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PAbstract

This paper describes an algorithm called zero-crossing-based amplitude estimation (ZCAE) that enhances speech by reconstructing
the desired signal from a mixture of two signals using continuously-variable weighting factors, based on pre-processing that is motivated
by the well-known ability of the human auditory system to resolve spatially-separated signals. Although most conventional methods of
signal separation have been based on interaural time differences (ITDs) derived from cross-correlation information, the ZCAE approach
provides sound segregation based on estimates of ITD from comparisons of zero-crossings [Kim, Y.-I., An, S.J., Kil, R.M., Park, H.-M.,
2005. Sound segregation based on binaural zero-crossings. In: Proc. European Conf. on Speech Communication and Technology
(INTERSPEECH-2005), Lisbon, Portugal, pp. 2325–2328]. These ITD estimates are used to determine the relative contribution of
the desired source in a mixture and subsequently to reconstruct a closer approximation to the desired signal. The estimation of relative
target intensity in a given time-frequency segment is accomplished by analytically deriving a monotonic function that maps the estimated
ITD in each time-frequency segment to the putative relative intensity of each source. The ZCAE method is evaluated by comparing the
sample standard deviation of ITD estimates derived using cross-correlation and using zero-crossing information, by comparing the
speech recognition accuracy that is obtained by applying the proposed methods to speech in the presence of interfering speech sources,
and by comparing recognition accuracy obtained using a continuous weighting versus a binary weighting of the target and masker. It is
found that better results are obtained when ITDs are estimated using zero-crossing information rather than cross-correlation informa-
tion, and when continuous weighting functions are used in place of binary weighting of the target and masker in each time-frequency
segment.
� 2008 Elsevier B.V. All rights reserved.
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C1. Introduction

Noise robustness remains a very important issue in the
field of automatic speech recognition (ASR). While ASR
systems can achieve high recognition accuracy in controlled
and noise-free acoustic environments, the performance of
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these systems is seriously degraded in more realistic envi-
ronments which may be corrupted by noise and subjected
to other types of distortion. This degradation is mainly
due to differences between training and testing environ-
ments. Many algorithms have been proposed to compen-
sate for these mismatches (e.g. Juang, 1991; Singh et al.,
2002a,b). While these approaches can provide useful
improvements in recognition accuracy under many circum-
stances, they frequently fail to obtain high recognition
accuracy in dynamically changing environments with tran-
sient sources of disturbance, or in the presence of back-
ground speech or background music (e.g. Raj et al., 1997).
paration of speech signals using amplitude estimation ..., Speech
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In contrast, humans can understand speech even in the
presence of competing speech or other noise sources (e.g.
Assmann and Summerfield, 2004). This observation has
motivated the development of many types of signal pro-
cessing approaches based on aspects of human auditory
perception (e.g. Hermansky, 1998; Wang and Brown,
2006). In his treatise on auditory scene analysis (ASA),
Bregman (1990) identified various cues that are believed
to be used by the human auditory system to segregate a tar-
get sound from interfering sources. These cues include fun-
damental frequency (F0), harmonics, onset or offset times,
and source location. While most of the monaural cues such
as F0 can be used as the basis for separation in computa-
tional ASA systems, their performance is critically depen-
dent on characteristics of the input signal such as the
presence or absence of voicing (Brown and Cooke, 1994).
Localization cues which exploit small differences in the sig-
nals to the two ears, however, can identify the azimuth of
sound sources regardless of signal content. Localization
plays an important role in the human auditory system’s
ability to select a particular sound source and track the
sound originating from that source. The primary acoustical
cues for human sound localization are interaural time dif-
ferences (ITDs) and interaural intensity differences (IIDs).
ITDs serve as the localization cue primarily at frequencies
below 1.5 kHz (Strutt, 1907), although the ITDs of the low-
frequency envelopes of higher-frequency components of a
sound can also be useful for sound localization (e.g. Hen-
ning, 1974; Nuetzel and Hafter, 1981). Information based
on IIDs is primarily useful at higher frequencies.

Jeffress (1948) proposed a simple and intuitive mecha-
nism that describes the estimation of ITDs based on inter-
aural coincidences of hypothetical neural activity. Jeffress’s
hypothesis has motivated many computational models that
describe and predict binaural processing (e.g. Braasch,
2005; Colburn and Kulkarni, 2005; Stern and Trahiotis,
1996). Most of these include a model of peripheral auditory
processing which includes frequency analysis and subse-
quent nonlinear operations (e.g. Meddis and Hewitt,
1991), a mechanism for estimating the interaural cross-cor-
relation function on a frequency-by-frequency basis, and a
mechanism to disambiguate the temporal analysis, typi-
cally exploiting the IID of the signal or consistency over
frequency. These models have been incorporated into sev-
eral systems that perform ASR (e.g. Bodden, 1993; Bodden
and Anderson, 1995; Tessier et al., 1999; Roman et al.,
2003; Palomäki et al., 2004). Recently, Kim et al. estimated
ITDs by measuring the time difference between zero-cross-
ings, and showed that with this measure sound sources
could be localized or segregated more robustly and accu-
rately than using cross-correlation-based ITD estimation
(Kim and Kil, 2004, 2005; Kim and Kil, 2007). In this
paper we consider the use of zero-crossings of bandpass-fil-
tered speech as an alternate way of estimating ITD
information.

Once ITDs and IIDs are obtained at each frequency of
interest, sound segregation or speech recognition can be
Please cite this article in press as: Park, H.-M., Stern, R.M., Spatial s
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performed on the basis of their values. Many contempo-
rary algorithms based on ASA have used binary masks that
specify which time-frequency components belong to a par-
ticular sound source on an ‘‘all-or-none” basis (e.g. Roman
et al., 2003; Palomäki et al., 2004; Kim et al., 2005). This is
clearly an oversimplified description of how sound sources
are combined since each sound source contributes to the
mixture to varying extents. For speech recognition applica-
tions, this oversimplification may be mitigated by the use of
‘‘soft masks” such as those proposed by Barker et al. (2000)
and Morris et al. (2001). Over the years several research
groups have described systems in which speech signals
are reconstructed using spectro-temporal components that
are implicitly weighted according to the likelihood that the
observed ITD (and in some cases IID) would be appropri-
ate for the desired source location (e.g. Bodden, 1993; Bod-
den and Anderson, 1995; Tessier et al., 1999). Recently,
Srinivasan et al. (2004, 2006) introduced a way to obtain
masks that provide continuously-variable estimates of the
energy ratio between the desired components of a signal
and the total signal. These ratio masks were obtained by
first obtaining an empirical characterization of the depen-
dence of ITDs and IIDs on energy ratios, and using this
characterization to develop a function that estimates
energy ratios from observed ITDs and IIDs.

In contrast to the empirically-derived ratio-masks that
have been described by other groups, we derive in this
paper an analytical relationship between the observed
ITD at each frequency and the relative extent to which a
desired sound source contributes to a particular time-fre-
quency segment. From this information we develop an esti-
mate of the desired signal in isolation by combining time-
frequency segments of the total waveform in proportion
to the estimated power of the target signal. As had been
demonstrated previously by Srinivasan et al. (2004, 2006),
the use of a continuously-variable weighting function
rather than a binary mask provides smoother transitions
between segments that contain greater and lesser compo-
nents of the desired target signal, which improves speech
recognition accuracy.

In addition to introducing an analytical approach to
ratio-mask estimation, we also compare the performance
of zero-crossing-based ITD estimation with cross-correla-
tion-based ITD estimation. We will show that the zero-
crossing method provides superior performance, both in
terms of the sample standard deviation of the ITD esti-
mates and in the resulting speech recognition accuracy.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the procedure for estimating the desired
signal from observations by using continuously-variable
masks derived from zero-crossing-based ITD estimation.
In Section 3, the standard deviation of the resulting esti-
mates obtained using this method is compared to the cor-
responding results obtained using cross-correlation-based
methods. Comparisons of speech recognition accuracy
using the algorithms considered are described in Section
4. Finally, our conclusions are summarized in Section 5.
eparation of speech signals using amplitude estimation ..., Speech
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2. Algorithm description

Fig. 1 illustrates the overall procedure of the proposed
algorithm, which we refer to as zero-crossing-based ampli-
tude estimation (ZCAE). The signals which comprise the
inputs to the two sensors of the system are mixtures of tar-
get and interfering sources from spatially-separated loca-
tions. The input signals are first subjected to frequency
analysis, typically accomplished by passing each input
through a bank of Gammatone filters which simulates
cochlear filtering, and zero-crossings are detected from
each filter output. The ITD is estimated from the time dif-
ferences between the zero-crossings of the signals from the
filter outputs at each center frequency, and these estimated
ITDs are used to estimate the amplitude ratio which
describes the corresponding relative contribution of the
desired signal to each component. Finally, an estimate of
the desired signal is obtained using a procedure based on
the methods of (Weintraub, 1986; Brown and Cooke,
1994) that compensates for the phase distortion introduced
by the Gammatone filters. Specifically, a time-reversed ver-
sion of the amplitude-weighted signal from each frequency
band is convolved with the corresponding Gammatone fil-
ter, and the results of each convolution are time-reversed
again and summed across frequency to estimate the final
output signal. These procedures are described in greater
detail below.
T
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2.1. ITD estimation based on zero-crossings

It is well-known that the auditory system develops esti-
mates of ITD from the synchronous response of low-fre-
quency auditory-nerve fibers to the fine structure of a
sound source, and the exploitation of zero-crossing informa-
tion is one possible way in which this processing could be
achieved. The ITD in each frequency channel is estimated
U
N

C
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ITD estimation
based on zero crossings

ITD estimation
based on zero crossings

ITD estimation
based on zero crossings

Gammatone
filterbank

Nth
BPF

1st
BPF

2nd
BPF

Gammatone
filterbank

input
signal

1

input
signal

2

subband signal

subband signal

subband signal

Fig. 1. Overall procedure o
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by first identifying the sample points at which the filtered
input signal changed from a negative value to a positive
value, or vice versa. The exact zero-crossing time (which
generally falls between the sample times) is then estimated
by linear interpolation based on the actual amplitudes of
the signals at the sample points that straddle the zero-cross-
ings. The corresponding zero-crossing time in the second
sensor is assumed to be the zero-crossing that was closest
in time, and the estimated ITD is defined to be the difference
between these two zero-crossing times. Estimates of ITD
that are greater than the time needed for a sound wave to tra-
vel from one sensor to the other are discarded.

It should be noted that while we use terms such as ITD
from the binaural hearing literature, we make use of two
sensors that are spaced far more closely than human ears
to avoid the effects of spatial aliasing for frequencies up
to half the sampling frequency, so the largest possible delay
between the sensors is always less than half a period over
all frequencies of interest.
E
D

P2.2. Analytical derivation of the relationship between the

ITD and the relative signal strength

Since processing algorithms using ASA are based on the
development of a ‘‘mask” that describes which time-fre-
quency components of an input signal are likely to be use-
ful in describing the desired target component, the
development of accurate masks is of critical importance
to the system’s performance. With some exceptions as
noted above and especially the work of (Srinivasan et al.,
2004, 2006), most previous work has been based on binary
masks which select the time-frequency segments where the
estimated target energy is greater than the estimated inter-
ference energy. Nevertheless, binary masks have the draw-
back that they cannot describe small differences in the
extent to which a desired source contributes to a mixture.
continuously variable
weight estimation

continuously variable
weight estimation

continuously variable
weight estimation

enhanced
signal

1st
BPF

2nd
BPF

Nth
BPF

amplitude scaling
time reversing

f the ZCAE algorithm.
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In order to overcome this limitation of binary masks, we
developed a reliable method that estimates continuously-
variable masks by analytically deriving the relationship
between the ITD and the relative contribution of the
desired target. Because the two sensors are sufficiently close
to avoid the effects of spatial aliasing, and because there is
no object between them to cause acoustical shadowing, we
assume zero IID between the signals arriving at these sen-
sors. In addition, our derivation of the relationship
between the ITD and the contribution of a desired signal
is based on the assumption that there is only one target
and one interfering source, and that their azimuth angles
are known. Many researchers have developed methods that
estimate the azimuth angles of sources composing observa-
tions (e.g. Stern and Colburn, 1978; Lyon, 1983; Linde-
mann, 1986; Bodden, 1993), and a zero-crossing-based
method also can be used for estimating the azimuth and
provided robust estimation especially for noisy mixtures
(Kim and Kil, 2004; Kim and Kil, 2007). Using these meth-
ods, one may obtain azimuth angles of sources reliably, so
the assumption on the azimuth angles is not critical.

We now describe a method by which the relative contri-
bution of the target signal can be estimated from the esti-
mates of ITD in each frequency band. Let us
approximate the outputs of the Gammatone filters as pure
tones, one from each source as follows:

x1ðtÞ ¼ A1 cosðx1t þ /1Þ þ A2 cosðx2t þ /2Þ; ð1aÞ
x2ðtÞ ¼ A1 cosðx1ðt � d1Þ þ /1Þ

þ A2 cosðx2ðt � d2Þ þ /2Þ; ð1bÞ

where Ai, wi, di, and /i denote amplitude, frequency, delay,
and phase for the ith source, respectively. As noted in the
previous paragraph, the amplitudes of the signals arriving
at the two sensors are assumed to be equal.

Without loss of generality, we assume that a zero-cross-
ing for x1 occurs at time t1, and that the nearest zero-cross-
ing for x2 occurs at t1 þ s, producing an ITD of s. We
assume that xiðs� diÞ is small, which is especially valid
at low frequencies, so x2ðt1 þ sÞ can be approximated by

x2ðt1 þ sÞ � �A1 sinðx1t1 þ /1Þ � x1ðs� d1Þ � A2

� sinðx2t1 þ /2Þ � x2ðs� d2Þ: ð2Þ

Since x2ðt1 þ sÞ ¼ 0,

sðA1x1 sinðx1t1 þ /1Þ þ A2x2 sinðx2t1 þ /2ÞÞ
� A1x1 sinðx1t1 þ /1Þ � d1 þ A2x2 sinðx2t1 þ /2Þ
� d2: ð3Þ

Since x1ðt1Þ ¼ A1 cosðx1t1 þ /1Þ þ A2 cosðx2t1 þ /2Þ ¼ 0
and s is obtained from the nearest zero-crossing point,

s �

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1
�A2

2
cos2ðx2t1þ/2Þ

p
�d1þA2x2j sinðx2t1þ/2Þj�d2

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1
�A2

2
cos2ðx2t1þ/2Þ

p
þA2x2j sinðx2t1þ/2Þj

if A1 P A2;

A1x1j sinðx1t1þ/1Þj�d1þx2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2
�A2

1
cos2ðx1t1þ/1Þ

p
�d2

A1x1j sinðx1t1þ/1Þjþx2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2
�A2

1
cos2ðx1t1þ/1Þ

p otherwise:

8>><
>>:

ð4Þ
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We assume that the frequencies xi are distributed over a
narrow band, so one of them is approximately same as
the other. In addition, by assuming that the phases /i are
uniformly distributed over the interval ð�p; pÞ, we may
consequently assume that wi ¼ xit1 þ /i are also uniformly
distributed over the same interval. Since Eq. (4) is periodic
with period p, one may obtain the mean of the estimated
ITD, �s, which can be approximated by

�s � g01ðA1;A2Þ � d1 þ g02ðA1;A2Þ � d2; ð5Þ

where

g01ðA1;A2Þ ¼

R p
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1
�A2

2
cos2ðw2Þ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1
�A2

2
cos2ðw2Þ

p
þA2 sinðw2Þ

dw2

p if A1 > A2;

R p
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos2ðw2Þ
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�cos2ðw2Þ
p

þsinðw2Þ
dw2

p if A1 ¼ A2;R p
0

A1 sinðw1Þ
A1 sinðw1Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2
�A2

1
cos2ðw1Þ

p dw1

p otherwise;

8>>>>>><
>>>>>>:

ð6Þ

and

g02ðA1;A2Þ ¼

R p
0

A2 sinðw2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1
�A2

2
cos2ðw2Þ

p
þA2 sinðw2Þ

dw2

p if A1 > A2;R p
0

sinðw2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos2ðw2Þ
p

þsinðw2Þ
dw2

p if A1 ¼ A2;

R p
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2
�A2

1
cos2ðw1Þ

p

A1 sinðw1Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

2
�A2

1
cos2ðw1Þ

p dw1

p otherwise:

8>>>>>><
>>>>>>:

ð7Þ

Using the MATLAB symbolic integration function we
obtain

�s � gðA1;A2Þ � d1 þ ð1� gðA1;A2ÞÞ � d2; ð8Þ

where

gðA1;A2Þ ¼

pðA2
1
�

A2
2

2 Þ�A2
1

arctan
A2ffiffiffiffiffiffiffiffi
A2

1
�A2

2

p
� �

�A2

ffiffiffiffiffiffiffiffiffiffi
A2

1
�A2

2

p

pðA2
1
�A2

2
Þ if A1 > A2;

1
2

if A1 ¼ A2;

�p
2A2

1
þA2

2
arctan

A1ffiffiffiffiffiffiffiffi
A2

2
�A2

1

p
� �

þA1

ffiffiffiffiffiffiffiffiffiffi
A2

2
�A2

1

p

pðA2
2
�A2

1
Þ otherwise:

8>>>>>>>>><
>>>>>>>>>:

ð9Þ

By introducing the signal-to-interference ratio (SIR) in
decibels (dBs) according to the relation

SIR ¼ 20log10

A1

A2

ðdBÞ; ð10Þ

where A1 and A2 denote the amplitudes for the target and
interference signals, respectively,

�s � gðSIRÞ � d1 þ ð1� gðSIRÞÞ � d2; ð11Þ
eparation of speech signals using amplitude estimation ..., Speech
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Fig. 2. The function gðSIRÞ described by Eq. (12).

gðSIRÞ ¼

pð10SIR=10�1
2Þ�10SIR=10 arctan 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10SIR=10�1
p
	 


�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10SIR=10�1
p

pð10SIR=10�1Þ if SIR > 0 dB;

1
2

if SIR ¼ 0 dB;

�p
2þ10�SIR=10 arctan 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10�SIR10�1
p
	 


þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�SIR=10�1
p

pð10�SIR=10�1Þ otherwise:

8>>>>>><
>>>>>>:

ð12Þ

U

N
C

O
R

R
E
C

Fig. 2 displays the mixing function gðSIRÞ. Using Eqs. (11)
and (12), one can easily relate the estimated ITDs to the
SIRs in a mixture. Note that Eq. (11) describes a mono-
tonic function that is suitable for one-to-one mapping
and that does not depend on any frequency-specific param-
eters, so the same function can be used in all frequency
bands.

Since most systems that perform binaural analysis esti-
mate ITDs using cross-correlation rather than zero-cross-
ing methods, we also consider the corresponding
relationship between the measured ITD in a frequency
band and the relative signal strength of the desired target
signal based on cross-correlation analysis. We show in
the Appendix that the relationship between the ITD esti-
mated using cross-correlation methods and signal ampli-
tudes Ai of the target and interfering source can be
expressed as the relationship:

scc A2
1ðsinðx1T Þx1 cosð2/1Þ þ x2

1T Þ
�
þ 2A1A2

x1 þ x2

sinððx1 þ x2ÞT =2Þðx2
1 þ x2

2Þ cosð/1 þ /2Þ

þ 2A1A2

x1 � x2

sinððx1 � x2ÞT =2Þðx2
1 þ x2

2Þ cosð/1 � /2Þ

þA2
2ðsinðx2T Þx2 cosð2/2Þ þ x2

2T Þ
�

� d1 A2
1ðsinðx1T Þx1 cosð2/1Þ þ x2

1T Þ
�

þ 2A1A2

x1 þ x2

sinððx1 þ x2ÞT =2Þx2
1 cosð/1 þ /2Þ

þ 2A1A2

x1 � x2

sinððx1 � x2ÞT =2Þx2
1 cosð/1 � /2Þ

�

þ d2

2A1A2

x1 þ x2

sinððx1 þ x2ÞT=2Þx2
2 cosð/1 þ /2Þ

�

þ 2A1A2

x1 � x2

sinððx1 � x2ÞT =2Þx2
2 cosð/1 � /2Þ

þA2
2ðsinðx2T Þx2 cosð2/2Þ þ x2

2T Þ
�

� A2
1 sinðx1T Þ sinð2/1Þ

�
þ 2A1A2 sinððx1 þ x2ÞT=2Þ

� sinð/1 þ /2Þ þ 2A1A2 sinððx1 � x2ÞT=2Þ sinð/1 � /2Þ
þA2

2 sinðx2T Þ sinð2/2Þ
�
: ð13Þ

The value of scc is, of course, easily obtained by dividing
both sides of Eq. (13) by the expression on the left side of
the equation in brackets. In deriving this equation we as-
sume that x1 6¼ x2 because the two frequencies are regarded
Please cite this article in press as: Park, H.-M., Stern, R.M., Spatial se
Comm. (2008), doi:10.1016/j.specom.2008.05.012
as random variables that are uniformly distributed within
the bandwidth of an analysis band.
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Many of the terms of the complicated Eq. (13) above
serve primarily to reflect the effects of the interaction
between the period of the sinusoidal waveforms and the
finite-duration of the observation window T. As the obser-
vation duration T increases, these ‘‘fringe effects” will
become decreasingly important, and for very large T Eq.
(13) converges to

scc ¼
10SIR=10x2

1d1 þ x2
2d2

10SIR=10x2
1 þ x2

2

ð14Þ

with SIR defined as in Eq. (10).
E
D2.3. Estimation of a desired signal using continuously-

variable weighting factors

Given the relationship between the ITD and the relative
contribution of a source as described by Eq. (11), the ITDs
estimated at each zero-crossing point are used to estimate
weighting factors according to the extent to which the
desired target signal is assumed to be present in each
time-frequency region of the mixture. This processing
results in a series of estimated weights for the desired signal
corresponding to each zero-crossing in each frequency
band. Weighting factors for all samples in time are
obtained by developing a piecewise-linear amplitude mod-
ulation function that passes through the values of the
weighting coefficients for the desired signal that are calcu-
lated at each zero-crossing point. An estimate of the
desired signal in a frequency band is then obtained by mul-
tiplying the input signal after band-pass filtering by the cor-
paration of speech signals using amplitude estimation ..., Speech
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(a) Center frequency (CF) 170 Hz and

bandwidth (BW) 43.87 Hz.
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(b) CF1,343 Hz and BW 172.9 Hz.
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(c) CF 6,430 Hz and BW 732.4 Hz.

Fig. 3. Sample standard deviation of estimated ITDs as a function of the relative signal strength R at three frequencies, 170, 1343, and 6340 Hz. The solid
and dashed lines correspond to results obtained using the zero-crossing-based and cross-correlation-based methods, respectively. The vertical axis is
normalized by dividing by d2.
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responding amplitude modulation function. Finally, the
enhanced full-band signal is recovered by summing the
subband signals across all frequencies after compensating
for the phase distortion introduced by the Gammatone fil-
ters as described above.
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R3. Comparison of standard deviations of ITDs derived from
zero-crossings and cross-correlation

In this section we compare the reliability of estimates of
ITD obtained using the zero-crossing and cross-correlation
methods in terms of the sample standard deviation of the
ITDs obtained by each of two analysis methods. Defining
the relative signal strength R to be

R ¼ A1

A1 þ A2

¼ 1

1þ 10�SIR=20
; ð15Þ

we obtained 100,000 samples of ITDs using Eqs. (4) and
(13) using randomly-generated values of the phases /i

and frequencies xi and various values of R. For each sam-
ple, /i and xi were uniformly distributed over the intervals
ð�p; pÞ and ðxcf � BW=2;xcf þ BW=2Þ, respectively,
where xcf and BW are the center frequencies and band-
widths of the frequency channels. We obtained the sample
values with parameter values d1 ¼ 0, d2 ¼ 1=16; 000 s.
Please cite this article in press as: Park, H.-M., Stern, R.M., Spatial s
Comm. (2008), doi:10.1016/j.specom.2008.05.012
Fig. 3 shows the sample standard deviation of estimates
of the ITD as a function of the relative signal strength R for
three different frequency bands. In this simulation, the
frame length was T ¼ 25:6 ms, which corresponds to the
frame length used for analysis in the speech recognition
experiments that are described in the following section.
Since the frequency of zero-crossings is approximately
twice the center frequency, the sample standard deviation
for the zero-crossing method was computed from averaged
ITDs whose number approximately corresponded to the
number of zero-crossings in a frame. In each of the three
frequency bands, the variability of ITD estimates obtained
using the zero-crossing method is much less than that of
estimates obtained using cross-correlation, which suggests
that the zero-crossing method is likely to provide more reli-
able estimates of ITD than the cross-correlation method.

It should be noted that the large differences between the
sample standard deviations observed using the zero-cross-
ing and cross-correlation methods are primarily a conse-
quence of the short-duration of the analysis frames and
the consequent significance of the interaction between the
cross-correlation computation and the frame boundaries,
as specified in Eq. (13). If the calculations were carried
out using a longer frame duration such that Eq. (14) were
valid, the difference between standard deviations observed
eparation of speech signals using amplitude estimation ..., Speech
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based estimates of ITD would be small.
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4. Experimental evaluation on speech recognition

As noted in the Introduction, speech-on-speech interfer-
ence has long been considered to be one of the most chal-
lenging problems in ASR, both because the interfering
speech tends to be confused with the target speech and
because the non-stationary nature of the masking signal
renders most conventional noise-compensation methods
ineffective (e.g. Singh et al., 2002a,b). In this section we
compare the recognition accuracy obtained using the
ZCAE method with correlation-based approaches and
baseline processing.
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4.1. Experimental design and signal generation

Recognition experiments were conducted using the
DARPA Resource Management (RM1) database (Price
et al., 1988) and the CMU SPHINX-III speech recognition
system. The recognition system is based on fully-continu-
ous hidden Markov models, which are trained on 2880
RM1 sentences recorded in a quiet environment. The test
set consists of 600 RM1 sentences. Speech recognition is
based on the observed values of 13th-order mel-frequency
cepstral coefficients with a frame size of 25.6 ms and a
frame rate of 10 ms developed in the conventional fashion.

Each test utterance was corrupted by a second (interfer-
ing) speech signal which had the same energy as the test
utterance, producing a nominal SIR of 0 dB. To simulate
the measurement of signals that would be obtained by
microphones in close proximity, the target and interfering
speech were combined with different simulated delays from
sensor to sensor, corresponding to different putative arrival
angles for the target and interfering source. Because the
original sampling period is too coarse for this purpose,
the original target and interfering speech signals were
upsampled by a factor of 4 and added together at the
64 kHz sampling rate, after appropriate ITDs were inserted
to simulate the different azimuths of the target and interfer-
ing signal. These delays were selected independently and
randomly in the range of �3 to 3 samples at 64 kHz, except
that delays for the target and interference were forced to be
different from each other under the assumption that the
sources are spatially-separated. As a result, the net differ-
ence in ITDs between the target and the interference ran-
ged from 1 to 6 samples or 15.6 to 93.8 ls. (For
microphones spaced by 21 mm, this would correspond to
differences in azimuth of between about 14.9� and
100.7�.) The target signal was always assumed to be the
component with the more positive delay. After combining
the target and interfering speech, the resulting signals were
downsampled back to 16 kHz. Because we used a nominal
spacing of about 21 mm between the sensors to avoid spa-
tial aliasing at 8 kHz, the largest delay between observa-
Please cite this article in press as: Park, H.-M., Stern, R.M., Spatial se
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tions from sensor to sensor would be 60.9 ls, which is
slightly smaller than the sampling period at 16 kHz.
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4.2. Signal separation using continuously-variable masks

To obtain subband signals from each sensor signal
according to the ZCAE algorithm, we used a 40-channel
bank of Gammatone filters with center frequencies spaced
linearly in equivalent rectangular bandwidth (ERB) from
170 Hz to 6430 Hz (O’Mard, 2000). The ITDs of the sub-
band signal at each frequency band are converted into esti-
mates of the relative signal strength of the target according
to Eqs. (11) and (12) under the assumption that the actual
delays for the desired target and interfering speech are
known a priori.

For comparison, we also present recognition accuracies
based on ITD estimation using cross-correlation. In order
to obtain continuously-variable masks from the cross-cor-
relation-based ITDs, we need to derive the relationship
between the ITDs and the relative contribution of a source
in a mixture. To simplify the derivation, we used the sim-
pler expression in Eq. (14) for the ITD at the maximum
of cross-correlation, scc.

Since Eq. (14) is the exactly same as the derivation by
Roman et al. (2003), we adopt their approximation for
the mean of scc given by

�scc ¼
d1 þ d2

2
þ 1

wcf

arctan �ð10SIR=10 � 1Þ
ð10SIR=10 þ 1Þ

tan b

" #
þ kp

( )
;

k 2 f0;�1g; ð16Þ

where b ¼ wcf � ðd2 � d1Þ=2 2 ½0; p�. If b 6 p=2, k ¼ 0.
Otherwise, k ¼ 1 when SIR < 0 dB and k ¼ �1 when
SIR > 0 dB (Roman et al., 2003). The time lag correspond-
ing to the maximum of the cross-correlation function was
estimated by differentiating a 20th-order polynomial
approximation to the cross-correlation function in a region
around the observed discrete-time maximum and finding
the root of the derivative closest to the discrete-time max-
imum using Newtonian iteration.
4.3. Signal separation using binary masks

In addition to the recognition results that were obtained
using the continuously-variable masks as described above,
we also evaluated speech recognition accuracy using binary
masks. These binary masks were determined by establish-
ing a hard threshold between the ITD representing the azi-
muth of the target and the ITD representing the azimuth of
the interfering source in place of the functions that related
the estimated ITDs and the relative contribution of a
source according to Eqs. (11) or (16). Specifically, the value
of the binary mask for the ith channel and the jth zero-
crossing or the jth frame (depending on whether we are
using zero-crossing-based or cross-correlation-based ITD
extraction) is
paration of speech signals using amplitude estimation ..., Speech
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mði; jÞ ¼ 1; if sest P d1þd2

2
;

0; otherwise;

(
ð17Þ

where sest denotes the estimated ITD regardless of which
method was used to obtain it. Recall that d1 > d2 since
the target signal is assumed to have the more positive delay
than the interfering signal.
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4.4. Incorporation of missing-feature reconstruction for

signal separation using binary masks

Many conventional methods have employed missing-
feature techniques to achieve noise robustness of ASR sys-
tem through the use of the binary masks. Typical missing-
feature techniques, as reviewed by Raj and Stern (2005),
either attempt to obtain optimal decisions while ignoring
time-frequency regions that are considered to be unreliable,
or they attempt to ‘‘fill in” the values of those unreliable
features. We employed the cluster-based method of restor-
ing missing-features. Briefly, in cluster-based missing-fea-
ture restoration it is assumed that the various spectral
profiles that represent speech sounds can be clustered into
a set of prototypical spectra. For each input frame we first
estimate the cluster to which the incoming spectral features
are most likely to belong from the observed spectral com-
ponents that are believed to be ‘‘present” (or reliable)
and that are considered to belong to the target signal based
on zero-crossing or cross-correlation information, as
described above. The remaining ‘‘missing” spectral compo-
nents are obtained using bounded estimation based on the
observed values of the components that are considered to
U
N

C
O

R
R

E

No proc. Bin. mask Con
0

20

40

60

80

100

120

W
E

R
 (

%
)

Cross correlation
Zero crossings

No proc. Bin. mask Cont. mask No intrf.
0

20

40

60

80

100

120

W
E

R
 (

%
)

Cross correlation
Zero crossings

Fig. 4. Comparison of the WERs obtained using continuously-variable mask
cross-correlation. In each frame results are shown from left to right with no-p
masks, and in the absence of an interfering source. Processing using ITDs estim
using ITDs based on cross-correlation analysis is represented by the dashed c
background noise, (b) identical white Gaussian background noise, and (c) sta
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be reliable, and based on the knowledge of the spectral
cluster to which the incoming speech is assumed to belong.
A detailed description of this approach is available in (Raj
et al., 2004). When missing-feature reconstruction is used,
it is no longer feasible to use the procedures described by
Weintraub (1986) and Brown and Cooke (1994) to recon-
struct an estimate of the separated desired signal. Instead
of reconstructing the desired signal we obtained spectral
features by directly computing frame energies after passing
the input signals through the same bank of Gammatone fil-
ters used in the earlier experiments. These spectral features
were transformed into cepstral features in the usual fashion
to train and test a second ASR system. The training and
test utterances were the same as described in Section 4.1.
E
D

P
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O4.5. Experimental results

Fig. 4a presents word error rates (WERs) calculated
according to the standard NIST metric for various mix-
tures of the target and interfering speech combined as
described in the previous section. WERs for ‘‘clean” target
speech presented in isolation are also provided as an upper
bound on recognition accuracy, and results for the com-
bined signals without any processing for enhancement are
also included as baselines to assess the effectiveness of the
processing. As described previously, the signal-to-interfer-
ence ratio (SIR) of the desired speech source compared
to the interfering speech is nominally 0 dB.

To obtain a crude characterization of the robustness of
the methods considered, we also obtained WERs for the
same signals in the presence of white Gaussian noise at
t. mask No intrf.

No proc. Bin. mask Cont. mask No intrf.
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s versus binary masks and ITD estimation based on zero-crossings versus
rocessing for enhancement, with binary masks, with continuously-variable
ated using zero-crossings is represented by the solid curves, and processing
urves. The three frames compare results obtained using (a) no additional
tistically-independent white Gaussian background noise.
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an SNR of 20 dB. Because there are two sensor signals, this
noise was added to the signals in two different ways. Specif-
ically, the two speech signals were corrupted by identical
noise (which could be caused by an additional non-speech
source of interference with zero ITD), and they were also
corrupted by statistically-independent noise (which could
be caused by sensor or measurement noise). Results with
identical noise, and with statistically-independent noise,
are shown in Fig. 4b and c, respectively.

It is seen that the use of the continuously-variable masks
(unsurprisingly) provides much greater recognition accu-
racy than the use of binary masks, as had been observed
in previous studies (e.g. Srinivasan et al., 2004, 2006). It
is also evident, though, that signal separation that is
accomplished using ITDs that are estimated using zero-
crossing information is more effective in reducing WER
than signal separation that is based on cross-correlation
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details.
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information. The WERs are (also unsurprisingly) affected
adversely by the addition of noise in all cases.

Fig. 5 depicts speech recognition accuracy as a function
of the signal-to-interference ratio (SIR) for the same signal
processing procedures that were used for the data in
Fig. 4a. It can be seen that the hierarchy of WERs observed
in Fig. 4a at 0 dB holds true over a wide range of values of
SIR, except that processing using binary masks and ITDs
derived from the cross-correlation function produces worse
performance than the baseline (no-processing) condition at
higher SIRs. Large WERs are observed for the combina-
tion of binary masks and cross-correlation-based ITD esti-
mation because signals in frames that are dominated by the
interfering signal are removed completely. This typically
causes abrupt discontinuities in the spectrogram, which
are abnormal for speech.

The best performance is observed when the ZCAE
method is used, which employs continuously-variable
weighting factors estimated from zero-crossing-based
ITDs. The resulting WERs obtained with this approach
are generally close to the recognition accuracy observed
in the absence of an interfering source.

Fig. 6 describes results obtained using the binary masks
described in previous sections combined with the cluster-
based missing-feature reconstruction techniques developed
by Raj et al. (2004). As noted above, the speech recognition
system used in conjunction with missing-feature recon-
struction was slightly different from the one that had been
used to obtain the previous results. Specifically, cepstral
features in the present system were developed directly from
the log-spectral values, rather than from a reconstructed
speech waveform. The results in Fig. 6 are presented to
facilitate comparisons across conditions, and they are the
same data that had been presented for the results obtained
using binary masks in Fig. 5. By comparing the results pre-
sented in Figs. 5 and 6 it can be seen that the use of miss-
ing-feature reconstruction can reduce the WERs obtained
using binary masks very substantially, but not to the extent
enjoyed by the use of the continuous ratio-masks (except
for the highest SIRs when the effect of the interfering
speech source is minimal).

5. Conclusions

We have described the zero-crossing-based amplitude
estimation (ZCAE) method that estimates continuously-
variable weighting factors for enhancing the desired signal
in the presence of a single interfering source, and we have
evaluated it in the context of speech recognition. The use
of zero-crossings as the basis for signal separation based
on ITD is shown to be superior to the historically more
popular use of cross-correlation information to estimate
ITDs.

A major contribution of this work is the analytical
development of a relationship between estimates of ITD
based on zero-crossings in a particular frequency band
and the implied ratio of desired signal energy to total
paration of speech signals using amplitude estimation ..., Speech
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energy in that band. This result complements a similar der-
ivation by Srinivasan et al. (2004, 2006) for ITDs that are
estimated from the cross-correlation function of the signals
to the two sensors. In contrast to empirically-derived trans-
fer functions that fit empirical data relating ITDs to energy
ratios using a specific configuration of sources and sensors,
the ZCAE method provides a simple monotonic function
which can be used with equal validity in all frequency
bands and for any source and signal configuration.

The reliability of continuously-variable weighting fac-
tors estimated using the ZCAE method has been assessed
both by considering the sample standard deviation of the
estimated ITDs and the resulting speech recognition accu-
racy. In both cases, the use of zero-crossings proved to be
superior to the use of cross-correlation for the estimation
of ITDs, and the use of continuously-variable weights
remains superior to the use of binary masks. A limitation
of this approach is that so far it has been applied only to
the case of a single interfering source in the absence of
reverberation. We are encouraged by these results and
are working to extend them.
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Appendix A. Derivation of the ITDs based on cross-

correlation as a function of source amplitudes

In order to derive the ITDs based on cross-correlation
as a function of source amplitudes, we follow almost the
same derivation as in the case of the zero-crossing-based
method. As before, we start from mixtures given by Eq. (1).

For finite-duration signals in a frame of duration T, the
cross-correlation function with time lag s is expressed by

cðsÞ ¼ 1

T

Z T=2

t¼�T=2

x1ðtÞx2ðt þ sÞdt: ðA:1Þ

For the values of x1ðtÞ and x2ðtÞ considered, the integrand
in Eq. (A.1) is

x1ðtÞx2ðt þ sÞ

¼ 1

2
A2

1ðcosð2x1t þ x1ðs� d1Þ þ 2/1Þ þ cosðx1ðs� d1ÞÞÞ
�
þ A1A2ðcosðx1t þ x2ðt þ s� d2Þ þ /1 þ /2Þ
þ cosðx1t � x2ðt þ s� d2Þ þ /1 � /2Þ
þ cosðx1ðt þ s� d1Þ þ x2t þ /1 þ /2Þ
þ cosðx1ðt þ s� d1Þ � x2t þ /1 � /2ÞÞ
þ A2

2ðcosð2x2t þ x2ðs� d2Þ þ 2/2Þ
þ cosðx2ðs� d2ÞÞÞ�: ðA:2Þ
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Hence, for x1 6¼ x2, the derivative of the cross-correlation
function cðsÞ can defined as follows:

dcðsÞ
ds
¼ � 1

2T

�
A2

1ðsinðx1T Þ sinðx1ðs� d1Þ þ 2/1Þ

þ x1T sinðx1ðs� d1ÞÞÞ

þ A1A2
2x2

x1 þ x2

sinððx1 þ x2ÞT=2Þ
�

� sinðx2ðs� d2Þ þ /1 þ /2Þ

þ 2x2

x1 � x2

sinððx1 � x2ÞT=2Þ

� sinðx2ðs� d2Þ � /1 þ /2Þ

þ 2x1

x1 þ x2

sinððx1 þ x2ÞT=2Þ

� sinðx1ðs� d1Þ þ /1 þ /2Þ

þ 2x1

x1 � x2

sinððx1 � x2ÞT=2Þ

� sinðx1ðs� d1Þ þ /1 � /2ÞÞ
þ A2

2ðsinðx2T Þ sinðx2ðs� d2Þ þ 2/2Þ

þx2T sinðx2ðs� d2ÞÞÞ
�
: ðA:3Þ

The time lag scc at the maximum of the cross-correlation,
which corresponds to the estimated ITD, is obtained by
setting the derivative of cðsÞ in the equation above to zero.
Using the approximation of small xiðs� diÞ, we obtain the
expression below from which scc is easily obtained:

scc

�
A2

1ðsinðx1T Þx1 cosð2/1Þ þ x2
1T Þ

þ 2A1A2

x1 þ x2

sinððx1 þ x2ÞT=2Þðx2
1 þ x2

2Þ cosð/1 þ /2Þ

þ 2A1A2

x1 � x2

sinððx1 � x2ÞT=2Þðx2
1 þ x2

2Þ cosð/1 � /2Þ

þA2
2ðsinðx2T Þx2 cosð2/2Þ þ x2

2T Þ
�

� d1 A2
1ðsinðx1T Þx1 cosð2/1Þ þ x2

1T Þ
�

þ 2A1A2

x1 þ x2

sinððx1 þ x2ÞT=2Þx2
1 cosð/1 þ /2Þ

þ 2A1A2

x1 � x2

sinððx1 � x2ÞT=2Þx2
1 cosð/1 � /2Þ

�

þ d2

2A1A2

x1 þ x2

sinððx1 þ x2ÞT=2Þx2
2 cosð/1 þ /2Þ

�

þ 2A1A2

x1 � x2

sinððx1 � x2ÞT=2Þx2
2 cosð/1 � /2Þ

þA2
2ðsinðx2T Þx2 cosð2/2Þ þ x2

2T Þ
�

�
�

A2
1 sinðx1T Þ sinð2/1Þ þ 2A1A2 sinððx1 þ x2ÞT=2Þ

� sinð/1 þ /2Þ þ 2A1A2 sinððx1 � x2ÞT=2Þ sinð/1 � /2Þ

þA2
2 sinðx2T Þ sinð2/2Þ

�
: ðA:4Þ
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