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Abstract

Speech recognition systems perform poorly in the presence of corrupting noise. Missing feature methods attempt to

compensate for the noise by removing noise corrupted components of spectrographic representations of noisy speech

and performing recognition with the remaining reliable components. Conventional classifier-compensation methods

modify the recognition system to work with the incomplete representations so obtained. This constrains them to per-

form recognition using spectrographic features which are known to be less optimal than cepstra. In this paper we pre-

sent two missing-feature algorithms that reconstruct complete spectrograms from incomplete noisy ones. Cepstral

vectors can now be derived from the reconstructed spectrograms for recognition. The first algorithm uses MAP proce-

dures to estimate corrupt components from their correlations with reliable components. The second algorithm clusters

spectral vectors of clean speech. Corrupt components of noisy speech are estimated from the distribution of the cluster

that the analysis frame is identified with. Experiments show that, although conventional classifier-compensation meth-

ods are superior when recognition is performed with spectrographic features, cepstra derived from the reconstructed

spectrograms result in better recognition performance overall. The proposed methods are also less expensive comput-

ationally and do not require modification of the recognizer.

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Automatic speech recognition (ASR) systems

perform poorly when the speech to be recognized

is corrupted by noise, especially when the system
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has been trained on clean speech. Several algo-

rithms have been proposed in the literature to

compensate for the effects of noise on ASR sys-

tems. Most of these algorithms attempt to charac-

terize the noise and model its effects on the speech

signal explicitly (e.g. Varga and Moore, 1990;
Acero, 1993; Gales and Young, 1996; Moreno,

1996) in order to compensate for it. The perform-

ance of these algorithms is usually critically
ed.
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dependent on the ability to measure the noise char-

acteristics accurately, and they frequently fail to be

effective when such measurement is difficult, such

as when the noise is non-stationary (Raj et al.,

1997).
In the mid-1990s researchers at the university of

Sheffield proposed an alternative approach to

noise compensation, the missing feature approach,

that is based on exploitation of the inherent redun-

dancy in the speech signal, rather than on explicit

characterization of the noise (Cooke et al., 1994a).

Speech signals have a large degree of redundancy

built into them. For instance, speech that has been
either high-pass filtered or low-pass filtered with a

cutoff frequency of 1800 Hz remains perfectly

intelligible (Fletcher, 1953). Similarly, speech that

has undergone excision of spectral bands (Warren

et al., 1995) or short temporal regions (Miller and

Licklider, 1950) remains intelligible. Hence, one

may hope to recognize speech effectively using only

a fraction of the spectro-temporal information in
the speech signal. To exploit this fact, missing fea-

ture methods represent speech using spectro-

graphic time-frequency representations (that we

will refer to as spectrograms in this paper), that

consist of sequences of power spectral or log spec-

tral vectors (which we generically refer to as spec-

tral vectors in the rest of this paper). When the

speech is corrupted by noise, some of the time-fre-
quency components of this representation are

more corrupted than others. The missing feature

approach deems low-SNR time-frequency compo-

nents as unreliable, and recognition is performed

using only the remaining reliable components.

The unreliable components are thus effectively as-

sumed to be missing, and only the incomplete

spectrographic information represented by the reli-
able components is assumed to be available.

In the two original algorithms proposed by the

Sheffield group, recognition was performed by

HMM-based recognizers directly with the incom-

plete spectrographic information from the reliable

time-frequency components (Cooke et al., 1997).

Since conventional HMM-based recognizers can-

not perform recognition with incomplete represen-
tations, their algorithms modified the manner in

which state output probabilities were computed

within the recognizer. In the first algorithm, re-
ferred to as state-based imputation, computation

of the output probability of any spectral vector,

for any state, is accomplished by replacing unreli-

able components of the vector by maximum

a posteriori (MAP) or minimum mean squared
error (MMSE) estimates obtained from the relia-

ble time-frequency components, computed from

the distribution of that state. In the second algo-

rithm, referred to as marginalization, the unreliable

components are integrated out of the state output

distributions. This latter approach is equivalent to

the optimal classifier or recognizer, given the

incomplete data. Later improvements to the algo-
rithms incorporated the assumption that the value

of any unreliable time-frequency component repre-

sents an upper bound on the true value of that

component, i.e. the value that component would

have had in the absence of corrupting noise, when

the noise is additive and uncorrelated to the speech.

This places an upper bound on the estimates of the

unreliable components for state-based imputation
(Josifovski et al., 1999). For marginalization, this

places an upper limit on the integral that must be

computed to marginalize out unreliable compo-

nents from class distributions (Cooke et al., 2001).

Since these methods modify the recognizer itself,

we refer to them as classifier-compensation methods

in this paper.

While both state-based imputation and margi-
nalization have been shown to be extremely effec-

tive in compensating for noise, they suffer from

several drawbacks. For them to be applicable,

the state output distributions of the recognizer

must represent the distributions of the spectral

vectors where the reliable and unreliable compo-

nents are identified. Recognition must therefore

be performed with spectral vectors. However,
speech recognition performance obtained using

cepstral vectors has been found to be significantly

superior to that obtained with spectral vectors

(Davis and Mermelstein, 1980). It is infeasible to

perform state-based imputation or marginalization

effectively on cepstra-based recognizers since the

distributions of spectral vectors cannot be derived

from those of the lower-dimensional cepstral vec-
tors. Another important drawback is that the rec-

ognizer must be modified to implement these

algorithms. As a result, they can only be used in
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situations where one has access to the internals of

the recognizer. There are other less serious prob-

lems as well. Utterance-level preprocessing steps,

such as mean and variance normalization, that

are known to improve recognition performance,
cannot be performed with incomplete spectro-

graphic data. The use of difference and double dif-

ference features, though possible, becomes more

difficult and less effective. All these problems arise

from the fact that these are classifier-compensation

methods that attempt to perform recognition di-

rectly with the incomplete spectrograms, modify-

ing the recognizer to account for the missing
components.

In this paper we present two missing-feature

algorithms that take an alternative approach: they

reconstruct complete spectrograms from the incom-

plete ones prior to recognition. To achieve this, the

true values of the unreliable time-frequency com-

ponents of the spectrogram are estimated from

the reliable components and the known statistical
relationships between the various components of

the spectrogram. Cepstral vectors can now be de-

rived from the spectral vectors in the reconstructed

spectrograms, for recognition. Utterance level

processing such as mean normalization can also

be performed. Recognition performance with the

normalized cepstral vectors so obtained is fre-

quently much better than that obtained by margi-
nalization, which performs optimal recognition

based on incomplete spectral vectors. Equally

importantly, the recognizer itself need not be mod-

ified in any manner. This permits the usage of any

form of recognizer, including off-the-shelf com-

mercial recognizers that can take cepstral vectors

as input. Since these algorithms work only on

incoming feature vectors, we refer to them as fea-
ture-compensation methods.

Feature-compensation missing-feature algo-

rithms have previously been reported by other

researchers. Most algorithms model the distribu-

tion of the spectral vectors of clean speech as

Gaussian mixtures. Dupont (1998) and Raj et al.

(1998) compute a posteriori probabilities of all

the Gaussians in the mixture from the reliable
components of spectral vectors, ignoring unrelia-

ble components altogether. These probabilities

are then used for MMSE estimation of unreliable
components. Renevey (2001) adapts the parame-

ters of the Gaussians in the mixture to the noise

conditions of the speech to be recognized, using

explicit characterizations of the noise distribu-

tions. A posteriori probabilities of all Gaussians
in the mixture are computed using the modified

distributions and used to obtain MMSE estimates

of unreliable components.

In contrast, the two algorithms reported in this

paper do not require explicit characterization of

distributions of the noise. Further, they utilize

information from unreliable spectrographic com-

ponents by assuming that their observed values
are upper bounds on their true values. Correla-

tion-based reconstruction is based on a simple sta-

tistical model that represents the sequence of

spectral vectors in the spectrogram as the output

of a stationary Gaussian random process. A

bounded version of the MAP estimation procedure

is used to estimate unreliable components, based

on the statistical parameters of this process. Clus-
ter-based reconstruction is based on the more con-

ventional Gaussian mixture representations of the

distributions of clean speech. The reconstruction

uses the bounded MAP estimation procedure to

obtain Gaussian specific estimates of unreliable

components, which are then combined into a final

estimate.

A crucial component of missing feature meth-
ods is the identification of unreliable components

in the spectrograms. Several solutions have been

proposed for this problem in the literature (e.g.

Cooke et al., 1994a,b; Drygajlo and El-Maliki,

1998; Vizhinho et al., 1999; Renevey and Drygajlo,

1999). These methods can be largely categorized

into two: those that are derived from computa-

tional auditory scene analysis of the signal, and
those that depend in some manner on tracking

or measuring the corrupting noise. In this paper

we treat the identification of noisy components

as a Bayesian classification problem. This algo-

rithm does not depend on characterizations of

the distributions of the noise, performing classifi-

cation based only on features measured from the

noisy signal instead. We only provide a brief out-
line of the algorithm used in this paper. Additional

details of the algorithm are presented in a compan-

ion paper (Seltzer et al., 2004).
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The rest of this paper is arranged as follows: in

Section 2 we give a brief description of the spectro-

graphic representation used in the missing feature

work described in this paper. In Section 3 we de-

fine some notations used in the rest of the paper.
In Section 4 we briefly describe conventional

state-based imputation and marginalization. In

Section 5 we describe the proposed algorithms:

covariance-based reconstruction and cluster-based

reconstruction. In Section 6 we outline the method

used to identify noise-corrupted components of

the spectrogram. In Section 7 we describe several

experimental results. Finally, in Section 8 we pre-
sent our conclusions.
2. Spectrographic representations

In all of our work the spectrographic represen-

tation used for the speech signal has been the Mel

spectral representation (O�Shaughnessy, 1987), or
the Mel spectrogram. This consists of a sequence

of Mel log-spectral vectors, each of which repre-

sents the frequency warped log spectrum of a short

frame of speech, typically 20 ms wide. Fig. 1a

shows the Mel spectrogram of a typical clean

speech signal.

Additive noise affects different regions of the

Mel spectrogram differently. Fig. 1b shows the
Fig. 1. (a) Mel spectrogram of a clean speech signal. The utterance i

spectrogram of the same signal when it has been corrupted to 10 dB
Mel spectrogram of the signal in Fig. 1a, when it

has been corrupted to 10 dB by white noise. Com-

parison of the two figures shows that while some

regions are relatively unaffected by the noise, oth-

ers are badly corrupted. The degree of corruption
of any time-frequency component of the spectro-

gram is dependent on the SNR of that component.

Missing feature methods assume that the effect of

the noise is to render all low-SNR regions unrelia-

ble. Thus, all time-frequency components that

have an SNR below a particular threshold are as-

sumed to be unreliable. However, the values of

these unreliable components are assumed to be
the upper bound on their true values, i.e. the value

that they would have had in the absence of cor-

rupting noise. This is based on the assumption that

the noise is additive and uncorrelated to the

speech. All time-frequency components whose

SNR lies above the threshold are assumed to be

reliable, and good approximations to their true

values. The optimal value of the threshold is differ-
ent for different missing-feature methods, and also

varies with the global SNR of the noisy signal. In

general, however, the threshold �5 dB was empir-

ically found to be close to optimal across a wide

variety of SNRs for the methods reported in this

paper and for state-based imputation. For margi-

nalization, the optimal threshold was found to be

0 dB.
s ‘‘show locations and C-ratings of all deployed subs’’. (b) Mel

by white noise.
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3. Notation

Before proceeding, we establish some of the

notation and terminology used in the rest of the

paper. Every frame of incoming speech has under-
lying clean speech that has been corrupted by noise

to result in the observed noisy speech. Corre-

sponding to the tth frame of noisy speech, there

is a measured noisy spectral vector Y(t). The vec-

tor Y(t) has a set of reliable components, that we

arrange into a vector Yr(t) and a set of unreliable

components, which we arrange into the vector

Yu(t). We refer to Yu(t) as the unreliable component

vector of Y(t) and to Yr(t) as the reliable component

vector of Y(t). Y(t) is a union of the two vectors.

We can express the relation between Y(t), Yr(t)

and Yu(t) as

Y rðtÞ ¼ RðtÞY ðtÞ
Y uðtÞ ¼ UðtÞY ðtÞ
Y ðtÞ ¼ AðtÞ½Y rðtÞTY uðtÞT�T

ð1Þ

where R(t) and U(t) are permutation matrices that

select the reliable and unreliable components

respectively of Y(t) and arrange them into Yr(t)

and Yu(t), the superscripted �T� represents transpo-
sition, [Yr(t)

TYu(t)
T]T is a vector constructed by

concatenating the transposes of Yr(t) and Yu(t),

and A(t) is the permutation matrix that rearranges
the components of [Yr(t)

TYu(t)
T]T to give Y(t).

Corresponding to the noisy spectrogram, i.e.

the spectrogram of the noisy speech, is a true

spectrogram which is the spectrogram that would

have been computed had the signal not been cor-

rupted by noise. Corresponding to each noisy

spectral vector Y(t) from the noisy spectrogram,

there is a true spectral vector X(t) from the true
spectrogram. The components of X(t) that corre-

spond to the reliable and unreliable components

of Y(t) can also be arranged into vectors Xr(t)

and Xu(t). Xr(t) and Xu(t) are related to Yr(t) and

Yu(t) as follows:

X rðtÞ � Y rðtÞ
X uðtÞ6 Y uðtÞ

ð2Þ

We refer to the components of Xu(t) as the unreli-

ably known components of X(t), since their value is

not known, and to Xu(t) as the unreliably known
component vector of X(t). Similarly we refer to

the components of Xr(t) as the reliably known com-

ponents of X(t), and to Xr(t) as the reliably known

component vector of X(t).
4. Classifier-compensation methods

In this section we briefly describe how state-

based imputation and marginalization modify the

computation of state output probabilities in

HMM-based speech recognition systems. Both

algorithms have been well documented in various
papers, and we only recapitulate the salient points

here for reference. For more detailed information

the reader is referred to the several papers on the

subject (e.g. Lippmann and Carlson, 1997; Cooke

et al., 2001).

4.1. State-based imputation

In most HMM-based systems state output

probabilities are modelled as mixtures of Gaus-

sians. For any vector X(t) with reliably known

component vector Xr(t) and unreliably known

component vector Xu(t), the state output prob-

ability of a state s, P(X(t)js), can be expressed

as

PðX ðtÞjsÞ ¼ P ðX rðtÞ;X uðtÞjsÞ

¼
X
j

cj;sGðX rðtÞ;X uðtÞ; lj;s;Hj;sÞ ð3Þ

where G(Xr(t), Xu(t);lj,s, Hj,s) represents the jth

Gaussian in the mixture Gaussian density for s

with mean vector lj,s and covariance matrix Hj,s,

and cj,s is the mixture weight of the jth Gaussian.

For any noisy spectral vector Y(t), one would ide-

ally compute the state output probability of the
underlying true vector X(t). State-based imputa-

tion approximates this as

PðX ðtÞjsÞ ¼ P ðY rðtÞ; bX s

uðtÞjsÞ

¼
X
j

cj;sGðY rðtÞ; bX s

uðtÞ; lj;s;Hj;sÞ ð4Þ

where bX s

uðtÞ is an MMSE estimate of Xu(t) ob-

tained from Yr(t) and the output distribution of s
(Josifovski et al., 1999), computed as
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bX s

uðtÞ ¼
X
j

cj;sðY ðtÞÞUðtÞlj;s ð5Þ

where U(t) is the permutation matrix that selects

unreliable components from Y(t) to form Yu(t)
and

cj;sðY ðtÞÞ

¼
cj;s

R Y uðtÞ
�1 GðY rðtÞ;X uðtÞ; lj;sHj;sÞdX uðtÞP

k
ck;s

R Y uðtÞ
�1 GðY rðtÞ;X uðtÞ; lk;s;Hk;sÞdX uðtÞ

ð6Þ

While other forms of the estimate for bX s

uðtÞ
have also been proposed (e.g. Renevey, 2001) the

basic principle behind the implementation of the

algorithm remains unchanged.
4.2. Marginalization

In marginalization, the unreliable components

of the state distributions are simply integrated

out of the state output distributions. State output

probabilities are computed as P(Yr(t), Xu(t) 6

Yu(t)js). When state output densities are modelled

by mixtures of Gaussians the state output density

value for state is computed as

P ðY rðtÞ;X uðtÞ6 Y uðtÞjsÞ

¼
X
k

ck;s

Z Y uðtÞ

�1
GðY rðtÞ;X uðtÞ; lk;s;Hk;sÞdX uðtÞ

ð7Þ
5. Feature-compensation methods

The methods described in Section 4 modify the

recognizer in order to perform recognition with

incomplete spectrographic information. In this
section we present two new feature-compensation

algorithms, correlation-based reconstruction and

cluster-based reconstruction, that reconstruct com-

plete spectrograms from the incomplete ones.

These algorithms estimate the true value of the

unreliable spectrographic components from the

reliable components. The simplest method of esti-

mating these values is by simple interpolation
between the closest reliable components. However,

as reported by Raj (2000), simple interpolation-

based reconstruction is ineffective for spectrograms

of noisy speech signals. Instead, the algorithms

presented in this section estimate unreliable spect-
rographic components based on the known statis-

tical properties of spectral vectors. We describe the

algorithms in greater detail in the following

subsections.

5.1. Correlation-based reconstruction

In correlation-based reconstruction the se-
quence of spectral vectors that constitute the

spectrogram of a clean speech signal are consid-

ered to be the output of a Gaussian wide-sense sta-

tionary (WSS) random process (Papoulis, 1991).

All clean speech spectrograms are assumed to be

individual observations of the same process. The

assumption of wide-sense stationarity implies that

the means of the spectral vectors and the covari-
ances between components of the spectrogram

are independent of their position in the spectro-

gram. If we represent the mean of the kth compo-

nent of the tth spectral vector X(t, k) of an

utterance as l(t, k), and the covariance between

the k1th component of the t1th spectral vector

X(t1, k1) and the k2th component of the t2th spec-

tral vector X(t2, k2) as c(t1, t2, k1, k2), we have

lðt; kÞ ¼ E½X ðt; kÞ�
cðt1; t2; k1; k2Þ

¼ E½ðX ðt1; k1Þ � lðt1; k1ÞÞðX ðt2; k2Þ � lðt2; k2ÞÞ�
ð8Þ

where E[ ] stands for the expectation operator. The

assumption of wide-sense stationarity gives us the

following properties for these parameters:

lðt; kÞ ¼ lðt1; kÞ ¼ lðkÞ ð9Þ

cðt; t þ s; k1; k2Þ ¼ cðt1; t1 þ s; k1; k2Þ
¼ cðs; k1; k2Þ ð10Þ

In other words, the expected value l(k) of the kth

component of a spectral vector is not dependent
on where the vector occurs in the spectrogram.

Similarly, the covariance between the compo-

nents of two spectral vectors depends only on the
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distance s between the vectors (along the time axis)

and not on where the vectors occur in the spectro-

gram. The relative covariance r(t1, t1 + s, k1, k2)
between any two components X(t1, k1) and

X(t1 + s, k2) is also dependent only on s and is
given by

rðt1; t1 þ s; k1; k2Þ ¼ rðs; k1; k2Þ

¼ cðs; k1; k2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cð0; k1; k1Þcð0; k2; k2Þ

p ð11Þ

The means of the components of the spectral

vectors l(k) and the various covariance parame-
ters c(s, k1, k2) can be learnt from the spectro-

grams of a training corpus of clean speech. Let

Xj(t, k) represent the kth component of the tth

spectral vector from the jth training signal. The

various mean and covariance values can be esti-

mated as

lðkÞ ¼ 1P
j
Nj

X
j

X
t

X jðt; kÞ

cðs; k1; k2Þ ¼
1P

j
ðNj � sÞ

X
j

X
t

ðX jðt; k1Þ � lðk1ÞÞ

� ðX jðt þ s; k2Þ � lðk2ÞÞ
ð12Þ

Relative covariance values can be computed from

the covariance values using Eq. (11). The implica-
tion of the assumption of a Gaussian process is

that the joint distribution the components of all

the spectral vectors in a sequence of vectors is as-

sumed Gaussian. Consequently, the distribution

of any subset of these components is also Gaussian

(Papoulis, 1991). Thus, the estimated mean and

covariance values characterize the process com-

pletely and no other statistical parameters need
be estimated.

The task of reconstruction is to reconstruct the

underlying true spectral vector for every spectral

vector in the noisy spectrogram. Let Y(t) be the

noisy spectral vector whose true counterpart X(t)

must be reconstructed. As before, let Yu(t) and

Yr(t) be the unreliable and reliable component vec-

tors of Y(t), Xu(t) and Xr(t) the corresponding
counterparts from X(t). Xr(t) can be approximated

by Yr(t). Only Xu(t) must be estimated to recon-
struct X(t) completely. We now construct a neigh-

borhood vector Yn(t) from all reliable components

of the spectrogram that have a relative covariance

greater than a threshold value with at least one of

the components of Xu(t). Let Xn(t) be the underly-
ing true value of Yn(t). Since all the components of

Yn(t) are reliable, Xn(t) � Yn(t). The joint distribu-

tion of Xu(t) and Xn(t) is Gaussian. The parame-

ters of this distribution are the expected value of

Xu(t), lu(t), the expected value of Xn(t), ln(t), the

autocorrelation of Xu(t), Cuu(t), the autocorrela-

tion of Xn(t), Cnn(t), and the cross correlation be-

tween Xu(t) and Xn(t), Cun(t). These parameters
can all be constructed from the mean and covari-

ance terms learnt from the training corpus. Fig. 2

demonstrates the construction of Yu(t) and Yn(t)

and the parameters of their joint distribution with

an example. Xu(t) is now estimated as

bX uðtÞ ¼ argmaxX u
fP ðX uðtÞjX nðtÞ ¼ Y nðtÞ;

X uðtÞ6 Y uðtÞÞg ð13Þ

Denoting Xn(t) = Yn(t) as Yn(t) for simplicity, and

using Bayes rule, this can be rewritten as

bX uðtÞ ¼ argmaxX u
fP ðX uðtÞ;X uðtÞ6 Y uðtÞjY nðtÞÞg

ð14Þ

We refer to the estimate given by Eq. (14) as a

bounded MAP estimate. It can be shown that

P(Xu(t)jYn(t)), the distribution of Xu(t) condi-

tioned on Xn(t) being equal to Yn(t), is a Gaussian

with mean lðtÞ þ CunðtÞC�1
nn ðtÞðY nðtÞ � lnðtÞÞ. As

shown in Appendix A, the solution to Eq. (14)

can be obtained by the following iterative

procedure:
Let Xu(t, k) and Yu(t, k) be the kth components

of Xu(t) and Yu(t) respectively. Let the current esti-

mate of Xu(t, k) be X uðt; kÞ. The estimation proce-

dure can now be stated as follows:

1. Initialize X uðt; kÞ ¼ Y uðt; kÞ, 1 6 k 6 K, where

K is the total number of components in Xu(t).

2. For each of the K components
2a. Compute the MAP estimate

eX uðt; kÞ ¼ argmaxX uðt;kÞfP ðX uðt; kÞjY nðtÞ;
X uðt; jÞ 8j; j 6¼ kÞg ð15Þ
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Fig. 2. The figure represents a small spectrogram with four

spectral vectors, each with four components. The grey compo-

nents are missing. We wish to estimate all the missing

components in the second spectral vector jointly. These are

shown in a lighter shade of grey in the figure.1
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This is simply the mean of the Gaussian distri-

bution of Xu(t, k), conditioned on the reliable

values Yn(t) and on all other components of

Xu(t) being equal to their current estimates.

2b. Compute the bounded MAP estimate from

the MAP estimate as

X uðt; kÞ ¼ minðeX uðt; kÞ; Y uðt; kÞÞ ð16Þ
3. If all X uðt; kÞ estimates have converged, setbX uðt; kÞ ¼ X uðt; kÞ 8k to obtain Xu(t), else go

back to Step 2.
1 Yu(2) is constructed as

Y uð2Þ ¼ ½Y ð2; 1Þ; Y ð2; 3Þ�T

The neighborhood vector Yn(2) is constructed of all the components

These are represented by the components with the thick outlines. Th

Y nð2Þ ¼ ½Y ð1; 1Þ; Y ð1; 3Þ; Y ð2; 2Þ; Y ð3; 1Þ; Y ð3; 2Þ�T

The mean vectors for Xn(2) and Xu(2), the clean speech counterparts

E½X nð2Þ� ¼ lnð2Þ ¼ ½lð1Þ;lð3Þ;lð2Þ;lð1Þ; lð2Þ�T

E½X uð2Þ� ¼ luð2Þ ¼ ½lð1Þ;lð3Þ�

The autocovariance matrix of Xn(2) is a 5 · 5 matrix constructed as

Cnnð2Þ ¼

cð0; 1; 1Þ cð0; 1; 3Þ cð1; 1; 2Þ cð2; 1; 1Þ cð2; 1
cð0; 3; 1Þ cð0; 3; 3Þ cð1; 3; 2Þ cð2; 3; 1Þ cð2; 3
cð�1; 2; 1Þ cð�1; 2; 3Þ cð0; 2; 2Þ cð1; 2; 1Þ cð1; 2
cð�2; 1; 1Þ cð�2; 1; 3Þ cð�1; 1; 2Þ cð0; 1; 1Þ cð0; 1
cð�2; 2; 1Þ cð�2; 2; 3Þ cð�1; 2; 2Þ cð0; 2; 1Þ cð0; 2

2
6666664

The cross covariance between Xu(2) and Xn(2) is a 2 · 5 matrix const

Cunð2Þ ¼
cð�1; 1; 1Þ cð�1; 1; 3Þ cð0; 1; 2Þ cð1; 1; 1Þ cð1; 1; 2
cð�1; 3; 1Þ cð�1; 3; 3Þ cð0; 3; 2Þ cð1; 3; 1Þ cð1; 3; 2

�

Xu(t) is estimated as described above for each

spectral vector in the spectrogram. This, combined

with the reliable components, reconstructs the en-
tire spectrogram.

5.2. Cluster-based reconstruction

In cluster-based reconstruction the sequence of

spectral vectors in the spectrogram is modelled as

the output of an independent, identically distrib-

uted (IID) random process. Unreliable compo-
nents of spectral vectors are reconstructed based

on their statistical relationships to the reliable

components from the same vector. This is in con-

trast to the assumptions behind correlation-based

reconstruction, where all components of the

spectrogram were assumed to be correlated and

unreliable components of a vector were recon-

structed based on their statistical relationship to
reliable components in neighboring vectors as well.

In cluster-based reconstruction, the spectral

vectors of clean speech are assumed to be segre-

gated into a number of clusters. Each cluster is as-

sumed to have a Gaussian distribution. The

distribution of the kth cluster is thus given by
Y(t,k), such that either r(t�2,1,k) P 0.5, or r(t�2,3,k) P 0.5.

is gives us

of Yn(2) and Yu(2), are constructed as

; 2Þ
; 2Þ
; 2Þ
; 2Þ
; 2Þ

3
7777775

ructed as

Þ
Þ

�T
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Fig. 3. Schematic representation of cluster-based reconstruc-

tion. The large ellipse represents the outline of the distribution

of a set of two-dimensional vectors. The data has been

segregated into a number of small clusters, represented by the

smaller ellipses. The solid line represents a complete vector. The

Y component of this vector is unreliable and only the X

component, represented by the dotted line along the X axis, is

reliably known. The cluster-based reconstruction method iden-

tifies the thick ellipse as the cluster that the complete vector

belongs to, and uses the distribution of that cluster to obtain a

bounded MAP estimate for the Y component, and thereby the

complete vector, represented by the dashed line.
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P ðX jkÞ ¼
expð� 1

2
ðX � lkÞ

TH�1
k ðX � lkÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2pÞd jHkj
q ð17Þ

where X represents an arbitrary vector from the

kth cluster, d represents the dimensionality of X,

and lk and Hk represent the mean vector and

covariance matrix of the kth cluster, respectively.

The overall distribution of spectral vectors is thus

a mixture Gaussian given by

P ðX Þ ¼
XK
k¼1

ckP ðX jkÞ

¼
XK
k¼1

ckffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞd jHkj

q
� exp � 1

2
ðX � lkÞ

TH�1
k ðX � lkÞ

� �
ð18Þ

where ck is the a priori probability of the kth clus-

ter. The a priori probabilities, means, and covari-
ances of the clusters must all be learnt from a

training corpus. This can be done by explicitly

clustering the spectral vectors of the training data

using techniques such as the LBG algorithm

(Linde et al., 1980) or k-means clustering (Mc-

Queen, 1967), and estimating the a priori probabil-

ities and the distribution parameters of the

individual clusters thereafter. In this paper, how-
ever, we compute all parameters jointly from the

training corpus using the expectation maximiza-

tion (EM) algorithm (Dempster et al., 1977).

The parameters learnt from the training data

can be used to reconstruct the underlying true

spectral vector for any noisy spectral vector. The

unreliably known components of the true spectral

vector can be estimated by determining the cluster
to which the vector belongs, and estimating them

from the distribution of that cluster. This concept

is illustrated by Fig. 3. Identifying the correct clus-

ter for any spectral vector is a classification prob-

lem. As always, this can be errorful, especially

since the vectors are noisy and incomplete. To ac-

count for this, we obtain a separate estimate for

the unreliable components from the distribution
of each of clusters. This results in as many esti-

mates as there are clusters. The final estimate is a

weighted average of all the estimates, where the
weight of any estimate obtained from the distribu-
tion of any cluster is the a posteriori probability of

that cluster, given the reliable components of that

vector.

Let Y(t) represent the noisy vector for which the

underlying true vector X(t) must be reconstructed.

The reliably known component vector of X(t),

Xr(t), can be approximated by the reliable compo-

nent vector of Y(t), Yr(t). The unreliably known
component vector Xu(t) must be estimated. The

estimate for Xu(t) obtained from the distribution

of the kth cluster, bX k

uðtÞ is given by

bX k

uðtÞ ¼ argmaxX u
fP ðX uðtÞjk;X uðtÞ6 Y uðtÞ;

X rðtÞ ¼ Y rðtÞÞg ð19Þ

where P(Xu(t)jk, Xu(t) 6 Yu(t), Xr(t) = Yr(t)) is

the distribution of Xu(t), conditioned on X(t)

belonging to the kth cluster, Xu(t) being no greater

than Yu(t), and Xr(t) being equal to Yr(t). Using
Bayes� rule and representing Xr(t) = Yr(t) simply

as Yr(t), this can be written as
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bX k

uðtÞ ¼ argmaxX u
fP ðX uðtÞ;X uðtÞ6 Y uðtÞjk; Y rðtÞÞg

ð20Þ
The operation in Eq. (20) represents the

bounded MAP estimation procedure described in

Section 5.1. Since all cluster distributions are
Gaussian, P(Xu(t)jk, Yr(t)) is also Gaussian. The

mean of the kth cluster, lk, can be partitioned into

the two vectors lk,u(t), the expected value of Xu(t),

and lk,r(t), which represents the means of the

components of Xr(t). The components of the

covariance matrix of the kth cluster, Hk, that cor-

respond to Xu(t) and Xr(t) can be separated into

Hk,uu(t) and Hk,rr(t) respectively. The cross-corre-
lation between Xu(t) and, Xr(t), Hk,ur(t) can also

be derived from Hk. From these terms, the

bounded MAP estimate of Xu(t) for the kth cluster

can be obtained using the procedure described in

Section 5.1 and Appendix A. The overall estimate

of Xu(t) is given by

bX uðtÞ ¼
XK
k¼1

P ðkjY rðtÞ;X uðtÞ6 Y uðtÞÞbX k

uðtÞ ð21Þ

where P(kjYr(t), Xu(t) 6 Yu(t)) is the a posteriori

probability of the kth cluster and is given by

P ðkjY rðtÞ;X uðtÞ6 Y uðtÞÞ

¼ ckP ðY rðtÞ;X uðtÞ6 Y uðtÞjkÞPK
j¼1

cjP ðY rðtÞ;X uðtÞ6 Y uðtÞjjÞ
ð22Þ

In order to compute the term P(Yr(t), Xu(t) 6

Yu(t)jk), P(X(t)jk), must be stated explicitly in

terms of the reliably known and unreliably known

component vectors of X(t). This gives us

P ðX ðtÞjkÞ ¼ P ðX rðtÞ;X uðtÞjkÞ
P ðY rðtÞ;X uðtÞ6 Y uðtÞjkÞ

¼
Z Y uðtÞ

�1
P ðY rðtÞ;X uðtÞjkÞ dX uðtÞ ð23Þ

The term to the right is difficult to compute when
P(X(t)jk) is a Gaussian with non-zero off-diagonal

elements in its covariance matrix. We therefore

consider only the diagonal components of the

covariance matrices when computing the a posteri-

ori probabilities of clusters, assuming all other

components to be 0. Under this assumption, the
Gaussian distribution of the kth cluster can be ex-

pressed as

P ðX ðtÞjkÞ ¼
Y
i

exp � ðX ðt;iÞ�lkðiÞÞ
2

2hkðiÞ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2phkðiÞ

p ð24Þ

where lk(i) is the ith component of lk and hk(i) is
the ith diagonal element of Hk. P(X(t)jk) can now

be separated out in terms of the reliably known

and unreliably known components of X(t) as

P ðX ðtÞjkÞ ¼
Y

ijX ðt;iÞ2X rðtÞ

exp � ðX ðt;iÞ�lkðiÞÞ
2

2hkðiÞ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2phkðiÞ

p

�
Y

ijX ðt;iÞ2X uðtÞ

exp � ðX ðt;iÞ�lkðiÞÞ
2

2hkðiÞ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2phkðiÞ

p ð25Þ

The first product term in Eq. (25) computes the

probabilities of all reliably known components of

X(t), i.e. all components of Xr(t), and the second

product term computes the probability of all unre-

liably known components. P(Yr(t), Xu(t) 6 Yu(t)jk)
can now be computed as

P ðY rðtÞ;X uðtÞ6 Y uðtÞjkÞ

¼
Y

ijX ðt;iÞ2X rðtÞ

exp � ðY ðt;iÞ�lkðiÞÞ
2

2hkðiÞ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2phkðiÞ

p

¼
Y

ijX ðt;iÞ2X uðtÞ

Z Y ðt;iÞ

�1

exp � ðX ðt;iÞ�lkðiÞÞ
2

2hkðiÞ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2phkðiÞ

p dX ðt; iÞ

ð26Þ

The a posteriori probabilities of the clusters, i.e.

the P(kjYr(t), Xu(t) 6 Yu(t)) terms, can now be

computed from the P(Yr(t), Xu(t) 6 Yu(t)jk) val-

ues using Eq. (22). bX uðtÞ can subsequently be esti-

mated using Eq. (21).

We note finally that in order to accommodate

most completely the assumption of diagonal

covariance matrices used in the estimation of clus-
ter a posteriori probabilities, we initially estimate

the distribution parameters of all clusters assuming

diagonal covariance matrices in the implementa-

tion of the EM algorithm. We then compute full

covariance matrices for all the clusters in a final

pass of the algorithm.
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6. Identifying unreliable components of the spectro-

gram

For missing-feature methods to be practicable,

unreliable spectrographic components must be
identified without a priori knowledge of their

SNR. The two main approaches to this are based

on computational auditory scene analysis (CASA)

(e.g. Cooke et al., 1994a,b), and on explicit noise

tracking (e.g. Drygajlo and El-Maliki, 1998; Viz-

hinho et al., 1999). CASA-based methods attempt

to identify the reliable regions of the spectrogram

based on acoustic cues and the known behavior
of acoustic signals (e.g. grouping of spectral bands,

harmonicity, etc.). Noise-tracking-based methods,

on the other hand, attempt to maintain a running

estimate of the noise spectrum and use this to

determine which components of the spectrogram

are unreliable.

In this paper we chose to use a Bayesian classi-

fier to identify noisy components of the spectro-
gram. This reduces the task of identifying

unreliable spectrographic components to a simple

binary classification procedure. The features used

in classification are designed to exploit the charac-

teristics of the speech signal itself. Two of the

features, used for voiced speech segments, charac-

terize the harmonicity and periodicity often present
Fig. 4. (a) Mel spectrogram of the signal in Fig. 1b, when all compon

white regions of the figure represent unreliable components. (b) Mel

regions has been estimated. The white regions in the figure represen

unreliable.
in the signal. Additional features, used for both

voiced and unvoiced speech, capture information

about the subband energy levels and spectral con-

tour across frequency. Details of the mask-estima-

tion classifier can be found in (Seltzer et al., 2004).
Fig. 4a shows the spectrogram from Fig. 1b, when

unreliable components in the spectrogram have

been identified from their known SNR values and

removed. Fig. 4b shows the same figure when the

identity of the unreliable components has been esti-

mated by the Bayesian classifier used in this paper.
7. Experimental evalution

In this section we describe a series of experiments

conducted to evaluate the recognition accuracy ob-

tained using the proposed feature-compensation

methods, and to contrast this with the accuracy ob-

tained using state-based imputation and marginali-

zation. Experiments were conducted on speech
corrupted by white noise and segments of music.

These noise types represent two extremes of spec-

tral and temporal distortions—white noise has a

flat spectrum and is stationary, while music has a

very detailed spectral structure and is highly non-

stationary. We initially describe experiments with

‘‘oracle’’ (or perfect) knowledge of the local SNR
ents with SNR less than �5dB have been tagged unreliable. The

spectrogram for the same signal when the identity of unreliable

t components that have been identified by a classifier as being
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of time-frequency components in the spectrogram.

Within these experiments we evaluate the effect of

preprocessing and recognition with cepstra. These

experiments establish an upper bound on the recog-

nition performance obtainable with our experimen-
tal setup. We then describe results obtained from

experiments employing a more realistic scenario

where the locations of unreliable components must

be estimated.

7.1. Experimental setup

The DARPA Resource Management (RM1)
database (Price et al., 1988) and the CMU

SPHINX-III HMM-based speech recognition sys-

tem were used in all the experiments described in

this paper. Context-dependent HMMs with 2000

tied states were trained using both the log spectra

and cepstra of clean speech. State output distribu-

tions were modelled as Gaussian, except for the

experiments that evaluated the performance of
marginalization with more detailed state output

distributions. In the latter case, state output distri-

butions were modelled as mixtures of Gaussians. In

all cases, the Gaussians in the state output distribu-

tions were assumed to have diagonal covariance

matrices. A simple bigram language model was

used. The language weight was kept to a minimum

in all cases in order to emphasize the effect of the
noisy acoustics on recognition accuracy. A 20-

dimensional Mel spectral spectrographic represen-

tation was used in the experiments. Test utterances

were corrupted by white noise and randomly-cho-

sen samples of music from the Marketplace news

program, as appropriate. In all cases both the addi-

tive noise and the clean speech samples were avail-

able separately, making it possible to evaluate the
true SNR of any component in the spectrograms

of the noisy utterances.

7.2. Recognition performance with knowledge of

true SNR

Missing feature methods depend critically on

being able to identify unreliable regions of the
spectrogram as such. In the experiments described

in this section, we assume that this information is

available and accurate. The recognition perform-
ance obtained with the various missing feature

methods in this scenario represents an upper

bound on the performance that can be obtained

within the current experimental setup. Unreliable

components of spectrograms were identified based
on the true value of the SNR of time-frequency

components, the computation of which was per-

mitted by the experimental setup as explained in

Section 7.1. All components whose SNR values

lay below a threshold were deemed to be unrelia-

ble. A threshold value of 0 dB was found to be

optimal or close to optimal at all SNRs for margi-

nalization. For state-based imputation and the
proposed feature-compensation methods, the best

threshold across all noise levels was found to be

�5 dB. The experiments reported in this section

used these threshold values to identify unreliable

components. For state-based imputation and

marginalization, recognition was performed with

the resulting incomplete spectrograms. For the fea-

ture-compensation methods, complete spectro-
grams were reconstructed. Fig. 5a and 5b show

example spectrograms obtained by reconstructing

unreliable components that have been estimated

from their known SNR values, using correlation-

based and cluster-based reconstruction. Recogni-

tion was performed using as features either the

log-spectral vectors from the reconstructed spectro-

gram, or 13-dimensional cepstral coefficients de-
rived from the log-spectral vectors.

7.2.1. Recognition with log spectra

Fig. 6 shows recognition accuracies obtained by

applying the various missing-feature methods to

speech corrupted by white noise and music to var-

ious SNRs. Recognition has been performed using

log-spectral vectors in all cases. For marginaliza-
tion, no mean normalization was performed on

the features. For all other methods mean normali-

zation was performed. In all cases, HMM state out-

put distributions were modelled as Gaussian. We

observe from these plots that marginalization is

capable of resulting in remarkable robustness to

corruption by noise. In fact, the recognition accu-

racy at 0 dB is only a relative 20% worse than that
obtained at 25 dB. All other methods provide sig-

nificant improvements over baseline recognition

performance (with noisy vectors), but are much



Fig. 5. Reconstruction of the Mel spectrogram in Fig. 4a. (a) Reconstruction obtained with correlation-based reconstruction when

unreliable components have been identified based on their SNR. (b) Reconstruction obtained with cluster-based reconstruction when

unreliable components have been identified based on their SNR. (c) Reconstruction obtained with correlation-based reconstruction

when the identities of unreliable components have been estimated. (d) Reconstruction obtained with cluster-based reconstruction when

the identities of unreliable components have been estimated.
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worse that marginalization. This is to be expected

when recognition is performed with log spectra,

since, as mentioned in Section 4.2, marginalization

performs optimal classification with the unreliable

data, whereas the other methods do not. Feature-

compensation methods do, however, perform com-

parably to, or better than state-based imputation.

7.2.2. Effect of preprocessing

The effect of preprocessing the signal is different

on different missing feature methods. One form of
preprocessing commonly used is mean normaliza-

tion. In this procedure the mean value of the fea-

ture vectors is subtracted from all the vectors.

This is known to result in significant improvement

in recognition performance. When missing-feature

methods are applied however, it is not clear

whether this procedure is useful. Fig. 7a shows the

effect of mean normalization on the recognition
accuracy obtained with various missing-feature

methods on speech corrupted to 10 dB by white

noise. Both reliable and unreliable components
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Fig. 6. Recognition performance of various missing feature methods on noisy speech, when unreliable components are located on the

basis of their SNR values: (a) speech corrupted by white noise; (b) speech corrupted by music. In both figures the baseline recognition

performance with the uncompensated noisy speech is also shown.
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were used in computing the mean value of the vec-

tors in all cases. We observe that mean normaliza-
tion is useful in all cases where estimation of

unreliable components is performed, i.e. for the

feature-compensation methods and state-based

imputation. For marginalization however, mean

normalization actually results in a degradation of

performance.
A basic assumption in missing feature methods is

that the reliable components of noisy spectral vec-
tors are good approximations to corresponding

components of the underlying true vector. This,

however, is not necessarily true, since the compo-

nents that are identified as reliable can have fairly

low SNR values, depending on the SNR threshold

used to identify reliable components. When the
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corrupting noise is stationary or slowly varying,

such as white noise, automobile noise, or factory

noise, the spectrum of the noise can be reasonably

well estimated and the SNR of the reliable compo-

nents can be improved by performing spectral sub-
traction (Boll, 1979) as a preprocessing step. Fig. 7b

shows the recognition performance obtained by the

various methods on speech corrupted by white

noise, when reliable spectral components have been

preprocessed by spectral subtraction. As expected,

spectral subtraction improves the performance of

feature-compensation methods, as well as state-

based imputation. However, it degrades the recog-
nition performance of marginalization.

7.2.3. Recognition with cepstra

One of the primary arguments for spectrogram

reconstruction methods is that the reconstructed

spectrograms can now be used to derive cepstral

features, and recognition can be performed with

cepstra to obtain superior recognition perform-
ance. Fig. 8 shows the recognition results obtained

with such a setup. Recognition with cepstra is

greatly superior to that with log spectra. Compar-

ison with Fig. 6 also shows that, although margi-

nalization greatly outperforms other methods

when recognition is performed with log spectra,

the recognition performance obtained with cepstra

derived from the reconstructed spectrograms re-
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7.3. Effect of errors in identifying unreliable

components

The experiments in the previous section only

served to establish the upper bound performance

obtainable for the various methods when location

of unreliable components in the spectrogram is

known a priori. In reality however, the location

of unreliable components must be estimated. The

estimation of these locations can be very errorful,
and different missing-feature methods have differ-

ing sensitivity to errors in identifying unreliable

components. Fig. 5c and d show the reconstructed

spectrograms obtained for the spectrogram in Fig.

4b, where the identity of unreliable components

was estimated. These figures are seen to be differ-

ent from those in Fig. 5a and b obtained with a

priori knowledge of the unreliable components.
Fig. 9 shows recognition accuracies obtained

for several missing-feature methods applied to

speech corrupted by white noise to 10 dB. Recog-

nition has been performed using log spectra in all

cases. We compare recognition accuracy obtained

using perfect ‘‘oracle’’ knowledge of the true SNR

values of spectrographic components to identify

unreliable feature locations with the corresponding
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accuracy obtained when the locations of unreliable

components are estimated from noisy data. Margi-

nalization shows the greatest robustness to errors
in estimation of unreliable components. In general,

the classifier-compensation methods are much

more robust to errors than the feature-compensa-

tion methods.

More detailed results are shown in Fig. 10,

which shows recognition accuracy obtained with

various missing-feature methods as a function of

SNR on speech corrupted by white noise and
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Fig. 10. Recognition performance of various missing feature methods

estimated: (a) speech corrupted by white noise; (b) speech corrupted
music, when the identity of the unreliable compo-

nents is estimated. In all cases, the HMM state

output distributions were modelled by single Gaus-

sians. Mean normalization was performed in the

case of the feature-compensation methods and
state-based imputation, but not for marginaliza-

tion. Both classifier-compensation methods, margi-

nalization and state-based imputation, are seen to

outperform the feature-compensation methods.

Marginalization, especially, is significantly superior

to all other methods. The difference between margi-

nalization and the other methods is further en-

hanced by its greater robustness to errors in
identifying unreliable components.

Once again, however, reconstructed spectro-

grams can be used to derive cepstra for recognition.

Fig. 11 shows the recognition performance ob-

tained on speech corrupted by white noise and

music with cepstra derived from spectrograms

reconstructed by the proposed feature-compensa-

tion methods. Comparison with Fig. 10 reveals that
even when the identities of unreliable components

must be estimated, the recognition accuracy ob-

tained with cepstra derived from reconstructed

spectrograms is greater than that obtained with

marginalization and log-spectra-based recognition.

In all experiments reported so far, state output

distributions have been modelled by single Gaus-

sians with diagonal covariances. It is likely that
the recognition performance of the classifier-
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Fig. 11. Recognition with cepstra derived from reconstructed spectrograms, when the identity of unreliable components is estimated:

(a) speech corrupted by white noise; (b) speech corrupted by music. As a contrast, baseline performance with the cepstra of noisy

speech, and in the case of the white noise, performance with spectral subtraction are also shown.
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compensation methods may be improved by mod-
elling state output distributions by mixtures of

Gaussians instead, thereby better capturing the

correlations between spectral components. Fig.

12 tests this hypothesis. It shows the recognition

performance obtained with marginalization when

state output distributions are modelled by mix-

tures of 1, 2, 4 and 8 Gaussians, for speech cor-

rupted by white noise and music, when the
identities of unreliable components are estimated.

The figure also shows the performance obtained
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Fig. 12. Recognition performance of marginalization on HMMs with

Gaussians, when the identities of unreliable components are estima

recognition on speech corrupted by music. Recognition is performe

performance obtained with cepstra derived from spectrograms recons
from cepstra derived from spectrograms recon-
structed by cluster-based reconstruction. It is seen

that although increasing the number of Gaussians

results in slightly better performance at higher

SNRs, it still remains inferior to that obtained

with the cepstra derived from reconstructed spectr-

ograms. While the small improvements in recogni-

tion performance resulting from increasing the

number of Gaussians in the state output densities
is explained by the size of the training corpus for

the RM1 database and greater improvements can
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be expected with larger training corpora, we do

not expect the trends in performance to change.

In general, the ability to perform cepstra-based

recognition easily outweighs the advantages due

to the optimal classification and those due to the
greater robustness to errors in estimating unrelia-

ble components that are characteristic of margi-

nalization. The advantage however diminishes as

the SNR decreases to 0 dB or so.

7.4. Reconstructing spectrograms from HMM state

sequences

In (Cooke et al., 1997) it has been suggested

that classifier-compensation methods could be

used to reconstruct spectrograms. One could, for

instance, derive the best state-sequence for the

utterance, and reconstruct the unreliable compo-

nents of the spectral vectors using the distributions

of the states with which they are associated. The

reconstructed vectors could now be converted to
cepstra for recognition. Fig. 13 shows the recogni-

tion accuracy obtained with cepstra derived from

log spectra reconstructed in this manner, when

state sequences were obtained using state-based

imputation and marginalization. We note that

overall, these methods are not more effective than

the proposed feature-compensation methods.

In this experiment, the structure of the recog-
nizer used to reconstruct the unreliable compo-

nents was as complex as that used for the final
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Fig. 13. Recognition accuracy using cepstra derived from log

spectra reconstructed using state sequences hypothesized by

classifier-compensation methods. Results are shown for speech

corrupted both by white noise and music.
recognition, i.e. both had as the same number of

tied states (2000), and modelled state output densi-

ties as Gaussians. In principle, however, the

HMMs used for the reconstruction can be much

simpler than those used for recognition. While
we have not explored this aspect, we point out that

cluster-based reconstruction may be viewed as a

limiting case where all states in the HMM used

for reconstruction share a single Gaussian mixture

distribution.

7.5. Computational complexity

The computational complexity of the various

missing-feature methods also varies. Fig. 14 shows

the average time in seconds taken by a 400-MHz

DEC Alpha to recognize an utterance of speech

from the RM database that has been corrupted

to 10 dB by white noise, using the various miss-

ing-feature methods. This includes the time taken

for computation of log spectra, reconstruction of
unreliable components, transformation to cepstra

in the case of the feature-compensation methods,

and recognition. The time taken for identifying

unreliable components is not included. Marginali-

zation is by far the most expensive of the methods.

Feature-compensation methods do not generally

increase the time taken for recognition signifi-

cantly over the baseline.
The differences in the computational require-

ments of the various methods is related to the math-

ematical operations underlying them. State-based
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utterance using different missing-feature methods.
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imputation and covariance-based reconstruction

only require MAP estimation of unreliable compo-

nents and are relatively inexpensive. On the other

hand, marginalization requires the computation

of an error function for every unreliable compo-
nent of a vector for every Gaussian in every

HMM state whose output probability is evaluated.

Cluster-based reconstruction similarly requires

computation of error functions for every unrelia-

ble component for every cluster in the cluster-

based representation. The number of Gaussians

in the state output distributions of the HMMs in

the recognizer is generally larger than that in the
Gaussian mixture densities employed in cluster-

based reconstruction. As a result, marginalization

is computationally more expensive than cluster-

based reconstruction.

Since the computational expense of marginali-

zation (and that of classifier-compensation meth-

ods in general) is a function of the number of

HMM states for which output probabilities must
be evaluated, it is also related to the perplexity of

the language model used by the recognizer. The

number of active hypotheses considered by the rec-

ognizer at any instant increases with the perplexity

of the language model used. This in turn increases

the number of HMM states that must be evaluated

for each frame, and hence the number of error

functions that must be computed. The computa-
tional complexity of all missing-feature methods

is also related to the SNR of the data. The number

of corrupted spectral components that must be

marginalized or reconstructed increases with

decreasing SNR. Decreasing SNR also has a sec-

ondary effect on classifier-compensation methods:

the number of active hypotheses considered by

the recognizer that survive pruning, and hence the
number of HMM states to be evaluated, usually in-

creases with decreasing SNR.

On the other hand, the actual computation re-

quired by the various methods is also dependent

on the manner in which they have been imple-

mented. For instance, the computation of error

functions can be considerably speeded up by the

use of lookup tables. This would speed up both
marginalization and cluster-based reconstruction,

the former more than the latter. Hence, while the

comparisons shown in Fig. 14 may be considered
indicative of the relative complexity of the various

methods, the actual computational complexity of

the methods would vary with the recognition task

and the specific implementation of the algorithms.
8. Conclusions

While the actual recognition results shown in

Section 7 are specific to a particular database,

experimental setup, and recognition system used,

they establish a set of very consistent trends. Of

all the missing feature methods, marginalization
is clearly the best when recognition is performed

with log spectral vectors. It results in the most

robustness to noise and errors in identifying unre-

liable components. It must be emphasized that

when recognition is performed in the feature do-

main where unreliable components are identified

(i.e. on spectra or log spectra), the best classifier-

compensation methods can always be expected to
outperform the best feature-compensation meth-

ods. In addition, in classifier-compensation meth-

ods the search algorithm used by the recognizer

can itself be modified to account for the uncer-

tainty in the location of corrupt spectrographic

components (e.g. Barker et al., 2003).

The proposed feature-compensation methods

are observed to result in better eventual recogni-
tion performance than marginalization primarily

because they permit recognition with cepstra de-

rived from the reconstructed spectrograms. Of

the two methods proposed, cluster-based recon-

struction provides significantly better accuracy

than correlation-based reconstruction. The latter

algorithm, however, has the advantages that it is

extremely simple, and that it provides better per-
formance than state-based imputation when recog-

nition is performed using cepstra. In addition, in

other experiments not reported in this paper corre-

lation-based reconstruction was found to be supe-

rior to cluster-based reconstruction when the loss

of spectrographic information was due to the ran-

dom excision of time-frequency components, e.g.

by loss during transmission, and not due to addi-
tive noise. The feature-compensation methods de-

scribed in this paper use only very simple

statistical models to represent the distribution of
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the spectral vectors of clean speech. It is expected

that their performance can be improved by using

more sophisticated models. Cluster-based recon-

struction is expected to gain by adding temporal

dependencies in the statistical model, either by
modelling the a priori probabilities using a Mar-

kov chain, effectively converting the Gaussian mix-

ture distribution to an HMM, or by modelling the

distribution of temporal derivatives of the vectors

jointly with the vectors, or by some combination

of the two. Similarly covariance-based reconstruc-

tion may be improved by modelling spectro-

grams as the output of a mixture of stochastic
processes.

Renevey and Drygajlo (2000) and Morris et al.

(2001) have shown that the performance of margi-

nalization may be improved significantly by associ-

ating a probability of reliability with spectrographic

components, rather than by tagging them as reliable

or not in a binary manner. Such probabilistic tag-

ging can also be incorporated into the methods pro-
posed in this paper.

Finally, it must be pointed out that the feature-

compensation methods are not limited to working

only with the statistical models used in this paper.

Since the basic idea behind these methods is to

reconstruct the spectrograms externally to the rec-

ognizer, other techniques, such as Kalman filters

or neural networks might also be used to recon-
struct the unreliable components.
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Appendix A. Iterative procedure for bounded MAP

estimation

The problem of joint bounded MAP estimation

is to find a set of values x̂1; x̂2; . . . ; x̂k such that
x̂1; x̂2; . . . ; x̂k ¼ argmaxx1;x2;...;xkfP ðx1; x2; . . . ; xkj
x1 6 Y 1; x2 6 Y 2; . . . ; xk 6 Y kÞg ðA:1Þ

We derive an iterative solution for this estimate in

this appendix.

Let xn1; x
n
2; . . . ; x

n
k be the estimate obtained after

the nth iteration of this procedure. If the n + 1th

estimate of x1 is obtained as

xnþ1
1 ¼ argmaxx1 P x1; xn2; . . . ; x

n
k j

��
x1 6 Y 1; x2 6 Y 2; . . . ; xk 6 Y kÞg ðA:2Þ

then it is easy to see that

P ðxnþ1
1 ; xn2; . . . ; x

n
k jx1 6 Y 1; x2 6 Y 2; . . . ; xk 6 Y kÞ

P Pðxn1; xn2; . . . ; xnk jx1 6 Y 1; x2 6 Y 2; . . . ; xk 6 Y kÞ
ðA:3Þ

Using Bayes� rule and eliminating all irrelevant

terms, Eq. (A.2) can be restated as

xnþ1
1 ¼ argmaxx1fP ðx1jx1 6 Y 1; xn2; . . . ; x

n
kÞg ðA:4Þ

which is simply the bounded MAP estimate of x1,
conditioned on xn2; . . . ; x

n
k . When Pðx1; xn2; . . . ; xnkÞ is

Gaussian, this is simply given by

xnþ1
1 ¼ minðY 1;E½x1jxn2; . . . ; xnk �Þ ðA:5Þ
It can similarly be shown that if the n + 1th esti-

mate of xj is obtained as

xnþ1
j ¼ argmaxx1fP ðxjjxnþ1

1 ; xnþ1
2 ; . . . ; xnþ1

j�1 ;

xj 6 Y j; xnjþ1; . . . ; x
n
kÞg ðA:6Þ

then

P ðxnþ1
1 ; xnþ1

2 ; . . . ; xnþ1
j�1 ; x

nþ1
j ; xnjþ1; . . . ; x

n
k j

x1 6 Y 1; x2 6 Y 2; . . . ; xk 6 Y kÞ

P Pðxnþ1
1 ; xnþ1

2 ; . . . ; xnþ1
j�1 ; x

n
j ; x

n
jþ1; . . . ; x

n
k j

x1 6 Y 1; x2 6 Y 2; . . . ; xk 6 Y kÞ ðA:7Þ

In other words, if we begin with some set of ini-

tial estimates x11; x
1
2; . . . ; x

1
k , and iteratively find the

n + 1th estimate of each xj as the bounded MAP

estimate of that component as given by Eq.

(A.6),P(x1, x2, . . . , xkjx1 6 Y1, x2 6 Y2, . . . , xk6
Yk) is guaranteed not to decrease at each step in

the iteration.

For Gaussian random variables, Eq. (A.6) can
be equivalently written as
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xnþ1
j ¼ minðY j;E½xjjxnþ1

1 ; xnþ1
2 ; . . . ; xnþ1

j�1 ; x
n
jþ1; . . . ; x

n
k �Þ

ðA:8Þ
When P(x1, x2, . . . , xk) is Gaussian, P(x1, x2,

. . . , xkjx1 6 Y1, x2 6 Y2, . . . , xk 6 Yk) has only

one peak. Thus, the iterative solution given by

Eq. (A.8) is guaranteed to find this peak, which

is the unique solution to Eq. (A.1). Therefore,

the iterative solution to the joint bounded MAP

estimation of a set of jointly Gaussian variables
x1, x2, . . . , xk conditioned on the bound x1 6

Y1, x2 6 Y2, . . . , xk 6 Yk is given by the follow-

ing procedure:

(1) Initialize all the xi values as x1i ¼ Y i

(2) Obtain the n + 1th estimate of xj as

xnþ1
j ¼ minðY j;E½xjjxnþ1

1 ; xnþ1
2 ; . . . ;

xnþ1
j�1 ; x

n
jþ1; . . . ; x

n
k �Þ

(3) Iterate until P(x1, x2, . . . , xkjx1 6 Y1, x2 6

Y2, . . . , xk 6 Yk) converges.
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