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ABSTRACT

Almost all current automatic speech recognition (ASR) systems
conventionally append delta and double-delta cepstral features to
static cepstral features. In this work we describe a modified feature-
extraction procedure in which the time-difference operation is per-
formed in the spectral domain, rather than the cepstral domain as
os generally presently done. We argue that this approach based
on “delta-spectral” features is needed because even though delta-
cepstral features capture dynamic speech information and generally
greatly improve ASR recognition accuracy, they are not robust to
noise and reverberation. We support the validity of the delta-spectral
approach both with observations about the modulation spectrum of
speech and noise, and with objective experiments that document
the benefit that the delta-spectral approach brings to a variety of
currently popular feature extraction algorithms. We found that the
use of delta-spectral features, rather than the more traditional delta-
cepstral features, improves the effective SNR by between 5 and 8
dB for background music and white noise, and recognition accuracy
in reverberant environments is improved as well.

Index Terms— Speech recognition, speech analysis, denoising,
dereverberation

1. INTRODUCTION

Current state-of-the-art automatic speech recognition (ASR) systems
perform very well in controlled environments when speech signals
are reasonably clean, but in real life the acoustical environments are
far less benign. Many of the environments within which ASR sys-
tems are actually deployed include the effects of noise and rever-
beration, in which the current ASR word accuracy becomes poor
[1, 2, 3, 4, 5].

Most current speech recognizers derive their features in the
broad framework the left column of Fig. 1, which describes the
development of features similar to mel-frequency cepstral coeffi-
cients (MFCC). Typically delta-cepstral and double-delta cepstral
coefficients are appended to MFCC features, as discussed below.

In this paper we argue that recognition accuracy in many practi-
cal environments is improved by replacing delta features in the cep-
stral domain by delta features in the spectral domain. We support
this argument using both graphical and analytical arguments based
on the modulation spectra of speech and common environmental
noises, as well as experimental studies in which we compare the
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Fig. 1. (a) 13-dimensional MFCC features and 26-dimensional
Delta-Cepstral Coefficients (DCC), (b) 26-dimensional Delta-
Spectral Cepstral Coefficients (DSCC) features.

recognition accuracy obtained using our framework in the recently-
proposed robust ETSI Advanced Front End (EAFE) [6] and power-
normalized cepstral coefficients (PNCC) [7].

The rest of the paper is organized as follows: we discuss the
delta-cepstral features and their robustness to noise in Sec. 2. In
Sec. 3 we propose the new delta-spectral features. We provide the
reationale for our proposed features in Sec. 4, and our experimental
results are in Sec. 5. Sec. 6 summarizes this study.

2. DELTA-CEPSTRAL FEATURES

Delta-cepstral features were proposed (in a different form) in [8] to
add dynamic information to the static cepstral features. They also
improve recognition accuracy by adding a characterization of tem-
poral dependencies to the hidden-markov models (HMM) frames,
which are nominally assumed to be statistically independent of one
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Fig. 2. WERs obtained in additive white noise using MFCC features,
MFCC+Delta features, and MFCC+Delta+DoubleDelta features.

another. For a short-time cepstral sequence C[n], the delta-cepstral
features are typically defined as

D[n] = C[n+m]− C[n−m] (1)

where n is the index of the analysis frames and in practice m is
approximately 2 or 3. Similarly, double-delta cepstral features
are defined in terms of a subsequent delta-operation on the delta-
cepstral features. Fig. 2 plots the word error rate (WER) for speech
recognition in the presence of white noise for the DARPA Resource
Management (RM) database, following experimental procedures
described in Sec. 5. We note that the addition of delta-cepstral fea-
tures to the static 13-dimensional MFCC features strongly improves
speech recognition accuracy, and a further (smaller) improvement
is provided by the addition of double-delta cepstral. For these rea-
sons some form of delta and double-delta cepstral features are part
of nearly all speech recognition systems. It can be seen that the
improvement provided by delta features gradually diminishes with
lower SNR. We also note that from Eq. (1), it can be easily shown
that E[D[n]C[n]] = 0, where E[.] is expectation operator, so the
delta-features are uncorrelated with the static features and help the
frame independence assumption in the HMM in ASR.

While the addition of delta-cepstral coefficients (DCC) to
MFCC coefficients does indeed improve ASR recognition accuracy,
they do not provide good robustness in noise and reverberation. The
reasons for this can be understood in graphical form by considera-
tion of Fig. 3, which depicts various manipulations of the short-time
power of clean speech, and speech in “real-world” noise at 0-dB
SNR (with noise recorded naturally from locations such as a market,
a food court, the street, and a bus stop). Fig. 3(a) plots the short-time
power for a particular speech segment, and for the corresponding
noise segment. We note that the speech signal power exhibits a
very high dynamic range, while the noise spectral power is much
more static than the speech power. Fig. 3(b) plots the short-time
power for clean speech and speech plus noise at 0 dB noise using
the noise from Fig. 3(a). Unsurprisingly, the peaks of Fig. 3(b)
remain relatively intact, while the “valleys” are filled by the noise.
The corresponding log power values are shown in Fig. 3(c), and
they are a step in the extraction of MFCC coefficients, as seen in
Fig. 1(a). Due to the compressive nature of the log nonlinearity,
the spectral peaks are approximately the same for the clean and
noisy speech but the remaining frames exhibit a high degree of
mismatch. Since noise fills the the valleys of the curves, and the
noise is relatively stationary, the noisy log-spectral contour exhibits
a sharply reduced dynamic range in comparison to the correspond-

ing clean log-spectral contour. Finally, plotting the corresponding
delta-cepstral features in Fig. 3(d) we note that the delta features
still exhibit a high degree of mismatch between clean and noisy
conditions. The delta-spectral features proposed in the next section
both retain the contextual properties of delta-cepstral features and
are robust to noise and reverberation as well.

3. DELTA-SPECTRAL CEPSTRAL COEFFICIENTS

We now discuss the delta-spectral cepstral coefficients for ASR.
These features are motivated by the non-stationarity of speech sig-
nals that had been observed in Fig. 3(a) where it is easily observed
in that figure that the short-time power of speech varies much more
rapidly than the short-time power of noise. The vast differences be-
tween the rate of change of power for of speech and noise are likely
to be one of the many cues that human ears can use to ignore the
relatively stationary noise signals and focus on the rapidly-changing
power of speech signals.

The proposed delta-spectral ceptral coefficient (DSCC) features
are described in block diagram form in Fig. 1(b). Our objective
is to combine the speech contextual information captured by the
DCC features in Fig. 1(a) with a greater degree of robustness to
additive noise. As can be seen, the major changes are that the initial
time-differencing operation is now earlier in the processing and a
new Gaussianization stage is added. Specifically, performing the
delta operation described by Eq. (1) in the spectral domain will
enhance the fast changing speech components, and suppress the
slowly-changing noisy components. Fig. 3(e) plots the outcome of
the delta operation in the spectral domain on the power contours
in Fig. 3(b). The advantage of the delta-spectral approach is clear
by comparison of the similarity of the curves representing clean
and noisy speech in Fig. 3(e) (which were obtained by applying
the delta operation in the spectral domain) to the corresponding
curves in Fig. 3(d) (which were obtained by applying the delta op-
eration in the cepstral domain). However, the delta-spectral features
in their current form are unsuitable for speech recognition appli-
cations because the raw delta-spectral cepstral features are highly
non-Gaussian, as is seen in Fig. 4. To adapt the delta-spectral fea-
tures for speech recognition, we apply histogram normalization to
the delta-spectral features to give them a Gaussian distribution, as
shown in Fig. 4(b). This Gaussianization nonlinearity is applied on
an utterance-by-utterance basis. Fig. 3(f) plots the “Gaussianized”
delta-spectral features, which are reduced by the DCT operation
as in Fig. 1(b) to a 13-dimensional vector of delta-spectral cepstral
coefficients (DSCC). Double-delta features are then derived from
the delta-spectral features in the cepstral domain.

4. DSCC FEATURE ANALYSIS

In this section we provide a more formal analysis of the SNR im-
provement in white noise using the DSCC features. Assuming that
the noise is a white Gaussian sequence sample distribution wi of the
formN (0, σ2), the power P in an independently-observed set of N
samples is P = 1

N

∑N
i=1

w2
i . P follows a chi-square distribution

with N degrees of freedom (DOF), which becomes approximately
Gaussian for large N . Under the Gaussian assumption for P , it can
be shown that

E[P ] =
1
N

E[
N
∑

i=1

w2

i ] = σ2



0 50 100 150 200
0

0.01
0.02
0.03

Frame Index

(a)

 

 
Speech
Noise

0 50 100 150 200
0

0.01
0.02
0.03

(b)

 

 
Speech
Speech in 0−dB Noise

−20

−10

0
(c)

−10

0

10

(d)

−0.02
0

0.02

(e)

−2

0

2

(f)

Fig. 3. (a) Short-time power plot of a mel channel (center frequency 1000 Hz) for a speech and a “real-world” noise segment using 10-ms
frames. (b) Short-time power for clean speech as in (a) and speech in 0-dB “real-world” noise from (a). (c) Logarithmic power plot for clean
speech and noisy speech in (b). (d) Temporal difference operation over the signals in (c). (e) Temporal difference over the signals in (b). (f)
Gaussianization operation over the signals in (e).

V ar[P ] = E[P 2]− E[P ]2 =
E
[
∑

i,j w
2
iw

2
j

]

N2
− σ4

=
1
N2

(

∑

i

E[w4

i ] +
∑

i,j,i!=j

E[w2

iw
2

i ]
)

− σ4 =
2σ4

N

Thus, P is approximately distributed as N(σ2, 2σ4

N
). The DC power

associated with P is the square of the mean, σ4, while the AC power
is the variance 2σ4

N
. DSCC processing removes the DC power, and

we can express the impact of this effect using the ratio

Noise suppression ≈ −10 log
10

( PowAC

PowAC + PowDC

)

= 10 log
10

(

1 +N/2
)

We use a speech analysis window duration of 25 ms, so the num-
ber of samples in the window duration becomes N = 400 with a
sampling frequency of 16,000 Hz, and forN = 400, the consequent
white noise suppression is 23.03 dB. Thus, the maximum possible
benefit with DSCC processing is a 23-dB SNR noise suppression for
the white noise case.

Noise Type White Real-World Music
Predicted noise suppression 23 12 3.5
SNR threshold-shift in ASR 8.3 7.5 5

Table 1. Predicted noise suppression and Observed SNR threshold-
shift in an ASR experiment for different noise conditions (in dB)

In Table 4, we experimentally derive the degree of noise sup-
pression for different noise conditions based on the percentage of
total power that is DC power, as above. As expected, the noise-
suppression so obtained is greater for relatively stationary noises
such as white noise and the “real-noise” conditions than for back-
ground. We also present the experimentally-observed shift in effec-
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Fig. 4. Histogram of short-time power after the delta operation for a
clean-speech sample (a) before and (b) after Gaussianization.

tive SNR that will discussed below in conjunction with a speech-
recognition task (cf. Fig. 5). While the observed shifts SNR shifts
are not equal to the calculations above for many reasons, (includ-
ing suppression of both speech and noise at other frequencies im-
posed by the DSCC algorithm and subsequent nonlinearities in pro-
cessing), the trends of the dependencies are similar, suggesting that
closer study of the impact of processing on the modulation spectra
can provide insight into the extent to which DSCC and similar pro-
cessing can reduce the impact of various types of noise.

5. EXPERIMENTAL RESULTS

We describe in this section experimental results comparing DSCC
features to conventional MFCC/DCC and other features using
degraded speech from the DARPA Resource Management (RM)
database, which consists of 1600 training utterances and 600 test ut-
terances. Data were obtained by digitally adding the various noises
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(a) WER for white noise.
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(b) WER for music noise.
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(c) WER for real-world noise
recordings.
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(d) WER for reverberation envi-
ronments.

Fig. 5. Comparisons of WER for 26-dim. DSC and 26-dim. DSCC features in noisy and reverberant environments. MVN is included.
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(a) WER for white noise.
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(b) WER for music noise.
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(c) WER for real-world noise
recordings.
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(d) WER for reverberation envi-
ronments.

Fig. 6. Comparisons of WER obtained using DSCC versus DCC processing in combination with MFCC, PNCC, and AFE features. All the
features are 39-dim. and include MVN.

described above to the speech signal. We also evaluated the features
in reverberant environments, which were simulated by convolving
the speech from the RM database with simulated room impulse re-
sponses using the (RIR) software package1 [5]. We used the Sphinx
open source speech recognition system2 for training and decoding,
with 8 Gaussian Mixtures and a bigram language model.

Fig. 5, compares the WER obtained using DCC, as in Fig. 1(a),
against DSCC, where temporal-differencing is performed in the
spectral domain,3 as in Fig. 1(b). These comparisons clearly demon-
strate the benefit of performing the time differencing in the spectral
domain instead of in the conventional cepstral domain. It can be
seen that the delta-spectral features substantial increases in robust-
ness to noise as well as reverberation, increasing the effective SNR
compared to by 5 to 8 dB at 50% WER. The use of DSCC features
also provides a 30-45% relative reduction in WER at reverberation
times of 300− 500 ms.

Fig. 6 considers the combination of DSCC versus DCC features
with MFCC, AFE [6] and PNCC [7], it can be seen that the use of
the DSCC features provides better recognition accuracy than what
is obtained from DCC features for all noise and reverberation con-
ditions. The DSCC features not only strongly improve the baseline
MFCC-DCC, they also improve the advanced systems in PNCC and
AFE. Surprisingly we find that simply appending the 26-dim. DSCC
features to the 13-dim. MFCC works as well as the conventional 39-
dim. AFE features.

1http://2pi.us/rir.html
2http://cmusphinx.sourceforge.net/html/

cmusphinx.php
3The DSCC software is available at http://www.cs.cmu.edu/

˜robust/archive/algorithms/DSCC_ICASSP2010/.

6. CONCLUSIONS

In this study, we propose DSCC features that perform temporal dif-
ferencing in the spectral rather than cepstral domain, and we observe
that in comparison to conventional cepstral differencing, the use of
DSCC features improves the effective SNR by 4 to 8 dB for various
types of additive noise and reduces the relative WER by 20-30% in
reverberation. We also find a good correspondence as a function of
noise type between the extent to which the use of DSCC processing
reduces the WER and noise and the fraction of noise power at DC.
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