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ABSTRACT
Current state-of-the-art speech recognition systems work quite well
in controlled environments but their performance degrades severely
in realistic acoustical conditions in reverberant environments. In this
paper we build on the recent developments that represent reverber-
ation in the cepstral feature domain as a filtering operation and we
formulate a maximum likelihood objective to obtain an inverse re-
verberation filter. We show analytically that the optimal inverse fil-
ter can be approximately obtained under certain assumptions about
the corresponding clean speech signal. We demonstrate that our ap-
proach reduces the relative gap in word error rate by 30 percent in
large as well as small reverberation times.

Index Terms— Speech recognition, reverberation, blind decon-
volution, maximum likelihood

1. INTRODUCTION
Current state-of-the-art automatic speech recognition (ASR) systems
perform quite well in controlled environments when the speech sig-
nals are reasonably clean, but real-life environments are far less con-
trolled. ASR accuracy deteriorates significantly in the presence of
noise, interference, and reverberation. In this paper we study the
problem of reverberation and seek to provide greater robustness to
its effects.

ASR has a long history. While a number of algorithms have been
successfully developed for robustness to additive noise (e.g. [1, 2]),
reverberation remains a challenging problem [3]. Reverberation is
a phenomenon in which delayed and attenuated versions of a signal
are added to itself. It is typically modeled as a linear filtering of sig-
nals in the time domain. Compensation for reverberation becomes
especially difficult because the room characteristics and hence the
linear filter modeling reverberation change as people and other ob-
jects move around in rooms, thus requiring the compensating algo-
rithms to be blind to the actual reverberation filter. Cepstral mean
normalization (CMN) is a ubiquitous algorithm for spectral normal-
ization that if implemented correctly can compensate for some ef-
fects of reverberation. CMN can be applied in the log-spectral or
cepstral domains where the effects of reverberation are represented
as an additive shift which can be removed in the long term by CMN.
This approach is effective only if the reverberation time (RT) is small
with respect to the duration of the feature-analysis window. In most
practical settings the RT can be quite long (300-500 msec) and the
implicit assumptions in CMN modeling do not hold.

Recently there has been a growing body of research in extend-
ing CMN-based modeling. Some approaches such as long-term log-
spectral subtraction (LTLSS) work on long-duration windows (e.g.
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[4]) while others model reverberation itself as a linear filter (e.g.
[5, 6, 7, 8]) in the log-spectral or cepstral domain. We build our re-
search on those recent reverberation models in cepstral domain and
formulate a problem to construct an inverse filter in cepstral domain
to inverse the effects of room reverberation filter. We describe the
motivation for a maximum likelihood criterion for estimating the in-
verse filter parameters, showing analytically that the inverse filter
parameters can be optimally and uniquely recovered with some sim-
ple assumptions about the original clean signal. Later we extend our
approach to dereverberation for ASR.

Various approaches using multiple microphones have also been
developed for reverberation. For example, a multiple-microphone-
based score fusion procedure has been described in [9]. Many of
the multi-microphone approaches require training data from differ-
ent environments which is infeasible in practice. The solution for
reverberation compensation is also usually local and no guarantees
are made about performance across different conditions especially
when the reverberant environment changes.

The rest of the paper is organized as follows. We first provide a
motivation for our approach in Sec. 2. In Sec. 3 we extend the ap-
proach to the problem of ASR. Sections 4 and 5, respectively, present
our experiments and results and discussions of the findings. Sec. 6
summarizes this study.

2. MOTIVATION FOR THE MAXIMUM LIKELIHOOD
CRITERION FOR ESTIMATING INVERSE FILTERS

In this work we seek to improve the robustness of ASR systems with
respect to reverberation. Reverberation is conventionally modeled
as a finite impulse response (FIR) linear time-invariant (LTI) sys-
tem. Using the FIR representation of reverberation, a typical ap-
proach for reverberation compensation is to design a system which
acts as an inverse for the reverberating LTI system. Nevertheless,
the design of such an inverse system is difficult because the time do-
main reverberation filter is generally both unknown and potentially
non-invertible. In this work, we propose the estimation of an inverse
system to compensate for reverberation using a maximum likelihood
(ML) criterion [10]. ML only requires knowledge of the probability
density function (pdf) from which the signals are drawn, which can
be obtained from a small amount of training data. ML transforms the
reverberated signals into a space from which clean signals originated
and thus dereverberates the signal.

We first demonstrate analytically the merit of the ML criterion
through two simple illustrations. We show that under certain as-
sumptions about the original signal it is possible to approximately
estimate the optimal inverse LTI parameters from the recordings of
reverberant input signal. We demonstrate our approach for both all-
zero and all-pole inverse systems.
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2.1. Inverse FIR Filter

In this illustration we formulate a simple reverberation problem and
demonstrate that we can invert the effects of reverberation with an
estimated all-zero filter. We assume that the reverberated signal x
can be represented in terms of a convolution of the original unob-
served signal s and an FIR filter H , which models the reverberation.
We further assume that the the original signal s is white and Gaus-
sian, with zero mean and an autocorrelation that is the Kronecker
delta function. We assume that the filter H has only two taps (and
hence only a single delay tap). The assumption that the reverberation
filter is only of length 2 appears very restrictive at first but we can
easily overcome this restriction by applying the approach in each of
multiple narrow sub-bands. We assume that a large number of nar-
row sub-band versions of the H filter can approximate the actual H
filter. Note that these assumptions are only for the present illustra-
tions; we will allow the number of filter taps to be unconstrained in
the actual ASR problem. We formalize our assumptions as follows:

s[n] ∼ N(0, 1), original signal

H(z) = 1 + h z−1, reverberation filter
x[n] = s[n] ∗ h[n] = s[n] + h s[n−1], reverberated signal

(1)

Next we formulate our problem in terms of designing a filter that
operates on the reverberated signal x using a log-likelihood criterion
with respect to the pdf of s to design the inverse filter parameters. In
Eq. (2) below, P denotes the putative inverse FIR filter and y is the
estimated dereverberated signal.

P (z) = 1 + p z−1

y[n] = x[n] ∗ p[n] = x[n] + p x[n − 1]
(2)

The filter parameter p is estimated by maximizing L, the likelihood
of y with respect to the pdf of s.

L = logΠn
1√
2π

exp(
−y2[n]

2
) (3)

The above can be simplified to minimizing

L = E[y2[n]] (4)

where we replaced summation by expectation and ignored positive
constants under the operation. The optimal filter parameter is ob-
tained by differentiating L with respect to the unknown p.

∂L
∂p

= 2E[(x[n] + p x[n−1])x[n−1]]

= 2(Rxx[1] + p Rxx[0])

Setting the above to 0, we obtain: p = −Rxx[1]/Rxx[0]. Noting
that x is the convolution of s and h, the relationship between the
autocorrelation sequence of x and s becomes

Rxx[n] = Rss[n] ∗ Rhh[n] (5)

It can be shown that

Rxx[n] = [h, 1+h2, h], n ∈ [−1, 0, 1] (6)

from which we obtain p = −h/(1+h2). Next, assuming that h & 1
and making the first-order approximation of neglecting the squared
term for h, we obtain

p ≈ −h (7)
The assumption of h & 1 holds because we work on narrow sub-
bands of H . So far we had showed that under the assumptions in

Eq. (1), we can devise a log-likelihood criterion to invert the H
filter by P = [1 −h], which indeed is expected to be the inverse
of H under first-order approximations. Finally we note that Eq. (1)
did not include an explicit gain term for the reverberation filter H .
While the maximum likelihood procedure described cannot be used
to estimate the gain term, gain inversion can be achieved via variance
normalization.

2.2. Inverse IIR Filter

In the illustration in Sec. 2.1 we showed that we can estimate an in-
verse reverberation filter in terms of a FIR filter. In this illustration,
we start with the same assumptions as in Eq. (1) but we model the
inverse filter as an all-pole IIR filter, showing that we can approx-
imately estimate the optimal inverse filter parameters. Specifically,
we assume that the inverse filter P and the dereverberated signal y
are of the form:

P (z) =
1

1 + p z−1

y[n] = x[n] ∗ p[n] = x[n] − p y[n − 1]
(8)

Following the same principles as in Sec. 2.1 we obtain

∂L
∂p

= 2E[(x[n] − p y[n−1])y[n−1]]

As before, it can be shown that p = Rxy[1]/Ryy[0] and

Rxy[1] = Rxx[1] = h, Ryy[0] =
1 + h2 − 2p h

1 − p2

from which we obtain p = h(1−p2)/1+h2−2p h. As in Sec. 2.1,
if we can assume that h & 1 and p & 1,

p ≈ h (9)

Hence, the estimated compensation filter will be
P (z) = 1/(1 + hz−1), which is indeed the inverse of the filter H .

Sections 2.1 and 2.2 illustrated the maximum likelihood formu-
lation for estimating a filter (FIR or IIR) that inverts the effects of re-
verberation. The illustrations showed analytically that our approach
is well founded and can approximately guarantee the optimal perfor-
mance under certain assumptions. These assumptions, of course, do
not hold for speech signals, we relax some of those assumptions in
Sec. 3 which follows, and we extend the approach to ASR. While
analytical verification of our approach for realistic reverberant en-
vironments is not tractable, we validate our approach through the
experiments and results in Sec. 5.

3. MAXIMUM-LIKELIHOOD-BASED INVERSE
FILTERING (MAX LIFE)

In Sec. 2 we formulated the problem of reverberation compensation
in terms of obtaining an appropriate inverse filter, proposing the use
of a maximum likelihood criterion for obtaining that inverse filter.
We demonstrated that the approach can approximately estimate the
optimal inverse filter parameters. In the present section we extend
our approach for reverberation compensation for speech data, refer-
ring to the extended approach as Maximum Likelihood based Inverse
Filtering (Max-LIFE). There has been a great deal of recent research
in modeling reverberation in the log-spectral or cepstral domain, in-
cluding the characterization of reverberation as linear filtering in the
cepstral domain (e.g. [5, 6, 7, 8]). These approximations extend the
earlier representations of reverberation as a simple additive shift in
the log-spectral or cepstral domains. Continuing along these lines we
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seek to design an inverse reverberation filter that does not make any a
priori assumptions about the nature of the actual room reverberation
filter. We formulate a maximum likelihood objective function which
requires the pdfs of the features of clean speech, which can be easily
obtained from training data. The likelihood objective is expected to
guide the features to the space from which the clean features origi-
nate, thereby dereverberating the features. In Sec. 2.1 the pdf was
assumed to be a single Gaussian density in Eq. (1). Because a sin-
gle Gaussian density is insufficient for real speech applications, we
extend the pdf to be a Gaussian mixture model (GMM). The GMM
is trained from a pool of clean speech features. Similarly, the num-
ber of filter taps to model reverberation was assumed to be 2 in the
discussion of Sec. 2, but for practical ASR the number of filter taps
modeling reverberation will need to be unconstrained.

We begin by initially assuming that the speech features are
unidimensional, and we subsequently extend the model to multi-
dimensional features by individually applying the unidimensional
approach to different features. While we illustrate these develop-
ments only for the inverse IIR filter parameters, the approach can
easily be adapted for the FIR filters. Assuming that the all-pole
IIR filter de-reverberating P is M taps long, the reverberation-
compensated features become:

y[n] = x[n] −
M−1

m=1

p[m]y[n − m] (10)

where n indicates the feature frame index, with 10 ms between
frames. The parameters that describe P are obtained by maxi-
mizing the log-likelihood with respect to the GMMs for speech.
Specifically, P = arg maxP L, where the log-likelihood L for the
compensated features y is:

L =
1

Ny

Ny

j=1

log
i

wi

2πσ2
i

exp − (y[j] − µi)
2

2σ2
i

(11)

The GMM parameters are represented by the set {wi, µi, σi} with
Nw being the number of Gaussian densities and Ny being the length
of the unidimensional feature y or equivalently the number of fea-
ture frames. For ease of writing and understanding the equations we
define:

γj
i =

wi

2πσ2
i

exp − (y[j] − µi)
2

2σ2
i

, γj =
Nw

i=1

γj
i , L=

1
Ny

Ny

j=1

γj

Using the above definitions we maximize Eq. (11) by gradient ascent
via its partial derivative with respect to the parameters in P . It can
be shown that:

∂L
∂p[m]

=
1

Ny

Ny

j=1

Nw

i=1

γj
i

γj

(y[j] − µi) y[j − m]
σ2

i

(12)

Next, we iteratively obtain the parameters for p[m]:

p̂[m] = p[m] + ν
∂L

∂p[m]
(13)

where ν is a small-valued learning-rate parameter. The filter update
term in Eq. (12) provide a deep understanding into the evolution of
P . Summing over the j terms for a fixed i in Eq. (12) results in the
update for p[m] becoming proportional to the mth auto-correlation
sequence of y. Summing over the i terms for a fixed j in Eq. (12)
results in p[m] becoming proportional to the summed and weighted
likelihoods of γi

j . Thus the overall filter updates are proportional to
the “likelihood-weighted” auto-correlation sequences of y.

Note that Eq. (12) requires knowledge of y[j] which in turn
depends on P in Eq. (10), so y[j] will also be updated after each
iteration of P . We refer to the IIR filter as estimated above as LIFE-
IIR. Update equations for the corresponding inverse FIR filter can
similarly be obtained, and these filters will be referred as LIFE-FIR.

3.1. The Top-1 Approximation for Filter Updates

The filter update described in Eq. (13) may be simplified through
suitable approximations. A common approximation in GMMs is to
replace the overall GMM likelihood score in Eq. (11) by the top-
scoring Gaussian density among the set of Gaussian mixtures. This
approximation, referred to as the Top-1 approximation, results in:

γj =
Nw

i=1

γj
i ≈ γj

i∗ , i∗ = arg max
i

γj
i

∂L
∂p[m]

=
1

Ny

Ny

j=1

(y[j] − µi∗) y[j − m]
σ2

i∗

(14)

Note that i∗ is a function of j in Eq. (14). This approximation is
more valid for sparsely-distributed features in terms of the Gaussian
densities where only the top-scoring density can adequately describe
the overall feature score. A Top-N approximation could be similarly
derived by approximating Eq. (11) with the top N Gaussians.

4. EXPERIMENTS

We applied our dereverberation experiments to the DARPA Re-
source Management (RM) Database with 1600 training utterances
and 600 test utterances. The RM database was collected in clean
conditions and served as the clean database. A reverberated database
was obtained by convolving the clean RM database with simulated
room impulse responses obtained using the RIR package based on
the image method1 for different room reverberation times (RT). We
used nominal room dimensions of 5× 4× 3m for simulations, with
a single microphone located at the center of the room, with 1 m
between the source and microphone. Conventional 13-dimensional
Mel frequency cepstral coefficients (MFCC features) were derived
from the speech signal and compensation was applied to these fea-
tures. The window length was 25.6 msec with a frame period of 10
msec. A GMM with 32 densities was trained on the clean training
features to model the speech features, and these densities were re-
quired to implement Eq. (11). 20 taps were used for both the FIR
and IIR inverse filters, and the learning-rate parameter ν being 0.01.
The estimated inverse filter tap weights were found to converge very
rapidly in actual ASR experiments, typically within 5-10 iterations.
The overall approach was computationally very efficient.

We used CMN to remove any constant additive shift in the cep-
stral features as well as Cepstral Post Filtering [5] to partially decor-
relate the features. We noted in Sec. 2 that our approach works
best if the original clean signal is completely uncorrelated. This
is, however, an unrealistic assumption for features extracted from
real-speech, and introducing some decorrelation through CPF helps
LIFE-filters, as shown with the results presented below. We used the
2 for ASR training and decoding. All ASR experiments were con-
ducted using 39-dimensional feature vectors obtained by appending
delta and double-delta features to the parent 13-dimensional feature.
The ASR training states consisted of 8 Gaussian Mixtures. The ASR
language model was a bigram word model.

1http://2pi.us/rir.html
2The SPHINX open source speech recognition engines, available online at

http://cmusphinx.sourceforge.net/html/cmusphinx.php
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5. RESULTS

We present our results in this section. We first consider typical room
reverberation filter responses in the cepstral domain along with the
corresponding inverse filters as estimated in Sec.3. Figure 1(a) plots
the room reverberation filter response for the 4th and 5th cepstral
features. We note that the reverberation filter has a lowpass charac-
teristic. This is expected, as reverberation essentially smears sound
along time. Figures 1(b) and (c), respectively, plot the estimated FIR
and IIR dereverberation filters. Ideally we would like these estimated
frequency responses to be the exact inverse of those in Fig. 1(a). Al-
though, our estimates do not achieve this ideal, we note that the in-
verse of a lowpass reverberation filter should have a highpass charac-
teristic, which indeed is the case for the estimated FIR and IIR filters
in Figs. 1(b)(c). Specifically, we note that the reverberation filter
introduces an attenuation of 5 to 7 dB at higher frequencies which
is close to the gain introduced at higher frequencies by the inverse
filters. Figs. 1(a)(b)(c) thus validate our inverse filtering approach,
at least in the broad sense.
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Fig. 1. Filter responses in the cepstral domain, illustrated for the 4th

cepstral coefficient in the left panel and the 5th cepstral coefficient
in the right panel.
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Fig. 2. WER Comparisons for LIFE family of dereverberation filters

Figure 2 summarizes ASR word error rates (WER) results for
various RTs. All features include CMN pre-processing. The Top-
1 approximation was used in updating the estimates of the P fil-
ters. Extending Top-1 to a Top-N approximation provided virtually
no improvement in WER. We observe that LIFE-FIR and LIFE-
IIR provide some improvement over baseline MFCC processing.
In contrast, preprocessing the MFCC features using CPF and then
designing LIFE-FIR or LIFE-IIR filters provides a very significant
improvement. The strong boost in performance due to CPF pre-
processing can be understood from the discussion in Sec. 2, which
showed that LIFE filters work best for uncorrelated input sequences.
CPF attempts to decorrelate the cepstral sequence and thus assists
the LIFE filters. LIFE filters also provided a 15-20% relative im-
provement over LTLSS [4]. LTLSS was applied on a window length
of duration 1 s. We also note that the 0th cepstral feature (C0) is the
most affected by reverberation. Our experiments on C0 also revealed
that it is not helpful for ASR, at least in our experiments. Removing
C0 provided additional gains for the LIFE filters, producing a 25%
relative reduction compared to baseline results. Finally, we note that
the use of CPF+LIFE processing reduces the difference between the
WER obtained for de-reverberated speech and clean speech by about
30% compared to baseline MFCC processing.

6. CONCLUSIONS

In this study we considered the problem of dereverberation for ASR.
We motivated and developed a maximum-likelihood-based inverse
filtering technique for dereverberation. We showed analytically that
the approach approximately estimated the optimal inverse filter un-
der certain assumptions on the signal and its pdf. Our approach is
blind to the actual nature of room characteristics and does not require
any operator-assisted information. We developed inverse filters for
both all-zero and all-pole filters. We validated our approach in re-
verberant environments, obtaining up to a 25% relative decrease in
WER compared to the baseline, closing the WER gap by 30% in
reverberant environments.
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