponding components of X(m). We arrange the unreli-
able components of Y(m) into a vector Yu(m), and the corre-
sponding components of X(m) into Xu(m). We refer to the set
of all Yr(m) as Yr. Similarly, we refer to the set of all Yu(m),
Xr(m), and Xu(m) as Yu, Xr, and Xu, respectively. The rela-
tionship between Yr(m), Xr(m), Yu(m), and Xu(m) is given by

Xr(m) = Yr(m)

Xu(m) ≤ Yu(m) (4)

It is also common to assume a lower bound on Xu(m), based
on a priori knowledge of typical feature values. For instance,
when the nonlinear compressive function f(·) used in the com-
putation of the spectrogram is a cube root, Xu(m) is assuredly
lower bounded at zero. In some sections of the article, we drop
the time and frequency-component indices of vectors, simply
representing them as X, Xr, and Xu, where these vector indices
are not critical to comprehension, for brevity of notation. This
should not cause any confusion.
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ADDITIONAL BACKGROUND
In this section, we briefly describe three other topics that are of
relevance to the rest of this article: speech recognition based on
hidden Markov models (HMMs), bounded marginalization of
Gaussian densities, and bounded maximum a posteriori estima-
tion of Gaussian random variables.

SPEECH RECOGNITION USING HMMS
While the experimental results described in this article were
obtained using HMMs, the concepts described are easily carried
over to other types of recognition systems as well. The technolo-
gy of HMMs has been described in detail in other sources [27],
but we will summarize the basic computation briefly to intro-
duce the notational conventions used in this article.

Given a sequence of feature vectors X derived from an utter-
ance, ASR systems seek to identify Ŵ, the sequence of words in
that utterance per the optimal Bayesian classifier

Ŵ = arg max
W

{P(W|X)} = arg max
W

{P(X|W)P(W)}. (5)

P(W) is the a priori probability that the word sequence W was
uttered and is usually specified by a language model. P(X|W) is the
likelihood of X, given that W was the sequence of words uttered.

The distribution of the feature vectors for W is modeled by
an HMM that assumes that the process underlying the signal for
W transitions through a sequence of states s from frame to
frame. Each transition produces an observed vector that
depends only on the current state. Let PW(X|s) denote the state
output distribution of state s of the HMM for W. Ideally, P(X|W)

must be computed considering every state sequence through
the HMM. In practice, however, ASR systems attempt to esti-
mate the best state sequence jointly with the best word
sequence. In other words, recognition is performed as 

Ŵ = arg max
W

max
s

{
P(w)P(s|W)

(
∏

m
PW(X(m)|s)

)}
, (6)

where s represents the state sequence s1, s2, . . . , and P(s|W) is
the probability of s as obtained from the transition probabilities
of the HMM for W. The state output distribution terms PW(X|s)
in (6) lie at the heart of how missing feature methods affect
speech recognition.

BOUNDED MARGINALIZATION OF GAUSSIAN DENSITIES
Let a random vector X have a Gaussian density with mean µ
and a diagonal covariance matrix �. Let the indices of the com-
ponents of X be segregated into two mutually exclusive sets, U
and R. Let Xu be a vector constructed from all components of X
whose indices lie in U. Let Xr be a vector constructed from all
components of X whose indices lie in R. Let it be known that
Xu is bounded from above by Hu and below by Lu. It can be
shown that the marginal probability density of Xr is given by

P(Xr, Lu ≤ Xu ≤ Hu;µ,�) =
∏

j∈R

1√
2πσ( j)

e
−(X( j)−µ( j))2

2σ( j)

×
∏

l∈U

∫ H(l)

L(l)

1√
2πσ(l)

e
−(x−µ(l))2

2σ(l) dx,

(7)

where the arguments after the semicolon on the left hand side
of the equation represent the parameters of the distribution.
X( j ), µ( j ), and σ( j ) represent the j th components of X and
µ and the jth diagonal component of �, respectively. H(l ) and
L(l ) represent the components of Hu and Lu that correspond to
Y(l ). The integral term to the right marginalizes out Xu within
its known bounds.

BOUNDED MAP ESTIMATION
OF GAUSSIAN RANDOM VARIABLES
Let X be a random vector drawn from a Gaussian density with
mean µ and covariance �. X is corrupted to generate an
observed vector Y such that some components of Y are identical
to the corresponding values of X, while the remaining compo-
nents only provide an upper bound on the corresponding values
of X. Let Xr and Xu be vectors constructed from the known and
unknown components of X, and let Yr and Yu be constructed
from the corresponding components of Y. The bounded MAP
estimate of Xu is given by

X̂u = arg max
Xu

P(Xu|Xr = Yr, Xu ≤ Yu). (8)

Note that when � is a diagonal matrix, the bounded MAP esti-
mate of Xu is simply min(µu, Yu), where µu is the expected
value of Xu and is constructed from the corresponding compo-
nents of µ. When � is not a diagonal matrix, an iterative proce-
dure is required to obtain Xu as follows.

The unbounded MAP estimate of a log-spectral component
X(i), given that the values of all other components X(k) = X̄(k),
k �= i is

X̃(i) = arg max
X(i)

P(X(i)|X(k) = X̄(k), k �= i)

= µ(i) + 1
σ(i)

�X(i),X̄(X̄ − µ̄), (9)

where X̄ is a vector constructed from X̄(k), k �= i, µ̄ is its mean
value, �X(i),X̄ is a row matrix representing the cross covariance
between X(i) and X̄ , and µ(i) and σ(i) are the mean and
covariance of X(i) . µ̄, σX(i),X̄ , µ(i) and σ(i) can be constructed
from the components of µ and �. The iterative procedure for
bounded MAP estimation is [28] the following:

1) Initialize X̄(k) = Y(k)∀k.
2) For each of X(i), i ∈ U
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X̃(k) = arg max
X(k)

P(X(k)|X(i) = X̄(i), i �= k)

X̄(k) = min(X̃(k), Y(k)) (10)

3) Iterate Step 2 until the X̄(k) have converged. The bounded
MAP estimate X̂u is constructed from the converged values of
X̄(i), i ∈ U.
In the following, we will represent the bounded MAP esti-

mate described by (8) as BMAP(Xu|Xr = Yr, Xu ≤ Yu), or more
explicitly, as BMAP(Xu|Xr = Yr, Xu ≤ Yu;µ,�).

RECOGNITION WITH UNRELIABLE SPECTROGRAMS
Using the notation developed previously, the problem of recog-
nition with unreliable spectrograms can be stated as follows: we
desire to obtain a sequence of feature vectors, X, from the
speech signal for an utterance and estimate the word sequence
that it represents. Instead, we obtain a corrupted set of feature
vectors Y, with a reliable subset of components Yr that are a
close approximation to Xr, i.e., Xr ≈ Yr, and an unreliable sub-
set Yu , which merely provides an upper bound on Xu , i.e.,
Xu ≤ Yu. We must now perform recognition with only this par-
tial knowledge of X.

There are two major approaches to solving this problem: 
■ Feature-vector imputation: estimate Xu to reconstruct a

complete uncorrupted feature vector sequence Xr ∪ Xu and
use it for recognition.

■ Classifier modification: modify the classifier to perform
recognition using Xr and the unreliable Yu itself.

FEATURE-VECTOR IMPUTATION: 
ESTIMATING UNRELIABLE COMPONENTS
The damaged regions of spectrograms are reconstructed
from the information available in the reliable regions and a
priori knowledge about the structure of speech spectro-
grams that has been obtained from a training corpus of
uncorrupted speech. We describe two reconstruction tech-
niques: 1) cluster-based reconstruction, in which damaged
components are reconstructed based solely on the relation-
ships among the components within individual vectors, and
2) covariance-based reconstruction, in which reconstruc-
tion considers statistical correlations among all compo-
nents of the spectrogram [28], [30]. Both techniques are
based on maximum a posteriori (MAP) estimation of
Gaussian random variables.

CLUSTER-BASED RECONSTRUCTION
In cluster-based reconstruction of damaged regions of spectro-
grams, each spectral vector in the spectrogram is assumed to
be independent of every other vector. The distribution of the
spectral vectors of clean speech is assumed to be a Gaussian
mixture, given by

P(X) =
∑

ν

cν(2π |�ν |)−d/2 e−0.5(X−µν)
��−1

ν (X−µν), (11)

where d is the dimensionality of the vector, and cν , µν , and �ν

are, respectively, the a priori probability, mean vector, and the
covariance matrix of the νth Gaussian. The �ν matrices are
assumed to be diagonal. The distribution parameters are learned
from a training corpus of clean speech using the expectation
maximization (EM) algorithm [34].

Let Y be any observed spectral vector with some unreliable
components, and let X be the corresponding idealized clean vec-
tor. Let Yr, Yu, Xr and Xu be vectors formed from the reliable and
unreliable components of Y and X, respectively. Xr is identical to
Yr; Xu is unknown, but known to be less than Yu. Ideally, we
would estimate the value Xu with the bounded MAP estimator

X̂u = arg max
Xu

{P(Xu|Xr, Xu ≤ Yu)}. (12)

The probability density of X = Xr ∪ Xu is the Gaussian mix-
ture given by (5), and MAP estimation of variables with
Gaussian mixture densities is difficult. Hence, we approximate
the bounded MAP estimate from the Gaussian mixture as a
linear combination of Gaussian-conditional bounded MAP
estimates:

X̂u =
∑

ν

P(ν|Xr, Xu ≤ Yu)BM AP(Xu|Xr, Xu ≤ Yu;µν,�ν).

(13)

P(ν|Xr, Xu ≤ Yu) is given by

P(ν|Xr, Xu ≤ Yu) = cν P(Xr, Xu ≤ Yu|ν)∑
j cjP(Xr, Xu ≤ Yu| j)

, (14)

where P(Xr, Xu ≤ Yu| j) = P(Xr,−∞ ≤ Xu ≤ Yu;µ j,� j) and
is computed by (7).

COVARIANCE-BASED RECONSTRUCTION
In covariance-based reconstruction, the log-spectral vectors of a
speech utterance are assumed to be samples of a stationary
Gaussian random process. The a priori information about the
clean speech signal is represented by the statistical parameters
of this random process, specifically the expected value of the
vectors and the covariances between their components. We
denote the mean of the k th element of the m th spectral vector
X(m, k) by µ(k) (since the mean is not a function of time for a
stationary process), and the covariance between the k1th ele-
ment of the m th spectral vector X(m, k1) and the k2th element
of the (m + ξ)th spectral vector X(m + ξ, k2) by c(ξ, k1, k2),
and the corresponding normalized covariance by r(ξ, k1, k2):

µ(k) = E[X(m, k)]

c(ξ, k1, k2) = E[(X(m, k1) − µk1
)(X(m + ξ, k2) − µk2

)]

r(ξ, k1, k2) = c(ξ, k1, k2)√
c(ξ, k1, k1)(c(ξ, k2, k2))

(15)
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where E[·] represents the expectation operator. These parame-
ters are learned from the spectral vector sequences representing
a training corpus of clean speech.

Since the process is assumed to be Gaussian, all unreliable
spectral components in any noisy signal can, in principle, be
jointly estimated using the bounded MAP procedure. In prac-
tice, however, it is equally effective and far more efficient to
estimate jointly only the unreliable components in individual
spectral vectors, based on the reliable components within a
neighborhood enclosing the vectors.

To estimate the unreliable components in the m th spectral
vector X(m) we arrange them in a vector Xu(m). We identify the
set of all reliable spectral components in the spectrogram that
have a normalized covariance of at least 0.5 with at least one of
the elements in Xu(m) and arrange them into a neighborhood
vector X(n)

r (m). Figure 2 illustrates the construction of the
neighborhood vector. The joint distribution of Xu(m) and
X(n)

r (m) is Gaussian. The expected values and the covariance
matrices of Xu(m) and X(n)

r (m) and the cross covariance
between them can all be constructed from the mean and covari-
ance parameters of the underlying Gaussian process. Once the
parameters of the joint Gaussian distribution of Xu(m) and
X(n)

r (m) are constructed in this fashion, the true value of Xu(m)

is estimated using the bounded MAP estimation procedure.

CLASSIFIER-MODIFICATION METHODS
An alternative to estimating the true values of the unreliable
or missing components is to modify the classifier itself to per-
form recognition with unreliable or incomplete data. The two
most popular classifier-modification methods have been class-
conditional imputation [19] and marginalization [11]. With
feature-imputation methods, recognition can be performed

using feature vectors that may be different from (and derived
from) the spectral vectors that are reconstructed from the
partially degraded input. In classifier-modification methods,
however, recognition is usually performed using the spectral
vectors themselves as features.

CLASS-CONDITIONAL IMPUTATION
In class-conditional imputation, state-specific estimates are
derived for unknown spectral components, prior to estimating
the state output density P(X|s). In other words, when comput-
ing the state output density value at any state s for any vector X,
the unreliable components of X are estimated using the state
output density of s.

We assume that the output density of any state s is a
Gaussian mixture, given by

P(X|s) =
∑

ν

cs,ν(2π |�s,ν |)− d
2 e− 1

2 (X−µs,ν )
��−1

s,ν (X−µs,ν ), (16)

where the subscript s applied to the parameters of the distribu-
tion indicates that they are specific to the output distribution
of state s. As before, let Y be any observed spectral vector, with
reliable and unreliable subvectors Yr and Yu. Let X represent
the corresponding idealized clean vector and Xr and Xu its
subvectors corresponding to Yr and Yu . The state output
density of any state s is defined over the complete vector
X = Xr ∪ Xu. In order to compute P(X|s) we obtain the state-
specific estimate for Xu, X̂s,u as

X̂s,u =
∑

ν

P(ν|Xr, Xu ≤ Yu)

× BM AP(Xu|Xr, Xu ≤ Yu;µs,ν ,�s,ν), (17)

using the cluster-based reconstruction technique in conjunction
with the state output distribution of s. The complete vector
X̂s = Xr ∪ X̂s,u is then constructed (with the components
arranged in appropriate order), and the state output density
value of s is computed as P(X̂s|s).

MARGINALIZATION
The principle behind marginalization is to perform optimal clas-
sification (i.e., recognition) directly based on the observed val-
ues of the reliable and unreliable input data. As applied to
HMM-based speech recognition systems, this implies that state
output densities are now replaced by a term that computes

P̂(X|s) = P(Xr,−∞ ≤ Xu ≤ Yu|s). (18)

We assume that the state output density P(X|s) for state s is
given by (16), and we further assume that all the Gaussians in
the mixture density in (16) have diagonal covariance matrices.
For any observed spectral vector Y, let R represent the set of

[FIG2] Illustration of a hypothetical spectrogram containing four
spectral vectors of four components each. Components shown in
gray are considered to be unreliable. The blocks with the
diagonal lines represent components with a normalized
covariance of 0.5 or greater with either S(2, 2) or S(2, 3). To
reconstruct unreliable components of the second vector using
covariance-based reconstruction, Xu(2) is constructed from S(2, 2)
and S(2, 3), and X (n)

r (2) is constructed from S(1, 2), S(1, 4), S(2, 1),
S(2, 4), S(3, 2), and S(3, 3).
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indices of the reliable components and U represent the indices
of the unreliable components. In other words, Yr is composed of
all components Y(k) such that k ∈ R, and Yu is composed of all
Y(k) such that k ∈ U. It is easy to show that P̂(X|s) as defined
by (18) is now given by

P̂(X|s) =
∑

ν

cs,ν P(Xr,−∞ ≤ Xu ≤ Yu;µs,ν ,�s,ν), (19)

where P(Xr,−∞ ≤ Xu ≤ Yu;µs,ν ,�s,ν) is given by (7). Note
that if the damaged spectral components Xu were assumed to be
completely unknown (so that Yu did not provide any informa-
tion that constrained Xu), then the limits on the integral terms
on the right hand side of (19) would be (−∞,∞), and the inte-
gral terms would evaluate to 1.0, thereby marginalizing out the
unreliable spectral components from the state output density
entirely. On the other hand, if it were possible to provide tighter
bounds on the true value of Xu, the integral term could use
them as limits instead of (−∞, Yu).

IDENTIFICATION OF UNRELIABLE COMPONENTS
The most difficult aspect of missing feature methods is the
estimation of the spectrographic masks that identify unreliable
spectral components. The estimation can be performed in
multiple ways: we may either attempt to estimate the SNR of
each spectral component to identify unreliable components, or
we may attempt to classify unreliable components directly
using some other criteria in place of SNR. In the latter case,
spectrographic masks may either be estimated from Bayesian
principles applied to a variety of measurements derived from
the speech signal, or from perceptually-motivated criteria. We
discuss all of these alternatives below.

ESTIMATING SPECTROGRAPHIC MASKS BASED ON SNR
To estimate the SNR of spectral components, an estimate of
the power spectrum of the corrupting noise is required.
Typically, the noise power spectrum is estimated from
regions of the signal that are determined to not contain
speech. For example, in Vizinho et al. [36], the first several
frames of any utterance are assumed to be regions of silence
and the average power spectrum of these frames is assumed
to represent the power spectrum of the noise. Alternately, the
noise power spectrum can be estimated continuously by a
simple recursion, in order to track slowly-varying noise. The
noise power spectrum is initialized to the average power
spectrum of the initial few frames of the incoming signal.
Any subsequent sudden increases in energy in the noisy
speech signal are assumed to indicate the onset of speech,
while regions in the speech whose energies fall below a given
threshold are assumed to consist only of noise. Let Yp(m, k)
and Np(m, k) represent the k th frequency band of the power
spectra of the observed noisy speech and the noise respective-
ly, in the m th analysis window. The estimated value of
Np(m, k) is obtained as

N̂p(m, k) =






(1 − λ)N̂p(m − 1, k) + λYp(m, k),
if Yp(m, k) < β N̂p(m, k)

N̂p(m − 1, k),
otherwise.

(20)

Typical values of λ and β are 0.95 and 2, respectively, and the
value of λ can be manipulated to track slower or faster varia-
tions in the noise. Other noise estimation techniques [18] may
also be used in lieu of (20).

Multiple criteria have been proposed to identify unreliable
spectral components from the estimated noise spectrum.
El-Maliki and Drygajlo [15] propose a negative energy criteri-
on in which a spectral component is assumed to be unreli-
able if the energy in that component is less than the
estimated noise energy in it. In other words Yp(m, k) is
assumed to be unreliable if

|Yp(m, k)| ≤ |N̂p(m, k)|. (21)

The SNR criterion, on the other hand, identifies spectral bands
as unreliable if the estimated SNR of any spectral component
lies below 0 dB. To estimate the SNR, an estimate of the power
spectrum of clean speech is required. This is obtained by spec-
tral subtraction, i.e., by subtracting the estimated power spec-
trum of the noise from the power spectrum of the noisy speech
signal as follows [7]:

X̂p(m, k) =






Yp(m, k) − N̂p(m, k),
if Yp(m, k) − N̂p(m, k) > γ Yp(m, k)

γ Yp(m, k),
otherwise,

(22)

where X̂p(m, k) represents the estimate of the k th spectral
component of the power spectrum of the clean speech signal in
the m th analysis window. The parameter γ is a small flooring
factor meant to ensure that the estimated power spectrum for
the clean speech does not go negative. The SNR criterion states
that a spectral component Yp(m, k) is to be assumed unreliable
if the estimated power spectrum of the underlying clean speech
is lower than the power spectrum of the noise, i.e., if
X̂p(m, k) < N̂p(m, k). Alternately stated, Yp(m, k) is deemed
unreliable if less than half the energy in Yp(m, k) is attributable
to speech, i.e., if

X̂p(m, k) < 0.5Yp(m, k). (23)

In practice, the best mask estimates are obtained when both
the negative energy criterion of (21) and the SNR criterion of
(23) are used to identify unreliable spectral components.
Figure 3(b) shows an example of a spectrographic mask
obtained by noise estimation. In general, noise-estimate-based
estimation of spectrographic masks may be expected to be
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effective when the corrupting noises are stationary or pseudo-
stationary. For nonstationary and transient noises, however, the
estimation of the noise spectrum is difficult and this technique
can result in highly inaccurate spectrographic masks.

BAYESIAN ESTIMATION OF SPECTROGRAPHIC MASKS
The Bayesian approach to estimating spectrographic masks
treats the tagging of spectral elements as reliable versus unreli-
able as a binary classification problem. Renevey et al. [31] use
estimates of the distribution of noise to compute an explicit
probability that the noise energy in any spectral component
exceeds the speech energy in it. In this article, however, we
describe an alternative technique presented by Seltzer et al. [35]
that does not depend entirely on explicit characterization of the
noise. Here, a set of features is computed for every time-fre-
quency location of the spectrogram. Features are designed that
exploit the characteristics of the speech signal itself, rather
than measurements of the corrupting noise. These features are
then input to a conventional Bayesian classifier to determine
whether a specific time-frequency component is reliable.

We note that each time-frequency location in the spectrogram
actually represents a window of time and a band of frequencies.
The features extracted for any time-frequency location are
designed to represent the characteristics of the signal compo-
nents within the corresponding frequency band, in the given win-
dow of time. The features for any time-frequency location (m, k)
include 1) the ratio of the first and second autocorrelation peaks
of the signal within that window, 2) the ratio of the total energy in
the k th frequency band to the total energy of all frequency bands,
3) the kurtosis of the signal samples within the mth frame of
speech, 4) the variance of the spectrographic components adjoin-
ing (m, k), and 5) the ratio of the energy within Yp(m, k) to the
estimated energy of the noise Np(m, k). The noise estimate is
obtained using the procedure outlined in (20). Note that the esti-
mated SNR is only one of the features used and is not the sole
determinant of reliability. In addition to the features described

above, for voiced regions of speech, an additional feature is
derived that measures the ratio of the energy of the signal at all
harmonics of the pitch frequency that lie within the k th frequen-
cy band [for a location (m, k)], to the energy in frequencies
between the pitch harmonics. The pitch estimate required by this
feature is obtained with a pitch estimation algorithm.

Separate classifiers are trained for voiced and unvoiced
speech, and for each frequency band, using training data for
which the true spectrographic masks are known (e.g., clean
speech signals that have been digitally corrupted by noise). All
distributions are modeled as a mixture of Gaussians, the param-
eters of which are learned from the feature vectors of appropri-
ately labeled spectral components of the training data (e.g., the
distribution of reliable voiced components in the k th frequency
band is learned from the feature vectors of reliable components
in the k th frequency band of voiced portions of the training
data). The a priori probabilities of the reliable and unreliable
classes for each classifier are also learned from training data.

During recognition, noisy speech recordings are first segregat-
ed into voiced and unvoiced segments (typically using a pitch
detection algorithm; segments where it fails to estimate a reason-
able pitch value are assumed to be unvoiced). The appropriate fea-
ture vectors are then computed for each time-frequency location.
The (m, k)th time-frequency location is classified as reliable if

PV,k(reliable)PV,k(F(m, k)|reliable)

> PV,k(unreliable)PV,k(F(m, k)|unreliable) (24)

where F(m, k) is the feature vector for (m, k), V is a voicing tag
that indicates whether F(m, k) belongs to a voiced segment or
not, PV,k(reliable) represents the a priori probability that the
k th frequency component of a spectral vector with voicing tag
V is reliable, and PV,k(F|reliable) represents the distribution of
feature vectors of reliable components in the k th frequency
band of speech segments with voicing tag V.

[FIG3] (a) An ideal spectrographic mask for an utterance corrupted to an SNR of 10 dB by white noise. Reliable time-frequency
components have been identified based on their known SNR. An SNR threshold of 0 dB has been used to generate this mask. (b)
Spectrographic mask for the same utterance obtained by estimating the local SNR of the signal. (c) Spectrographic mask obtained by
using Bayesian classification.
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Figure 3(c) shows an example of a spectrographic mask
obtained using the Bayesian approach. We observe that the
Bayesian mask is superior to the noise-estimate-based mask
in this example. In general,
since Bayesian mask estima-
tion is not strictly dependent
on the availability of good
estimates of the noise spec-
trum (as the estimated SNR
is only one of the features
used), it is effective both for
stationary and nonstationary noises. For example, Seltzer et
al. [35] report that effective spectrographic masks can be
derived using the Bayesian approach for speech corrupted by
music, whereas masks derived from noise estimates are total-
ly ineffective. Nevertheless, Bayesian mask estimation may be
expected to fail when the spectral characteristics of the noise
are similar to those of speech, such as when the corrupting
signal is speech from a competing speaker. The Bayesian
mask also has the advantage that the classifier computes the
probability of unreliability P(unreliable|F(m, k)). These prob-
abilities can be used in conjunction with the soft-mask tech-
nique described later in this article.

MASK ESTIMATION FROM PERCEPTUAL CRITERIA
This approach attempts to identify groups of speech-like spectral
components based on the physics of sound and selected proper-
ties of the human auditory system. For example, in voiced
speech, most of the energy tends to occur around the harmonics
of the fundamental frequency. Barker et al. [4] propose that
within each frame of speech that is identified as voiced and has a
valid pitch estimate, all
time-frequency compo-
nents that occur at the
harmonics of the pitch
may be assumed to be
reliable and represent
speech. Such masks,
however, have been
found to be most effec-
tive when used in con-
junction with other
masks, such as noise-
estimate based masks;
any spectral component
that is identified as reli-
able by either mask is
assumed to be reliable.
Palomaki et al. [24] have
described a binaural
processing model that
extracts information
about interaural time
delays and intensity dif-
ferences to identify the

reliable time-frequency regions in a representation of a complex
auditory scene that are believed to arise from a common
azimuth. By passing these reliable components to a missing fea-

ture recognizer similar to the
fragment decoder described
below, Palomaki et al. have
demonstrated that the use of
cues extracted using binaural
processing can lead to a very
substantial improvement in
speech recognition accuracy

when the target speech signal and interfering signals arrive
from different azimuths.

Spectrographic masks that are derived from perceptual prin-
ciples are based entirely on the known structural patterns of
speech spectra and are not dependent on noise estimates in any
manner. As a result, this approach can result in effective spec-
trographic masks even in very difficult environments, e.g., in
the presence of competing speech signals.

DEALING WITH UNCERTAINTY IN MASK ESTIMATION
Regardless of the actual technique employed, it is never possible
to identify unreliable spectral components with complete cer-
tainty. Errors in the spectrographic mask can cause the recogni-
tion performance of missing feature methods to degrade
significantly. Figure 4 describes the recognition accuracy
obtained with various missing feature methods, comparing the
accuracy obtained using oracle spectrographic masks (that are
obtained with knowledge of the true SNR of the spectral compo-
nents) to the accuracy obtained using masks that were estimated
blindly from the incoming data. The degradation in recognition

[FIG4] Recognition accuracy for speech corrupted by white noise as a function of SNR using two different
missing feature methods. (a) Recognition accuracy obtained using marginalization. Recognition is
performed using log-spectral vectors. (b) Recognition accuracy obtained using cluster-based reconstruction.
Recognition is performed with cepstral vectors derived from reconstructed spectrograms. In both panels,
the triangular symbols show recognition performance obtained with ideal spectrographic masks, while the
diamonds show recognition accuracy with estimated spectral masks. The square symbols show the
recognition accuracy of a matched recognizer that had been trained in the testing environment, while the
delta symbols at the bottom show the accuracy obtained when the recognizer is trained with clean speech. 
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accuracy due to errors in mask estimation is evident. We have
observed that erroneous tagging of reliable components as being
unreliable degrades recognition accuracy more than tagging
unreliable elements as reliable. More detailed analyzes of the
effects of mask estimation errors may be found in [28] and [35].

Two different remedies have been proposed to cope with the
effects of mask estimation errors. In the first approach, soft
masks are estimated that represent the probability that a given
spectral component is reliable (as opposed to a binary mask that
unambiguously tags spectral components as reliable or unreli-
able). In the second approach, the mask estimation is performed
as a part of the speech recognition process itself, with the expec-
tation that the detailed and precise statistical models for speech
that are used by the recognizer will also enable more accurate
estimation of masks.

SOFT MASKS
Under the soft-decision framework, each spectral element
Y(m, k) is assigned a probability γ = P(reliable|Y(m, k)) that it
is reliable and dominated by speech rather than noise. The prob-
ability of reliability is arrived at differently by different authors.
The Bayesian mask estimation algorithms of Seltzer et al. [35]
and Renevey et al. [31] can be used to obtain γ directly. Barker
et al. [6] employ an alternate approach, approximating γ as a
sigmoidal function of the estimated SNR of Y(m, k).

γ ≈ 1
1 + exp(−α(SNR(m, k) − β))

. (25)

The SNR itself is estimated from the estimated differences in
level between speech and noise, using the procedures
described previously. Typical values for α and β are 3.0 and 0.0,
respectively.

Morris et al. [22] show that marginalization based on soft
masks can be implemented with a relatively minor modification
to the bounded marginalization algorithm of (19) for HMM-
based speech recognition systems that model state output densi-
ties as mixtures of Gaussians with diagonal covariance matrices:

P(Y|s) =
∑

k

∏

j

×


γ

e
−(Y( j)−µs,k( j))2

2σs,k( j)

√
2πσs,k( j)

+ (1 − γ )

Y(l)

∫ Y(l)

0

e
−(x−µs,k(l))2

2σs,k( j)

√
2πσs,k(l)

dx


 .

(26)

Note that in (26) Y(l ) is the l th component of Y; (26) is equiva-
lent to a model that assumes that spectral features are corrupted
by a noise process that leaves them unchanged with a probabili-
ty γ , or with a probability 1 − γ adds to them a random value
drawn from a uniform probability distribution in the range
(0, Y(l )). We also note that marginalization is the only missing

feature technique that can utilize soft masks effectively, since
other techniques require unambiguous identification of unreli-
able spectral components.

SIMULTANEOUS RECOGNITION AND MASK ESTIMATION
Possibly the most sophisticated missing feature technique is the
speech fragment decoder proposed by Barker et al. [3], [5]. In
the speech fragment decoder the search mechanism used by the
speech recognizer is modified to derive the optimal spectro-
graphic mask jointly with the optimal word sequence. In order
to do this, the Bayesian classification equation given in (5) is
modified to become

Ŵ, Ŝ = arg max
W,S

{P(W, S|Y)} (27)

where S represents any spectrographic mask and Ŝ represents
the optimal mask, and Y represents the entire spectral vector
sequence for the noisy speech. Letting X be the ideal spectral
vector sequence for the clean speech underlying Y, this can be
shown to be equal to

Ŵ, Ŝ = arg max
W,S

{
P(W)

(∫
P(X|W)

P(X|S, Y)

P(X)
dX

)
P(S|Y)

}

(28)

where P(S|Y) represents the probability of spectrographic mask
S given the noisy spectral vector sequence Y, which is assumed
to be independent of the word sequence W. In practical imple-
mentations of HMM-based speech recognition systems, the
optimal state sequence is determined along with the best word
sequence. The corresponding modification to (27) used by the
speech fragment decoder is

Ŵ, Ŝ = arg max
W,S

max
s




P(S|Y)P(W)P(s|W)

×
(

∏

m

∫
P(X(t)|sm)

P(X(t)|S, Y)

P(X(m))
dX(m)

)


. (29)

Here s represents a state sequence through the HMM for W,
sm represents the mth state in the sequence, P(s|W) repre-
sents the a priori probability of s and is obtained from the
transition probabilities of the HMM for W , X(m) represents
the mth vector in X, and P(X|s) represents the state output
density of s.

Let S(m) represent the spectrographic mask vector for
Y(m). Let U(m) represent the set of spectral components of
Y(m) that are tagged as unreliable (or, alternately, as belonging
to the background noise) by S(m). Let R(m) be the set of fre-
quency bands that are identified as reliable. Let Y(m, j) and
X(m, j) represent the j th component of Y(m) and X(m),
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respectively. All state output densities are modeled as mixtures
of Gaussians with diagonal covariance matrices, as given by (16).
By further assuming that the conditional probabilities
P(X(m, j)|S, Y ) are independent for the various values of j, and
that P(X(m, j)|S, Y ) is 0 for X(m, j) > Y(m, j) and propor-
tional to P(X(m, j)) otherwise, and finally that the a priori
probability of X(m, j) is a uniform density between 0 and xmax,
the acoustic probability term within the parentheses on the
right hand side of (29) is computed as

∫
P(X(m)|sm)

P(X(m)|S, Y)

P(X(m))
dX(m)

=
∑

k

cst,k

∏

j∈R(m)

e
−(Y(m, j)−µs,k( j))2

2σs,k( j)

∏

l∈U(m)

∫ Y(m,l)

0
e

−(x−µs,k( j))2

2σs,k( j) xmax

Y(m, l)
dx (30)

A complete implementation of (29) requires exhaustive evalu-
ation of every possible spectrographic mask and is computa-
tionally infeasible. Instead, the fragment decoder hypothesizes
a large number of fragments or regions of the spectrogram
within which all components are assumed to belong together.
Fragments may be hypothesized based on various criteria
including SNR and acoustic cues such as harmonicity. Joint
recognition and search for the optimal spectrographic mask is
performed only over spectrographic masks that may be
formed as combinations of these fragments. Barker et al.
implement this procedure using a token-passing algorithm
that is described in [3].

The fragment-decoding approach has been shown by Barker
et al. to be more effective than simple bounded marginaliza-
tion. It also has the advantage over other missing feature meth-
ods that it can be easily extended to recognize multiple mixed
signals, such as those obtained from the combined speech of
multiple simultaneous talkers. The only requirement is that the
precomputed fragments group spectral components from a
single speaker accurately.

ADDITIONAL PROCESSING OF SPECTRAL INPUT
The discussion thus far has assumed implicitly that recognition
is performed directly using the incoming spectral vectors as fea-
tures. However, most speech recognizers preprocess incoming
feature vectors in various ways in order to improve recognition
accuracy. For example, recognizers usually use cepstra derived
from log spectral vectors, rather than the log-spectral vectors
themselves, because cepstral vectors are known to result in
significantly greater accuracy [13]. Recognition systems that
use feature-vector imputation can work from cepstral vectors
since these can be derived from the complete spectral vectors
reconstructed by this approach. On the other hand, classifier-
modification methods are generally ineffective for recognizers
that work from cepstral vectors, since they require information
that characterizes the reliability of each component of the

incoming feature vectors, and such information is available
only for spectral vectors.

Other common types of preprocessing of incoming feature
vectors include augmentation using difference vectors and
mean normalization of feature vectors. Again, while these
manipulations do not pose problems for feature-vector recon-
struction methods, classifier-modification methods must be
modified to accommodate them, and they in turn constrain the
specific missing feature methods that can be employed.

TEMPORAL-DIFFERENCE FEATURES
In most recognizers, the basic feature vector at any time is
augmented by difference and double-difference vectors.
Difference vectors represent the trend, or velocity, of the fea-
ture vectors and are usually obtained as the difference
between adjacent feature vectors. The use of this information
partially compensates for the commonly used but clearly inac-
curate assumption that features extracted from successive
analysis frames are statistically independent. The difference
vector for frame m is obtained as

D(m) = Y(m + ξ) − Y(m − ξ) (31)

where D(m, k), the k th component of D(m) becomes unreli-
able if either Y(m + ξ, k) or Y(m − ξ, k) is unreliable. Double
difference vectors represent the acceleration of the spectral
vectors and are computed as the difference between adjacent
difference vectors:

DD(m) = D(m + ζ ) − D(m − ζ ) (32)

DD(m, k) is unreliable if either D(m + ζ, k) or D(m − ζ, k) is
unreliable. In the worst case, difference vectors may have as
much as twice as many unreliable components on average as
the spectral vectors, while double difference vectors may
have up to four times as many unreliable components. In
practice, however, unreliable components tend to occur in
contiguous patches, and the fraction of components in the
difference and double difference vectors that are unreliable
tends not to be much greater than those of the spectral vec-
tors themselves.

The upper and lower bounds on the values of unreliable
difference and double difference vector components must be
computed from the bounds on (or values of) the spectral compo-
nents of which they are composed. For methods that use soft
masks, the reliability probability of these terms must also be
derived from the reliability probabilities of the spectral compo-
nents from which they were computed.

MEAN NORMALIZATION
Mean normalization [2] refers to the procedure by which the
mean feature vector of any sequence of feature vectors is sub-
tracted from all vectors in the sequence, so that the resulting
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sequence has zero mean. In symbolic terms, the mth normal-
ized vector Ȳ(m) of any sequence of feature vectors
Y(1), Y(2), . . . , Y(M) is computed as

Ȳ(m) = Y(m) − 1
M

∑

m
Y(m). (33)

Mean normalization is commonly observed to result in large
improvements in the recognition accuracy of automatic
speech recognitions systems.
Unfortunately, mean normal-
ization as described by (33)
cannot be performed with
classifier-modifying missing
feature methods because
many components of the fea-
ture vectors used for recogni-
tion are potentially
unreliable. The mean value
of all vectors, as used in (33), would include the contributions
of these unreliable components and would be unreliable itself,
and normalization by such a mean estimate results in degrada-
tion of recognition performance [30]. Alternately, the mean
value could be computed from only the reliable components of
the spectrogram. Unfortunately, the reliable regions of spec-
trograms contain chiefly high-energy spectral components,
and mean estimates obtained from them tend to be biased,
again resulting in degraded recognition performance.

A useful substitute for mean normalization has been pro-
posed by Palomaki et al. [25]. Instead of subtracting the mean
value of the spectral vector, every spectral component is nor-
malized by a value that represents the upper percentile of the
values for that component. Using this approach, Ȳ(m, k), the
normalized value of Y(m, k), is computed as

Ȳ(m, k) = Y(m, k) − 1
D

∑

τ∈L

Y(τ, k) (34)

where L represents the set of frame indices of the D greatest
Y(m, k) values that are reliable. Palomaki et al. [25] observe
that five is a good value for D, although lower values are also
effective. This approach has the advantage that the normaliza-
tion term does not get biased by the presence of unreliable com-
ponents in the spectrum. Thus, the normalization given by [34]
can be effectively used with missing feature methods.

EXPERIMENTAL RESULTS AND DISCUSSION
In this section we discuss and compare various aspects of miss-
ing feature methods and their relative merits. Where possible,
we present experimental evidence in support of our statements.
We note that missing feature methods remains an active area of
research and that the techniques presented in this article have
been developed by a number of people from a variety of
research groups. Since not all of these researchers have worked

on all aspects of the problem, it is not possible to identify a con-
sistent set of results that have all been obtained on the same
systems and databases. Consequently, the experimental results
we present in this article have been culled from a number of
papers and sources. We have attempted to maintain a modicum
of consistency where possible; most of the results described
have been obtained from experiments conducted in the
authors’ laboratory at Carnegie Mellon University (CMU). The
CMU experiments were conducted using the Resource
Management database [26], with the Sphinx-3 HMM-based

speech recognition system,
with 2,000 tied state distribu-
tions with Gaussian state out-
put densities. We have mainly
presented results for speech
corrupted by white noise,
although similar results have
also been obtained using
other noise types. Other
results reported in this article

have been drawn from experiments conducted at the University
of Sheffield and elsewhere, using the TI digits database. Where
we report such results, the details of the experimental setup
used for the experiments have been provided.

Speech is a highly redundant signal, with the evidence for
any acoustic event being multiply represented in several fre-
quency bands, often over several tens of milliseconds of time.
Raj et al. [28] report that speech recognition performance does
not degrade significantly when a randomly selected 80% of the
elements are excised from a spectrogram and recognition is per-
formed with only the remaining elements. Similar results have
been reported by other researchers, e.g., Cooke et al. [9]. The
missing feature approach therefore promises to be highly effec-
tive for noise-robust speech recognition. Traditionally, the best
strategy to recognize speech that has been corrupted by station-
ary noise has been to train a matched recognizer with speech
that had been corrupted to the same level by the same kind of
noise. Figure 4(a) and (b) compares the recognition accuracy
obtained using matched recognizers on speech corrupted to var-
ious SNRs by white noise, with the performance obtained with
two different missing feature methods using ideal spectrograph-
ic masks that had been derived with perfect knowledge of the
true SNR of every spectrographic element, as well as using rec-
ognizers that had been trained with clean speech. The recogni-
tion accuracy performance obtained with the missing feature
method is observed to be comparable to that obtained with a
matched recognizer.

In practice, spectrographic masks must be estimated, and
the recognition accuracy obtained with estimated masks (also
shown in Figure 4) is significantly worse than that obtained
using ideal masks. Nevertheless, missing feature methods have
the advantage that the recognizer need not be retrained for
every noise type or level, and they also hold the promise that
the performance could improve significantly with improved
mask estimation. More importantly, matched recognizers can-

MISSING FEATURE METHODS MODEL
THE EFFECTS OF NOISE ON SPEECH
AS THE CORRUPTION OF REGIONS

OF TIME-FREQUENCY
REPRESENTATIONS OF THE

SPEECH SIGNAL.
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not be trained for most practical situations, since the level and
characteristics of the noise change even within the course of
an utterance. Instead, multistyle recognizers are trained that
attempt to strike an effective compromise across all the
observed noise types and levels. Experiments reported by
Barker et al. [4] (Figure 5) show that missing feature methods
can outperform such recognizers even when the spectrograph-
ic masks are estimated.

As noted earlier, highly nonstationary noises such as music
pose special problems for speech recognition systems.
Conventional noise compensa-
tion schemes are rendered
ineffective by such noises.
However, missing feature
methods have been shown to
result in significant improve-
ments in recognition accuracy
even on such noises (Figure 6).

Not all missing feature
methods are equivalent and useful in all situations, however,
and different implementations have different characteristics.
The SNR threshold that is used to determine which signal com-
ponents are unreliable is typically higher for classifier-modifica-
tion methods than for feature-imputation methods. For missing
feature methods with relatively low SNR thresholds for unrelia-
bility, even spectral components tagged as reliable often have a
certain degree of noise. For such methods, reducing the noise
level in these components using a technique such a spectral
subtraction improves recognition accuracy [28]. For methods
for which the SNR threshold for reliability is relatively high,
spectral subtraction does not greatly improve accuracy.

Of the various missing feature methods, only marginaliza-
tion and its derivative algorithms (soft-mask marginalization
and fragment decoding) purport to perform optimal classifica-

tion. Consequently the best recognition accuracy can be expected
from marginalization. Unfortunately, marginalization has the
disadvantage that recognition must be performed with spectral
vector sequences directly. In general, however, recognition accu-
racy obtained with cepstral vectors derived from spectral vectors
is much superior to that obtained with spectral vectors. Feature-
imputation methods that reconstruct entire spectrograms
enable recognition with cepstral vectors derived from the recon-
structed spectrograms. The benefits of going to the cepstral
domain often overcome the advantage gained by the optimal

classification performed with
spectral vectors in marginal-
ization, especially at high
SNRs. This is demonstrated in
Figure 7, which compares
recognition performance
obtained with spectral and
cepstral vectors using various
missing feature methods.

Figure 7 and other results reported in the literature also
shows that class-conditional imputation and covariance-based
reconstruction generally result in much poorer recognition
than either marginalization or cluster-based reconstruction.
However, these methods do have their uses. For example,
Josifovski et al. [19] report that class-conditional imputation is
highly effective for reconstruction of complete spectrograms
from partial or unreliable ones. Raj et al. [28] show that when
spectrographic components are lost due to random deletions
(e.g., due to loss during transmission), covariance-based recon-
struction, which draws on information from adjacent vectors to
reconstruct any missing component, is by far the best spectro-
gram reconstruction method.

[FIG5] Comparison of recognition accuracy obtained using
multistyle training and with soft-mask marginalization. The
experiment was conducted on Test Set A of the Aurora corpus.
Recognition was performed with spectral vectors.
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[FIG6] Recognition accuracy for speech corrupted by music. The
spectrographic mask was estimated using a Bayesian classifier,
and unreliable components were reconstructed by cluster-based
reconstruction. Recognition was performed using cepstra derived
from reconstructed spectrograms. The lower curve shows the
recognition accuracy obtained when no missing feature methods
were used. The RM database was used for this experiment, and
the recognizer was trained with clean speech.
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THE MOST DIFFICULT ASPECT OF
MISSING FEATURE METHODS IS THE

ESTIMATION OF THE SPECTROGRAPHIC
MASKS THAT IDENTIFY UNRELIABLE

SPECTRAL COMPONENTS.



In considering the data in Figure 7 it should be noted that
the relatively poor recognition results obtained using spectral
coefficients may be partially accounted for by the fact that
recognition was performed using 20-dimensional log-spectral
features, with single-Gaussian HMM output distributions and
no cepstral mean normalization or similar processing. Cepstral
mean normalization was not employed in these experiments
because it cannot be meaningfully applied for the marginaliza-

tion method for the reasons discussed earlier. Cooke and his
colleagues have suggested that the difference between the
recognition accuracy obtained with spectral and cepstral vec-
tors may be greatly reduced (although perhaps not eliminated)
by using more detailed state output distributions for the
HMMs. They have also noted that cepstral vectors are intrinsi-
cally able to provide a greater degree of normalization for level
and spectral tilt than log-spectral features computed without

mean normalization.
A serious problem for

missing feature methods
is that mask estimation
is an unreliable process,
and estimated masks are
often errorful. Of all the
missing feature meth-
ods, marginalization is
the most robust to mask
estimation errors. The
soft-mask variant of
m a r g i n a l i z a t i o n
described previously can
result in greater robust-
ness to uncertainty in
mask estimation, as
demonstrated by the
results in Figure 8
obtained by Barker et al.
[6]. The fragment de-
coder described previ-
ously is, in principle, the
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[FIG9] Comparison of recognition accuracy obtained by fragment
decoding (squares) with that obtained by bounded
marginalization (triangles). Recognition was performed with
spectral vectors for both missing feature methods. Baseline
recognition accuracy with mel frequency cepstral coefficients,
using cepstral mean normalization, is also shown. The TI-digits
database was corrupted by noise samples from the NOISEX
database for this experiment.
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[FIG8] Comparison of recognition accuracy obtained using soft-
mask marginalization (squares) with the accuracy obtained using
conventional bounded marginalization (triangles) on speech
corrupted by Lynx helicopter noise. The TI digits corpus has been
used for this experiment. Recognition was performed with
spectral vectors. The baseline performance obtained without
missing-feature methods is also shown. 
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[FIG7] Recognition accuracy obtained with various missing feature methods on speech corrupted by
white noise. (a) shows the performance obtained with classifier-modification methods on a recognizer
that works with spectral vectors. Recognition accuracy is obtained using marginalization (square symbols)
and state-based imputation (triangles). (b) shows recognition performance obtained with cepstra derived
from spectrograms reconstructed by the feature-imputation methods of cluster-based imputation (circles)
and correlation-based imputation (stars). These results are compared with results obtained using front
ends that do not perform missing feature analysis: spectral subtraction (diamonds), and baseline
performance (deltas). 
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optimal method for mask estimation since it actually uses the
recognizer itself to identify the best mask and can result in
significant improvements over the recognition accuracy
obtained when spectrographic masks are computed separately
from the recognizer. Typical results are illustrated in Figure 9,
using data provided by Barker et al. [3]. In practice, its per-
formance is limited by the accuracy of the hypothesized frag-
ments that are themselves obtained using other, potentially
errorful techniques. These errors can be reduced by hypothe-
sizing smaller fragments with greater likelihood of consisten-
cy, at the cost of increased computation.

The inability to perform additional processing such as
mean subtraction has sometimes been considered a problem
for classifier-modification-based missing feature methods.
Nevertheless, the technique proposed by Palomaki et al. [25]
described previously provides a good substitute for CMN that
can be used with missing feature methods. Unfortunately, no
mechanism has been developed to take advantage of either this
technique or difference vectors for soft-mask methods or frag-
ment decoders.

The dramatic and consistent success enjoyed by the miss-
ing feature techniques described in this article may cause one
to question why these approaches have not been widely
employed in state-of-the-art large vocabulary continuous
speech recognition (LVCSR) systems such as those developed
for the Defense Advanced Research Projects Agency (DARPA)
Broadcast News and Switchboard tasks. While there are proba-
bly a number of reasons for this (including the observations
that some algorithms are somewhat computationally costly
and that the field has only stabilized significantly in recent
years), it is certainly the case that the speech signals encoun-
tered in tasks like Broadcast News and Switchboard are more
degraded by the effects of speaking style and disfluencies in
speech production than they are by background noise. We
expect that missing feature techniques will be employed much
more widely in tasks for which there is significant degradation
due to noise and especially if the sources in noise are nonsta-
tionary or transient in nature.

A final topic that has not been explored significantly is the
issue of training with noisy data. Conventional recognizers have
benefited greatly when they have been trained with the kind of
noisy speech that they are expected to recognize. Missing
feature methods, on the other hand, are usually developed with-
in the paradigm of training the recognizer with clean data. It is
likely that the performance of these methods would improve
further if the recognizer itself has been trained with incomplete
or unreliable spectrograms obtained from noisy speech. While
the mathematics of such a training procedure are well known,
the topic itself remains to be explored.

SUMMARY
In this article we have reviewed a wide variety of techniques
based on the identification of missing spectral features that
have proved effective in reducing the error rates of automatic
speech recognition systems. These approaches have been con-

spicuously effective in ameliorating the effects of transient
maskers such as impulsive noise or background music. We
described two broad classes of missing feature algorithms:
feature-vector imputation algorithms (which restore unreliable
components of incoming feature vectors) and classifier-
modification algorithms (which dynamically reconfigure the
classifier itself to cope with the effects of unreliable feature
components). We reviewed the mathematics of four major 
missing feature techniques: the feature-imputation techniques
of cluster-based reconstruction and covariance-based recon-
struction, and the classifier-modification methods of class-
conditional imputation and marginalization. We then consid-
ered the very difficult task of estimating the spectrographic
masks that identify which components of incoming spectral
vectors are unreliable, focusing on the estimation of spectro-
graphic masks from estimates of statistical parameters that rep-
resent characteristics of the noise, as well as Bayesian
estimation methods that typically exploit characteristics of the
speech to be recognized. We concluded our discussion of spec-
trographic masks with a description of how uncertainty in the
estimation can be incorporated into the recognition process,
describing soft-mask techniques, and fragment-decoding sys-
tems that simultaneously recognize the spectrographic masks
and the incoming spoken utterance. We also discussed the
ways in which the common feature extraction procedures of
cepstral analysis, temporal-difference features, and mean sub-
traction can be handled by speech recognition systems that
make use of missing feature techniques. We concluded with a
discussion of a small number of selected experimental results.
These results confirm the effectiveness of all types of missing
feature approaches discussed in ameliorating the effects of both
stationary and transient noise, as well as the particular effec-
tiveness of both soft masks and fragment decoding.
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