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ABSTRACT

This paper discusses a new combination of techniques that
help in improving the accuracy of speech recognition in ad-
verse conditions using two microphones. Classic approaches
toward binaural speech processing use some form of cross-
correlation over time across the two sensors to effectively iso-
late target speech from interferers. Several additional tech-
niques using temporal and spatial masking have been pro-
posed in the past to improve recognition accuracy in the pres-
ence of reverberation and interfering talkers. In this paper, we
consider the use of cross-correlation across frequency over
some limited range of frequency channels in addition to the
existing methods of monaural and binaural processing. This
has the effect of locating and reinforcing coincident peaks
across frequency over the representation of binaural interac-
tion and provides local smoothing over the specified range of
frequencies. Combined with the temporal and spatial mask-
ing techniques mentioned above, this leads to significant im-
provements in binaural speech recognition.

Index Terms—
Binaural hearing, auditory processing, robust speech

recognition, speech enhancement, cross-correlation

1. INTRODUCTION

Speech recognition systems have undergone significant im-
provements in recent times especially with the advent and
widespread use of machine learning techniques [1, 2]. Nev-
ertheless, noise robustness remains problematical. Robust-
ness is especially important with the increasing use of voice-
based user interfaces for cell phones, smart home devices,
cars etc. Improving speech recognition accuracy in the pres-
ence of non-stationary noise sources and other adverse condi-
tions such as reverberation is still a challenge.

Human beings, on the other hand, are extremely good
at localizing and separating simultaneously-presented speech
sources in a variety of adverse conditions, the well known
“cocktail party problem”. Human hearing, even in adverse
conditions, remains fairly robust. It is useful to attempt to un-
derstand the reason behind the robustness of human percep-
tion and to apply techniques based on our understanding of
auditory processing to improve recognition in noisy and re-

verberant environments. Several successful techniques have
been motivated by this approach (e.g. [3, 4, 5, 6, 7]).

One of the earliest models of binaural hearing was pro-
posed by Sayers and Cherry [8], which related the lateraliza-
tion of binaural signals to their interaural cross-correlation. In
binaural speech processing, a popular approach towards iso-
lating target sounds in adverse environments is the grouping
of sources according to common source location. This usually
entails the use of interaural time difference (ITD) and inter-
aural intensity difference (IID). ITD is caused by differences
in path length between a source and the two ears, producing
corresponding differences in the arrival times of that sound
to the two ears. Normally, binaural recordings must be made
using an artificial head in order for significant IID cues to be
present. Models that describe how these cues are used to lat-
eralize sound sources are reviewed in [9, 10], among other
sources. Straightness weighting refers to a hypothesis that
greater emphasis is given to the contributions of ITDs that
are consistent over a range of frequencies [11, 12, 13]. This
was motivated by the fact that real sounds emitted by point
sources produced ITDs that are consistent over a range of fre-
quencies. Hence, the existence of a “straight” maximum of
the interaural cross-correlation function over a range of fre-
quencies could be used to identify the correct ITD.

Missing-feature techniques attempt to identify the subset
of spectro-temporal elements in a spectrogram-like display
that are unaffected by sources of distortion such as additive
noise, competing talkers, or the effects of reverberation, and
reconstruct a signal based only on the undistorted components
[14]. These algorithms can provide rather good performance
provided that the undistorted components are correctly iden-
tified. Several researchers have demonstrated that informa-
tion based on ITD (or in some cases IID or interaural correla-
tion) can be very useful in estimating binary (or continuous)
masks that indicate which components of a signal are likely
to be dominated by the desired source (e.g. [15, 7, 16]. The
Phase Difference Channel Weighting (PDCW) algorithm [17]
is used to perform binary mask estimation using interaural
phase difference in the frequency domain, leading to consid-
erable improvements in recognition accuracy.

The precedence effect describes the phenomenon where
directional cues attributed to the first-arriving wavefront (cor-
responding to the direct sound) are given greater perceptual



weighting than those cues that arise as a consequence of sub-
sequent reflected sounds [18, 19, 20]. While the precedence
effect is clearly helpful in maintaining constant localization
in reverberant environments, many researchers believe that
it also contributes to improved speech intelligibility in the
presence of reverberation. The precedence effect is typically
modeled as a mechanism that suppresses echoes at either the
monaural level [21] or binaural level [22]. A reasonable way
to overcome the effects of reverberation would be to boost
these onsets or initial wavefronts, or to suppress the steady
state components of a signal. The Suppression of Slowly-
varying components and the Falling edge of the power enve-
lope (SSF) algorithm [4, 23] was motivated by this principle
and has been successful in improving speech recognition ac-
curacy in reverberant environments. There have been several
other techniques developed based on precedence based pro-
cessing that have also shown promising results (e.g. [24, 25]).

In this paper we introduce a new processing procedure,
Cross-Correlation across Frequency (CCF), which (as the
name implies) correlates signals across the analysis chan-
nels. We show that although it is computationally intensive,
CCF can improve recognition accuracy very substantially
in environments that contain both additive interference and
reverberation. In Sec. 2 we review some basic binaural phe-
nomena along with some algorithms motivated by aspects
of binaural hearing that have been used to improve speech
recognition accuracy, and we introduce the CCF algorithm in
Sec. 3. We describe our experimental results in Sec. 4 and
provide discussion and conclusions in Secs. 5 and 6.

2. BINAURAL PROCESSING

This paper addresses binaural processing in adverse condi-
tions, which include reverberation and interfering talkers. The
techniques described assume that recordings are made with
two microphones as shown in Figure 1. The two microphones
are placed in a reverberant room with the target talker directly
in front of them. An interfering talker is also present located
at an angle of � with respect to the two microphones.

The techniques discussed in this paper are largely moti-
vated by knowledge of human monaural and binaural auditory
processing. A basic block diagram of the algorithm discussed
in this paper is shown in Figure 2. Explanations of each of the
blocks are provided below.

2.1. Steady-state suppression

Steady-state suppression can vastly improve accuracy in au-
tomatic speech recognition (ASR) in reverberation. The use
of steady-state suppression was originally motivated by the
precedence effect and the modulation-frequency characteris-
tics of the human auditory system. It aims at boosting the
parts of the input signal that are believed to correspond to the
direct sound, which indirectly suppresses reflected sounds. In
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Fig. 1. Two-microphone recording with an on-axis target
source and off-axis interfering source used in this study.
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Fig. 2. Block diagram describing the overall system. Per-
formance is compared below for systems that include various
combinations of the modules labelled SSF, PDCN, and CCF.

this paper, the SSF algorithm noted above [4, 23] was used to
achieve steady-state suppression.

The SSF algorithm in its initial formulation decomposes
the input signal into 40 frequency channels. For each of these
channels, the frame-level power is computed and then low-
pass filtered. This lowpass-filtered representation of the short-
time power is subtracted from the original power contour to
obtain the processed power. A weighting coefficient is then
computed by taking the ratio of the processed power to the
original power. A set of spectral weighting coefficients are
then derived from these weights. The spectral weighting coef-
ficients, in turn, are multiplied by the spectrum of the original
input signal to produce the processed signal. This suppresses
the falling edge of the power contour and is highly effective
in reverberant environments in improving ASR performance,



as seen in [6]. In this paper, we include results both with
and without SSF processing. Steady-state suppression is per-
formed separately on each microphone channel.

2.2. Binaural Interaction

The optional steady-state suppression stage is followed by
some sort of binaural interaction between the two microphone
channels. The binaural interaction technique used in this pa-
per is the Phase Difference Channel Weighting (PDCW) al-
gorithm that achieves ITD-based signal separation in the fre-
quency domain. Results from Delay-and-Sum (DS) process-
ing are also presented in Section 4 as a baseline.

2.2.1. Phase Difference Channel Weighting (PDCW)

The PDCW algorithm separates signals according to ITD, in a
crude approximation to human sound separation. PDCW es-
timates ITD indirectly, computing interaural phase difference
(IPD) information in the frequency domain and then dividing
by frequency to produce estimated ITDs. Again, it is assumed
that there is no delay in the arrival of the target signal between
the right and left channel.

The PDCW algorithm applies a Short-Time Fourier
Transform (STFT) to the input signals from the two micro-
phones. The phase difference between signals from the two
microphones is calculated using the STFT. Components of
the STFT are retained if they are within zero ITD by a thresh-
old amount in magnitude. A binary mask µ(k,m) is derived
for the k

th time frame and the m

th frequency channel using
the ITD d(k,m) such that, µ(k,m) = 1 for components with
ITD less than the threshold magnitude and 0 otherwise.

While the binary mask provides a degree of signal sep-
aration by itself, we have found that recognition accuracy
improves when it is smoothed over frequency This smooth-
ing along frequency, called “channel weighting” in the orig-
inal algorithm, is performed using a gammatone weighting
function. PDCW provides substantial improvements in ASR
accuracy in the presence of interfering talkers, although its
performance degrades sharply in the presence of reverbera-
tion [6]. The presence of reverberation produces reflections
that are added to the direct response in a fashion that leads
to unpredictable phase changes, which essentially makes the
ITD-estimation processing much less accurate. Further de-
tails about the algorithm are provided in [17].

3. CROSS-CORRELATION ACROSS FREQUENCY

Cross-Correlation across Frequency (CCF) is a new technique
that we introduce in this study to emphasize portions of the in-
put that are consistent across frequency. CCF is motivated by
the concept of “straightness” weighting as discussed in [11].
Signals that arrive at the two microphones at the same time
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Fig. 3. Block diagram describing the Cross-Correlation
across Frequency (CCF) algorithm, with additional detail pro-
vided for the Filter Group 2 channel.

normally exhibit coherence in arrival time over a range of fre-
quencies. It is beneficial to capture this coherence in order
to isolate signals coming from a source of interest. One way
to do this is to perform cross-correlation a some range of fre-
quencies, which is the approach we adopt in this study. In
essence, this technique aims at boosting regions of coherence
across frequency, and it also provides smoothing over a lim-
ited range of frequencies.

A block diagram describing CCF processing is shown
in Figure 3. This technique roughly follows the manner in
which speech is processed in the human auditory system. The
peripheral auditory system is modeled by a bank of bandpass
filters. We use a modified zero-phase implementation of
the gammatone filters in Slaney’s Auditory Toolbox [26],
obtained by computing the autocorrelation function of the
original gammatone filters, which are adjusted to compensate
roughly for the reduction in bandwidth produced by squaring
the magnitude of the frequency response when performing
the autocorrelation operation. The center frequencies of the
filters are linearly spaced according to the ERB scale [27].

For each of these filters, a secondary set of satellite filters



is designed. The total span of these satellite filters determine
the range of frequencies over which CCF will be performed.
In other words, a total of N groups of bandpass filters are cre-
ated, each with one “center” band and m/2 satellite bands on
either side of the center band in frequency. Here, m repre-
sents the total number of satellite bands. Since the satellite
bands are symmetric about the center band, m is always even.
These N filter groups are denoted by “Filter Group 1”, “Filter
Group 2” ....“Filter Group N” in Figure 3. Each of these fil-
ter groups consists of one center band and the corresponding
satellite bands. The center frequency of the l

th pair of satel-
lite filters on each side of the filter group center band is given
by,

CB ± s⇥ ↵

m
2 +1�l

, 1  l  m/2 (1)

where CB is the center band frequency for a given filter
group, s is a parameter that determines the span of the fre-
quencies on either side of the center band frequency and ↵

is a parameter that controls the spacing between the satellite
filters. In this study, ↵ was set to 0.7 which produces more
closely spaced satellite filters closer to the center band and
wider spacing away from the center band. N was set to 20
and m was set to 6. The span parameter s was set to 2500
Hz. The values for the parameters mentioned above were
determined experimentally.

Given the input signal x[n], the filter outputs for a given
filter group are given by

x

kp

[n] = x[n] ⇤ h
kp

[n] (2)

where x

kp

[n] is the filter output of the k

th band of the p

th

filter group, with x[n] as input. Here k ranges from 1 to m+1
(comprising of m satellite bands and 1 center band) and p

ranges from 1 to N .
Bandpass filtering is followed by a rough model of audi-

tory nerve processing, which includes half-wave rectification
of the filter outputs. Following our earlier work in “polyaural”
processing with multiple microphones [28], the filter outputs
are also negated and similarly half-wave rectified. While this
component of the processing is non-physiological, it enables
the entire signal to be reconstructed, including positive and
negative portions. Cross-correlation across frequency is then
computed within each individual filter group as shown below,

X

fcorr+p

[n] =
m+1Y

k=1

x+kp

[n]

X

fcorr�p

[n] =
m+1Y

k=1

x�kp

[n]

(3)

where x+kp

[n] and x�kp

[n] are the positive and nega-
tive half-wave-rectified portions of the signals x

kp

[n] de-
fined above, and X

fcorr+p

[n] and X

fcorr�p

[n] denote the
cross-correlation across frequency of x+kp

[n] and x�kp

[n]

WER for RT60 = 0 0 dB 10 dB 20 dB Clean

Delay and Sum 80.78% 32.01% 12.72% 6.54%
PDCW 23.01% 11.48% 8.15% 6.51%
PDCW+CCF 18.19% 11.48% 8.49% 7.48%
PD+CCF 17.86% 10.61% 8.32% 7.48%
SSF 80.34% 31.31% 12.99% 6.82%
SSF+PDCW 25.43% 11.27% 7.78% 6.87%
SSF+PDCW+CCF 20.98% 12.21% 9.37% 8.51%

WER for RT60 = 0.5s 0 dB 10 dB 20 dB Clean

Delay and Sum 95.95% 85.96% 66.44% 56.92%
PDCW 95.36% 86.64% 73.31% 66.63%
PDCW+CCF 94.56% 82.14% 68.53% 63.75%
SSF 97.14% 63.93% 35.03% 25.97%
SSF+PDCW 92.52% 61.64% 39.42% 32.27%
SSF+PDCW+CCF 84.65% 48.77% 32.53% 26.15%

WER for RT60 = 1s 0 dB 10 dB 20 dB Clean

Delay and Sum 96.04% 92.5% 86.12% 82.52%
PDCW 96.08% 93.32% 89.08% 85.54%
PDCW+CCF 96.79% 93.84% 87.27% 84.18%
SSF 96.51% 78.96% 59.1% 52.17%
SSF+PDCW 94.75% 79.02% 63.63% 57.65%
SSF+PDCW+CCF 92.59% 68.2% 53.27% 46.78%

Table 1. Comparison of algorithms with respect to Word Er-
ror Rate as a function of Signal-to-Interferer Ratio for rever-
beration times of 0, 0.5 and 1 s for the RM1 database (Lowest
WER for each condition highlighted)

for the p

th filter group. X

fcorr+p

[n] is combined with
�X

fcorr�p

[n] to produce the complete cross-correlation
across frequency for the p

th filter group, X
fcorrp [n]:

X

fcorrp [n] = X

fcorr+p

[n] + (�X

fcorr�p

[n]) (4)

In order to limit any distortion that may have taken place,
the signal is bandpass filtered again to achieve smoothing.
The smoothed signal is denoted by X̃

fcorrp [n]. To resynthe-
size speech, all the filter groups are then combined to produce

y[n] =
NX

p=1

X̃

fcorrp [n] (5)

The results from ASR experiments using CCF in combi-
nation with PDCW and SSF processing are discussed in Sec-
tions 4 and 5.

4. EXPERIMENTAL RESULTS

ASR experiments were conducted using the CMU SPHINX-
III speech recognition system and the DARPA Resource



Management (RM1) and Wall Street Journal (WSJ) databases
[29]. The training set for RM1 consisted of 1600 utterances
and the test set consisted of 600 utterances. For WSJ, these
numbers were 7138 and 330 respectively. Features used were
13th order mel-frequency cepstral coefficients. Acoustic
models were trained using clean speech that had undergone
the same type of processing as the algorithm being tested.

We used the RIR simulation package [30] which imple-
ments the well-known image method [31] to simulate speech
corrupted by reverberation. For the RIR simulations, we used
a room of dimensions 5m⇥ 4m⇥ 3m. The distance between
the two microphones is 4 cm. The target speaker is located
2 m away from the microphones along the perpendicular bi-
sector of the line connecting the two microphones. An in-
terfering speaker is located at an angle of 45 degrees to one
side and 2 m away from the microphones. The microphones
and speakers are 1.1 m above the floor. To prevent any ar-
tifacts from standing wave phenomena that create peaks and
nulls in response at particular locations, the whole configu-
ration described above was moved around in the room to 25
randomly-selected locations such that neither the speakers nor
the microphones were placed less than 0.5 m from any of the
walls. The target and interfering speaker signals were mixed
at different levels after simulating reverberation.

All results from the ASR experiments using the RM1
database are tabulated in Table 1. The lowest Word Error
Rate (WER) obtained for each condition is highlighted. We
plot a set of selected results from Table 1 in Figure 4 which we
consider to be illumnating. Results using the WSJ database
are similarly shown in Figure 5.

Consider first the performance of the older compensation
algorithms, PDCW and SSF, as described in Table 1 and Figs.
4 and 5. We note that PDCW provides excellent compen-
sation for noise in the absence of reverberation, but PDCW
becomes less effective as the RT60 is increased from 0 to 1
seconds. SSF, in contrast, provides a good improvement in
recognition accuracy in the presence of reverberation but its
effectiveness is limited by the presence of interfering noise
sources. Adding CCF to PDCW and SSF provides an even
further improvement in WER, especially at low and moderate
Signal-to-Interferer Ratios (SIRs).

Figure 4 (a) depicts the performance of some of the algo-
rithms that provided the lowest WER in the absence of rever-
beration for RM1. Let us consider for the moment the perfor-
mance of the algorithms PDCW, PD (which is PDCW without
the smoothing along the frequency axis) and the CCF algo-
rithm, which also provides smoothing over frequency. As was
mentioned in Sec. 2.2.1, the use of the binary mask alone in
the PDCW and PD algorithms provides signal separation. The
PD+CCF method shown in Figure 4 (a) replaces the smooth-
ing in PDCW provided by channel weighting (CW) with the
smoothing provided by CCF. The use of PD+CCF leads to a
22% relative drop in WER at 0 dB and an 8% relative drop at
10 dB compared to the use of PDCW alone. At higher SIRs,

(a)

(b)

(c)

Fig. 4. Word Error Rate for the RM1 database as a function
of Signal-to-Interferer Ratio for an interfering signal located
45 degrees off axis at reverberation times (a) 0 s, (b) 0.5 s, (c)
1 s.

the opportunity for improvement reduces drastically and the
WER for PD+CCF provide slightly worse accuracy than us-
ing PDCW alone. For the WSJ database, as seen in Figure 5



(a)

(b)

Fig. 5. Word Error Rate for the WSJ database as a function of
Signal-to-Interferer Ratio for an interfering signal located 45
degrees off axis at reverberation times (a) 0 s, (b) 0.5 s.

(a), the improvement provided by CCF is clear at low SIRs
in the absence of reverberation, but PDCW alone performs
better than the other algorithms for higher SIRs.

Some form of steady state suppression such as the SSF
algorithm is required to achieve improvements in ASR in re-
verberant environments, as seen Table 1 and Figures 4 and 5.
As seen in Figure 4 (b) and (c) and Figure 5 (b), combining
CCF with SSF and PDCW gives significant gains over using
SSF with PDCW. In the presence of reverberation, the contri-
bution of PDCW to ASR improvement is limited. However,
in combination with SSF and CCF, the improvements are sig-
nificant. This is especially the case at moderate SIRs. The
use of SSF+PDCW+CCF provides a relative improvement of
nearly 21% at 10 dB compared to using SSF+PDCW for the
0.5 s reverberation-time case for RM1 as seen in Figure 4 (b).
For WSJ, these improvements are slightly lower (9.4% at 10
dB). These trends, however, are quite consistent and hold even
at the reverberation time of 1 s, as seen in Figure 4 (c).

5. DISCUSSION

Reviewing the results described above, we observe that
PDCW works best in the absence of reverberation and pro-
vides considerable improvements at low SIRs. The CCF
algorithm can be thought of as a method to enhance this bin-
aural interaction by both reinforcing coherence and providing
local smoothing across frequencies. This is why combin-
ing the CCF algorithm with any form of binaural interaction
usually leads to significant improvements compared to using
binaural interaction alone.

In the presence of reverberation, it becomes necessary
to employ some form of steady-state suppression (SSF, in
this case) to obtain better recognition accuracy. With the
help of SSF in dealing with reverberation, PDCW+CCF
could then be used to isolate the target speaker from the in-
terfering talkers. This is consistent with the results in that
SSF+PDCW+CCF outperformed SSF+PDCW for both re-
verberation time of 0.5 s and 1 s. Needless to say, all of these
algorithms outperformed the Delay and Sum baselines by a
huge margin.

It is interesting to note that combination with CCF pro-
vides the most significant gains at low SIRs in the absence of
reverberation and at moderate SIRs in the presence of rever-
beration. We believe that this has to do with the interaction
of CCF with SSF and PDCW. In the absence of reverberation,
PDCW is most helpful at low SIR, with and without the com-
bination with CCF. SSF, on the other hand, helps the most
at high SIRs in the presence of reverberation while PDCW
performs worse at high SIRs in reverberation. For these rea-
sons, we believe that the combination of SSF+PDCW+CCF
gives the most significant gains in WER at moderate SIRs in
the presence of reverberation. As seen in Section 4, the best
overall gains in reverberation were at 10 dB SIR.

6. SUMMARY AND CONCLUSIONS

In this paper, we discuss a new technique that improves recog-
nition accuracy for speech presented binaurally. This tech-
nique exploits coherence over frequency for monaural and
binaural signals. Combined with steady-state suppression,
this technique significantly improves recognition accuracy in
the presence of reverberation and an interfering speaker.
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