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Abstract

In the context of array processing for speech and audio ap-
plications, linear beamforming has long been the approach of
choice, for reasons including good performance, robustness
and analytical simplicity. Nevertheless, various nonlinear tech-
niques, typically based on the study of auditory scene analysis,
have also been of interest. The class of techniques known as
time-frequency (T-F) masking, in particular, shows promise; T-
F masking is based on accepting or rejecting individual time-
frequency cells based on some estimate of local signal qual-
ity. While these approaches have been shown to outperform
linear beamforming in two-sensor arrays, extensions to larger
arrays have been few and unsuccessful. This paper seeks to
gain a deeper understanding of the limitations of T-F masking
in larger arrays and to develop an approach to overcome them. It
is shown that combining beamforming and masking can bring
the benefits of masking to larger arrays. As a result, a hybrid
beamforming-masking approach, called post-masking, is devel-
oped that improves upon the performance of MMSE beamform-
ing (and can be used with any beamforming technique). Post-
masking extends the benefits of masking up to arrays of six ele-
ments or more, with the potential for even greater improvement
in the future.

Index Terms: array processing, time-frequency masking,
multi-channel, PDCW, post-filtering, speech recognition.

1. Introduction

Array processing techniques can improve the robustness of au-
tomatic speech recognition systems in adverse environmental
conditions. For example, interference from competing speakers
is one of the most damaging forms of signal degradation in au-
tomatic speech recognition, and it is relatively common in real-
world scenarios. The so-called “cocktail-party problem” has, in
fact, long been of interest to researchers of the human auditory
system [1,2] and to those who attempt to mimic its functionality
artificially [3].

Approaches to microphone array processing can be broadly
categorized into two groups: linear and nonlinear. The lin-
ear techniques are based on classical linear beamforming (e.g.,
[4]), with some modifications that exploit specific properties of
speech (e.g., [5]). The nonlinear approaches, on the other hand,
are frequently based on various models of human auditory pro-
cessing, itself a highly nonlinear process.

This work focuses on the important class of nonlinear al-
gorithms that is based on time-frequency (T-F) masking; Sec-
tion 2 will describe this class of algorithms and the specific ver-
sion this paper uses as a representative case. Results of pre-
vious studies using these techniques suggest [6—12] that while

T-F masking techniques typically perform well in their intended
target scenarios, they do not generalize as easily or degrade as
gracefully as linear beamforming techniques. Currently, there
are significant performance gaps between linear and nonlinear
array processing. One of the most important gaps is scalabil-
ity; the performance of linear processing techniques can be im-
proved simply by using larger and larger arrays, while nonlin-
ear techniques typically do not scale as well, if at all. Indeed,
while there are large bodies of literature on single- and dual-
channel masking, multi-channel masking seems to have been
comparatively neglected. This is mainly because there are very
few intuitive approaches to scaling these algorithms; this is-
sue will be discussed in more detail in Section 3, leading to
a first pass at a solution. Section 4 introduces a hybrid ap-
proach that attempts to combine the benefits of masking and lin-
ear beamforming. While this approach does not fully close the
gap between masking and beamforming, an alternative hybrid
approach named “post-masking” is introduced in Section 5 that
does. Post-masking is inspired by post-filtering, a class of linear
filtering techniques which have long been used to improve the
performance of beamformers [13-15].

2. Time-frequency masking

Almost all array-based T-F masking techniques are designed for
the simplest of arrays: one with only two microphones. This
configuration is illustrated in Figure 1, with a target and a single
interferer. We assume that the target signal lies directly on the
bisecting plane, as illustrated. Assuming that the sources are in
the array’s far field, and that s(¢) and 4(¢) refer to the signal and
interference as received by the left microphone, in continuous
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Figure 1: Two-sensor array with a single interferer — d is the
sensor distance and ¢ is the interferer azimuth angle.



time, the system is described by the following equations:

{xL(t) =s(t)+i(t)
zr(t) = s(t) +i(t — 7a)

where 74 = (d/c) sin ¢ is the time difference between the ar-
rival of the interfering wavefront at the left and right micro-
phones, with ¢ representing the speed of sound. Assuming alias-
free sampling with a period of T’s, the discrete-time frequency
representations are

XL (ejw) =S (ejw) +1 (ej‘”)
Xr (ejw) =9 (ej“) + 1 (ej“’) e JwTa/Ts

In general, T-F masking is accomplished by computing the
short-time Fourier transforms (STFTs) of both input signals,
Xi[n, k] and Xg[n, k], followed by a determination of which
cells in the STFTs are dominated by the components of the tar-
get signal. This determination is frequently characterized by an
“oracle binary mask” M n, k] which indicates which cells of
the STFT are dominated by the target signal:

M [n, k] = {1 S [n, k]| > |I [n, ]| o
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0 otherwise

An enhanced signal can then be reconstructed solely from the
cells of the STFT for which M |[n, k] = 1. This entire process
is illustrated schematically in Figure 2. Numerous algorithms
have been proposed for estimating the values of M [n, k] based
on the inputs [6-9, 11, 12, 16], including variations in which
M]{n, k] is a continuous function of the inputs rather than bi-
nary. In the algorithms considered, the mask M|n, k| is typi-
cally based on the cell-by-cell comparisons of the left and right
input signals; however, T-F masking is also widely applied to
mono audio to improve signal quality for ASR [17-19] and for
human intelligibility [20,21]. Unfortunately, we normally do
not have the benefit of perfect oracle masks in performing ASR
with test data, and the mask M [n, k] must be inferred from the
data.
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Figure 2: Generic two-channel T-F masking algorithm

2.1. Phase-difference channel weighting (PDCW)

To facilitate the subsequent discussion we review as an exam-
ple the fundamentals of a two-sensor T-F masking algorithm
introduced by Kim et al.[12, 22], Phase-Difference Channel
Weighting (PDCW). The T-F analysis method uses a conven-
tional STFT, but with a longer window duration of approxi-
mately 80 ms. In its most straightforward implementation, the
mask estimation stage of PDCW aims to determine for which
cells the difference between the phase angles of the STFTs im-
plies that the dominant source is arriving from an azimuth close
to that of the target source s[n]. Specifically, we define

1 10 [n, k] | < |7y (wr, 1) |

0 otherwise

M [n, k] = { “

where wy, = 27nk/N, with N being the number of frequency
channels, is the center frequency of subband k. In (4), the left-
right phase difference 6 [n, k] = £ZX [n, k] — ZXR [n, k] is
compared to the phase difference expected from a hypothetical
single source at a threshold azimuth, ¢r:

v (wk, 1) = wi(d/cTs) sin ¢ (%)

The threshold azimuth is an important tunable parameter of
PDCW; decreasing or increasing its value will tighten or widen
the “cone of acceptance” around the target direction.

For reconstruction, PDCW uses overlap-add (OLA) syn-
thesis, with one additional detail. Before masking, the binary
masks are smoothed by convolution along the frequency axis
according to the shape of the standard gammatone filters [23].
This process is called channel weighting [12] and improves out-
put signal quality, both subjectively and for ASR experiments,
by reducing the distortion caused by the sudden changes that a
binary mask introduces to the spectrogram.

For a more detailed description and formulation of T-F
masking and PDCW, refer to the second chapter of the disserta-
tion by Moghimi [24].

3. Multi-channel masking

Linear beamforming techniques are generally well-formulated
and easily adaptable to various array geometries, including dif-
ferent numbers of microphones [4]. Of course, array geom-
etry does affect the characteristics and behavior of the array
processing. In particular, increasing the array size (i.e., num-
ber of sensors) increases the number of free parameters, which
in turn allows for narrower beams, better sidelobe suppression
and, overall, better performance. Masking algorithms derive no
such benefit from increasing the array size, in large part because
the formulation is not as robust; e.g., there is not an obvious ex-
tension from two microphones to many. In two-channel mask-
ing algorithms like PDCW, phase difference information from
a pair of microphones is used to estimate the mask, which is
then applied to the signal. One intuitive extension to masking
would be to apply the same procedure to each pair of micro-
phones in a larger array, and combine the masks. In an array
with P elements, there will be (123 ) pairs. One option for mask
combination is simple averaging:
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M, [n, K] (6)
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M [n, k] = o
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where M, [n, k] is the mask estimated by the p-th pair. Note
that now, with pairs at different locations, the target signal will
not be on the broadside axis for each pair, which means that the
cone of acceptance will be centered on some nonzero azimuth.
Assuming the target direction and array geometry are known,
this target azimuth can be calculated for each pair. Naming this
quantity ¢,, (4) can be modified for this scenario as below:

v (wkv ¢p - ¢T) < 91’ [n7 k]
<y (W, bp +é1)  (T)
0 otherwise

1
MP [TL, k] =

This mask is then smoothed and applied to one of the input
signals, similar to the basic PDCW introduced in Section 2.1.
Unfortunately, this approach is not particularly beneficial.
For example, Figure 3 (red squares) illustrates the performance,
in terms of WER, of the procedure outlined above when used in



uniformly-spaced line arrays of different sizes. For comparison,
we have also performed adaptive beamforming (green triangles)
using the same arrays; the beamformers are designed to have a
response of unity in the target direction with adaptive sidelobe
cancellation based on the MMSE criterion [4]. There is also a
third algorithm, labeled “PDCW with sub-array beamforming”,
which will be described in Section 4 but can be ignored for now.
In all cases the element separation is 4 cm and the single inter-
ferer is at ¢ = 60° with an SIR of 10 dB. The threshold azimuth
is ¢ = 15°. To keep the comparison with linear beamformers
fair, the environment is chosen to be reverberant, with a rever-
beration time of 200 ms. This is because adaptive beamforming
can easily suppress a single interferer, at the expense of creat-
ing large sidelobes in other directions; the existence of rever-
beration precludes this type of solution as large sidelobes in any
direction are detrimental. The beamformers are first allowed
to converge in training runs and then the coefficients are used
for the testing runs. The speech recognition is performed using
the CMU Sphinx-3 system; the acoustic models are trained on
clean data. For a thorough description of the experimental setup
used for this paper, refer to the Section 4.3 of the dissertation by
Moghimi [24].

Figure 3 demonstrates the superiority of beamforming as
the array size is increased. The reason is that the masks gen-
erated by the different microphone pairs are highly correlated
with each other; even when using 10 microphones, the average
difference between the binary masks of different pairs is under
3%. Therefore, the addition of extra pairs does little to improve
upon the masks generated by a single pair, which in turn leaves
performance largely unaffected. This is hardly surprising; inde-
pendent experiments by the authors have shown that the mask
estimation method in use produces highly accurate estimates of
the oracle mask described in (3). In arrays with different geome-
tries (e.g., with elements arranged around a circle), the situation
does improve slightly, but masking is still greatly eclipsed by
beamforming.
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Figure 3: Word error rates (WER) of multi-channel PDCW with
mask averaging and PDCW with sub-array beamforming vs.
linear beamforming

4. Masking with sub-array beamforming

With the failure of mask combination, other methods must be
sought to extend masking to multiple channels. One idea is
to combine linear beamforming and two-channel masking: In
an array with P elements, we divide the array into two sym-
metric segments (called “sub-arrays”). A linear beamformer is

designed and applied to each of these sub-arrays; for simplic-
ity, the same set of beamforming filters is used for both. The
outputs of the two arrays are then combined using basic two-
channel masking. Figure 4 illustrates the general idea of this
approach, on an array with six sensors.
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Figure 4: Masking with sub-array beamforming system
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Figure 5: Staggered division of a six-element line array into
symmetric sub-arrays

There are a number of details that must be considered when
implementing this idea. One is the geometry of the array and
the selection of sub-array elements. The authors have not de-
veloped a systematic method of division, but have instead oper-
ated on a case-by-case basis. For example, for line arrays with
an even number of sensors, the sub-arrays are designated as per
Figure 5. This way, the geometric separation of the two arrays
is equal to the separation between adjacent sensors.

The next issue is sub-array beamformer design. The use of
adaptive beamforming becomes difficult here, as adaptation in
the presence of the masker is not straightforward and requires
further study. For this reason, and due to the necessity of phase
compensation to compensate for differences in the lengths of
the paths from the target to the sensors (because of loss of sym-
metry) [24], we have elected to use fixed sub-array beamform-
ers that have all been designed via adaptive beamforming in a
stand-alone scenario and then applied to our test configurations.

Figure 3 (blue diamonds) shows the performance of this
approach, compared to the mask combination method of Sec-
tion 3. The use of sub-array beamformers greatly improves the
scalability of masking, but it still falls short of linear beamform-
ing. However, the crossover point where linear beamforming
starts out-performing masking has been moved up to about four
Sensors.

5. Post-masking

The idea of a masking/beamforming hybrid introduced in Sec-
tion 4 holds promise. The difference with linear beamforming,
however, is still significant; especially so if we take into account
the fact that there are many beamforming techniques that out-
perform the one used for comparison in Figure 3 [3,4]. The



truth is that the sub-array division approach suffers from two
major weaknesses. The first is that beamforming operating at
the sub-array level does not make use of the full array size. The
second is that the mask estimation is based on the outputs of
the sub-arrays. Since the phase difference information has been
distorted by the beamforming stage, the mask estimation will
be based on degraded data.

A different approach to the masking/beamforming hybrid
potentially solves both these issues. The mask is estimated di-
rectly from the sensor inputs using the pairwise mask combi-
nation method of Section 3: Each possible pair of sensors pro-
duces a mask M, [n, k], according to (7); these masks are com-
bined using (6) to produce a single mask M [n, k]. This mask is
put aside, while all the signals are passed to a linear beamformer
operating on the full array. The mask is then smoothed accord-
ing to the channel weighting discussed in [12] and mentioned in
Section 2.1; the smoothed mask is applied to the output of the
linear beamformer (a single channel). Figure 6 illustrates this
approach, which will be named “post-masking” for the obvious
parallels to the post-filtering techniques [13—15] that inspired it.
In post-filtering, the array inputs are used, pre-combination, to
design an LTI filter which filters the output of a beamformer; in
post-masking, the array inputs are used to estimate a T-F mask
which is applied to a beamformer’s output.
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Figure 6: Beamforming with post-masking system

Figure 7 (orange circles) shows the performance of this ap-
proach, compared to the methods described in Secs. 3 and
4. The post-masking system outperforms the straight MMSE
beamformer, although the gap closes as the number of sensors
increases. It is worth noting that the beamformer used for the
post-masker and for the straight beamformer are identical; thus,
the difference between the green and orange lines is the contri-
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Figure 7: Word error rates (WER) of PDCW post-masking vs.
sub-array beamforming and mask combination

bution of the post-masking system.

For a more fair comparison, Figure 8 compares the post-
masking system to the performance of the Zelinski [13] and Mc-
Cowan [15] post-filters, operating with the same beamformer on
the same data sets. The post-masker outperforms even the Mc-
Cowan post-filter, albeit slightly, while the Zelinski post-filter
lags behind the other systems — this is not unexpected, as the
Zelinksi post-filter is designed for noise fields with characteris-
tics not descriptive of simulated reverberation.
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Figure 8: Word error rates (WER) of PDCW post-masking vs.
Zelinski and McCowan post-filtering

6. Conclusions

Using PDCW as a representative case of two-channel time-
frequency masking algorithms, we have demonstrated that this
type of algorithm does not easily generalize to arrays of more
than two elements. However, masking can be combined with
linear beamforming, which does scale well to large arrays, to
reap the benefits of T-F masking in these scenarios. Specifi-
cally, using the novel post-masking system, we have success-
fully used T-F masking to enhance the performance of a linear
beamformer in arrays of up to ten elements. This post-masking
system is also shown to be competitive with the post-filtering
techniques that partially inspired it.

Now that these initial results have revealed the potential of
post-masking, the authors plan to continue improving the tech-
nique. The question of mask-estimation method, for one, is far
from settled. While the method described in (7) does indeed
estimate (3) relatively accurately, it is not certain that (3) itself
is a good target when using post-masking. The linear beam-
former in post-masking changes the SIR, so that on the beam-
former’s output the mask is likely far too conservative; i.e., too
many cells are rejected. This, in turn, could be the reason that
the added benefit of this post-masking technique diminishes in
larger arrays; the better the beamformer, the less realistic the
oracle mask. Moving forward, this will be the first avenue of
investigation.
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