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Abstract

“Missing-feature” techniques to improve speech recognition accuracy are based on the blind determination of which cells in a spec-
trogram-like display of speech are corrupted by the effects of noise or other types of disturbance (and hence are “missing”). In this paper
we present three new approaches that improve the speech recognition accuracy obtained using missing-feature techniques. It had been
found in previous studies (e.g. Seltzer et al., 2004) that Bayesian approaches to missing-feature classification are effective in ameliorating
the effects of various types of additive noise. While Seltzer et al. primarily used white noise for training their Bayesian classifier, we have
found that this is not the best type of training signal when noise with greater spectral and/or temporal variation is encountered in the
testing environment. The first innovation introduced in this paper, referred to as frequency-dependent classification, involves indepen-
dent classification in each of the various frequency bands in which the incoming speech is analyzed based on parallel sets of frequency-
dependent features. The second innovation, referred to as colored-noise generation using multi-band partitioning, involves the use of
masking noises with artificially-introduced spectral and temporal variation in training the Bayesian classifier used to determine which
spectro-temporal components of incoming speech are corrupted by noise in unknown testing environments. The third innovation consists
of an adaptive method to estimate the a priori values of the mask classifier that determines whether a particular time-frequency segment
of the test data should be considered to be reliable or not. It is shown that these innovations provide improved speech recognition accu-
racy on a small vocabulary test when missing-feature restoration is applied to incoming speech that is corrupted by additive noise of an
unknown nature, especially at lower signal-to-noise ratios.
© 2010 Elsevier B.V. All rights reserved.
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1. Introduction

Differences in acoustic environment between the condi-
tions under which an automatic speech recognition
(ASR) system is trained and deployed are primary fac-
tors underlying degradation in speech recognition accu-
racy, including the presence of background noise.
Various approaches for minimizing these differences and

* Corresponding author. Tel.: +1 972 883 4388; fax: +1 972 883 2710.
E-mail address: wikim@utdallas.edu (W. Kim).
URL: http://crss.utdallas.edu (W. Kim).

0167-6393/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.specom.2010.08.005

for maximizing speech recognition accuracy have been
developed over the last several decades, and these algo-
rithms have achieved reasonable success in the presence
of stationary noise. Nevertheless, these approaches are
still vulnerable to the effects of time-varying noise such
as background music, since most of them are primarily
based on the estimation of corrupting noise components.
In general it is very difficult to estimate the statistical
characteristics of unknown background noise that is time
varying, and the presence of such noise greatly compli-
cates environmental compensation efforts (e.g. Singh
et al., 2002a,b).
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Missing-feature methods have been more effective in
coping with the effects of non-stationary noise on speech
recognition accuracy. These methods depend mostly on
the characteristics of speech that are resistant to noise,
rather than on the characteristics of the noise itself. In prin-
ciple, missing-feature techniques should enable an
improvement in accuracy that is independent of the specific
nature of the masking background noise, even when the
noise is transient in nature (Cooke et al., 1997; Lippmann
and Carlson, 1997; Cooke et al., 2001; Raj et al., 2004; Selt-
zer et al., 2004; Raj and Stern, 2005).

Missing-feature methods generally consist of two steps.
The first step is the estimation of a “mask” which deter-
mines which parts of a spectro-temporal representation of
noisy input speech are considered to be unreliable. Most
of the initial mask classification methods proposed were
based on the estimation of quasi-stationary background
noise of a known type. These methods are not useful in
estimating unknown or time-varying noise processes (Bar-
ker et al., 2000; Renevey and Drygajlo, 2001). Seltzer et al.
(2004) have proposed a Bayesian classifier with the goal of
environment-independent mask classification. Jancovic
et al. (2003) have suggested a method to evaluate the reli-
ability of a particular band using the likelihood computed
from a Hidden Markov Model (HMM). Harding et al.
(2005), Srinivasan et al. (2006), and Park and Stern
(2009) have described methods that exploit spatial informa-
tion from multiple channels of incoming speech to estimate
the masks for the missing-feature algorithm. In addition,
Raj and Singh (2005) proposed a method for creating
“soft” masks called the Max-VQ algorithm, which still
relies on estimation of the noise.

The second step concerns the determination of how to
bypass the unreliable (or “missing”) regions that are iden-
tified in the first step, or reconstruct “reliable” features
from them. Early methods involved modifying the decod-
ing procedures of the speech recognizer to compute the
output probabilities associated with the incomplete speech.
These approaches would either replace unreliable spectro-
temporal regions by estimating their values given the state
of the HMM or by computing the marginal output proba-
bility, relying only on the reliable regions while bypassing
the unreliable regions (Cooke et al.,, 2001; Josifovski
et al., 1999). Raj et al. (2004) have proposed two types of
feature-based reconstruction methods. Our work is based
on one of these approaches, cluster-based missing-feature
reconstruction, which will be described in a later section.

The work described in the present paper focuses on the
first step, mask classification. Seltzer et al. (2004) described
the development of a Bayesian classifier for mask classifica-
tion. They mostly trained on speech corrupted by white
noise for this work because it was noted empirically that
classifiers trained in white noise tend to be somewhat more
robust to changes in the acoustical environment. Neverthe-
less, we found in subsequent evaluations that the use of
white noise for training the Bayesian classifier does not in
fact provide the desired degree of environment indepen-

dence in mask classification, for reasons that we believe
are related to the inability of white noise to reflect spectral
variations of realistic noise environments realistically over
time and frequency. For this reason we have proposed a
new training method that employs a combination of col-
ored-noise samples, and we will demonstrate that the use
of this method improves environmental robustness.

In Section 2 we review the Bayesian classifier for mask
classification proposed by Seltzer et al. (2004), which is
used as the baseline system for our experiments. In Sec-
tion 3 we review the cluster-based reconstruction algorithm
of Raj et al. (2004), which is employed for the missing-fea-
ture reconstruction method in our work. We generalize the
problem of mask classification for missing-feature recogni-
tion in Section 4, modifying the classifier so that it operates
in a “frequency-dependent” fashion. In Section 5 we intro-
duce a new way to improve the environmental robustness
of the classifier by training it using a particular type of col-
ored-noise broadband noise. Finally, in Section 6 we sum-
marize our findings.

2. Mask classification based on Bayesian classification

The missing-feature approach requires that we deter-
mine a “mask” which classifies the spectral components
of each frame into reliable and unreliable (or “missing”)
regions for missing-feature reconstruction. Reliable regions
are defined as the spectro-temporal components of incom-
ing speech in which the speech components remain undis-
torted by the corrupting background noise. In the
unreliable regions, the noise components are intense
enough to distort the representation of speech to the extent
that the representation is no longer useful for speech
recognition.

Seltzer et al. (2004) have proposed a Bayesian classifier
for mask classification that makes no assumption about
the nature of the corrupting background noise. Their
method employs measures of speech attributes which assess
the degree of corruption by noise while remaining relative
robust to the nature of the background noise. These fea-
tures include the following:

e The comb filter ratio (CFR), which measures the ratio of
energy at frequencies that are harmonics (or integer mul-
tiples of the fundamental frequency) compared to the
energy between these frequencies.

e The ratio of subband energy to full-band energy.

e The ratio of subband energy to the full-band/subband
noise floor.

e Spectral flatness, which is characterized by the variance
of the subband energy in a neighborhood of spectro-
temporal locations.

Seltzer et al. (2004) have demonstrated that the CFR is a
reliable predictor of noise-level in the signals, by showing
its performance with voiced speech segments corrupted
by white noise and background music at various SNRs.
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The CFR is extracted only during voiced frames from
which the pitch period for the comb filter can be obtained.
Using the features above, acoustic models are estimated
separately for voiced and for unvoiced speech segments,
based on observed log-spectral values in each Mel-filter
band. Prior probabilities and Gaussian mixture models
(GMMs) are developed for each acoustic model. Seltzer
et al. obtained these acoustic model parameters by training
on a speech database that was artificially corrupted by
noise, and the labels for reliable versus unreliable segments
were developed using “Oracle” information' which con-
tains perfect knowledge about the nature of the corrupting
noise. Training for mask classification will be discussed fur-
ther in Section 5. When new data are presented to the ASR
system, the determination of whether a given spectral-tem-
poral component is reliable or unreliable is based on its a
posteriori probability in terms of these models.

3. Cluster-based missing-feature reconstruction

Our missing-feature reconstruction is an extension of the
cluster-based method introduced by Raj et al. (2004).
Using maximum « posteriori (MAP) estimation techniques,
the unreliable components of speech representations are
estimated using values of the reliable regions (as deter-
mined by the mask classification process), based on the
known distributions of clean speech. The feature vectors
are reconstructed in the log-spectral domain, and then con-
verted to cepstral features for the actual speech recogni-
tion. The use of cepstral coefficients as feature vectors for
speech recognition can provide better recognition accuracy
than model compensation methods that restore log-spectral
components (Raj et al., 2004).

Let X represent the log spectra of clean speech, which
are modeled by Gaussian-mixture densities with K clusters.
Each cluster has a mean vector and a full covariance
matrix,

PX) =D N (X3 iy Ec)- ()

k=1

Consider a noisy speech vector Y and its underlying clean
speech vector X which has unreliable (i.e. “missing”) com-
ponents X, and reliable components X,. The reliable com-
ponents X, are identical to the corresponding observations
Y,. The cluster membership k of the clean speech model is
nominally determined by its a posteriori probability, which
can be computed by integrating out the unreliable
elements:

k= argmax{P(k)p(X1k)}

_ argmax {P(k) [ " p(X|k)dX,,}, @)

k 00

! More details about the Oracle knowledge used in our study may be
found in Section 4.2.

where Y, represents the observed values of the unreliable
parts and is assumed to be greater than X, because it is cor-
rupted by additive background noise. Finally, the unreli-
able parts X, are restored using bounded MAP
estimation based on the observations in the reliable regions
X,, the model parameters of the cluster k as determined by
(2), and the upper bound Y, as follows:

//\;u:argmax{p(Xu|Xra”){‘]}72)(iju g Yu)}7 (3)
where puy; and X ; respectively denote a mean vector and
covariance matrix of the cluster £ of the clean speech
Gaussian mixture model.

4. A frequency-dependent Bayesian classifier for mask
classification

In the work of Seltzer et al. (2004), the classifier for
mask classification was trained using a speech database
that was corrupted by white noise as described in Section 2.
This classifier was then applied to other acoustical environ-
ments including factory noise and music noise in the back-
ground without any prior information about the test
conditions. Recognition accuracy obtained using the fac-
tory-noise and musical maskers was comparable to the
“matched” training condition in which the type of noise
used both to train and evaluate the Bayesian mask was
the same (i.e. white noise in this case).

In our extensions of this work, however, we found that
the use of white noise to train the Bayesian mask classifier
failed to provide good recognition accuracy in the presence
of all types of corrupting noise. We believe that mask clas-
sifiers trained on white noise are suboptimal because of
implicit frequency-to-frequency dependencies in the fea-
tures that are used for mask classification. For example,
the subband-energy-ratio features utilize the values of
other subbands or a noise floor that is estimated from
neighboring frames. In addition, the spectral-flatness fea-
ture directly exploits spectral variations around neighbor-
ing frames and frequency bands. In other words, we
believe that the spectral variations across adjacent frames
and frequency bands can influence the features obtained
from a particular band. Therefore, in order to obtain envi-
ronment-independent models for the Bayesian mask classi-
fier, we must incorporate the spectral variations across
frames and bands into the model of each band, which in
effect simulates the occurrences of various kinds of noise
conditions.

In an earlier study (Kim et al., 2005), we proposed a
training method that uses combinations of colored noise
for the purpose of generating an environment-independent
model that can be used for mask classification. The effects
of spectral variation across adjacent frames and frequency
bands were incorporated by training the acoustic models
for mask classification on speech databases that are cor-
rupted by various random combinations of colored noise.
The colored-noise samples are obtained by dividing the
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original frequency band into M bands that increase in
bandwidth as the center frequency increases according to
the Mel scale.

In principle, any type of noise spectral profile can be
generated by increasing M to half the size of the discrete
Fourier transform (DFT) and by employing a number of
different signal-to-noise ratios (SNRs) across the frequency
bins. Unfortunately, when the amount of training data is
limited the frequency of occurrence of each type of colored
noise decreases as the number of kinds of noise increases.
From experimental observations we believe that this results
in a failure to observe continued reduction in error rate as
M, the number of frequency bands, is increased beyond a
point. Increasing the size of the training database is not
practical, because the database size must be increased in
exponential proportion to M.

In this section, we present a frequency-dependent
approach that addresses the problem of limited available
training data which is caused by increasing the number of
partitions for colored-noise generation (Kim and Stern,
2006). Within the framework of the frequency-dependent
mask classifier, we need only to consider the various kinds
of spectral events within each particular frequency band in
order to simulate the various types of background noise
considered. The mask classification scheme presented in
the following section enables us to characterize the spectral
patterns of a number of different background environments
while using a relatively small number of combinations of
colored noise. We begin with a description of the features
used for frequency-dependent mask classification, followed
by a discussion of the mask classification method. In Sec-
tion 5 we discuss the method used to generate the stimuli
that are used to train the mask classifiers.

4.1. Features used for frequency-dependent mask
classification

The incoming signal is subdivided into 23 overlapping
frequency bands that increase in bandwidth as the center
frequency increases, following the dependence of band-
width on center frequency that is used in conventional
Mel-frequency cepstral analysis (Davis and Mermelstein,
1980). Mask classification in each frequency band is per-
formed using a combination of some of the features used
by Seltzer et al. (2004) with additional coefficients indicat-
ing spectral information, formulating 12 features for voiced
speech segments and 11 features for unvoiced segments for
each frequency band. (The fact that we happen to use 23
overlapping frequency bands as well as a total of 23 factors
is merely a coincidence.)

4.1.1. Subband cepstral coefficients

Cepstral coefficients provide an effective characteriza-
tion of the short-time spectral envelope and can be used
as features for mask classification, just as they are used
for the speech recognition system itself. We develop “sub-
band cepstral coefficients” by computing the discrete cosine

transform (DCT) of the log magnitude spectrum in each of
the 23 analysis bands (without the triangular weighting
associated with conventional MFCC analysis). In each
band, DCT coefficients 1 through 5 are used as features
for mask classification.? In addition, we obtain five sub-
band delta cepstral coefficients by computing the first dif-
ference of each of the subband cepstral coefficients in
each Mel-frequency channel. We believe that the subband
cepstral coefficients will represent the spectral envelope of
each frequency band with a less correlation among the
coefficients. We note that while classification within each
frequency band is based on features that are specific to that
band of frequencies, this classification takes place indepen-
dently of the input to the other bands.

4.1.2. Spectral flatness measure

The spectral flatness measure (SFM) indicates whether
any tonal components are dominant in a given signal
frame, and it has been used as a measure for determining
which segments of an utterance are voiced or unvoiced
(Johnston, 1988). The SFM can be calculated from the
ratio of the geometric and arithmetic averages of spectral
components as in Eq. (4):

/N
SFM (m) = M 4)

7y m(n)

m

where x,,(n) indicates signal components in the (linear)
spectral domain within the mth Mel-filter-bank, and N,, de-
notes the number of these components. The SFM is ex-
pected to reflect the amount of contamination of each
Mel-filter channel (i.e. Mel-frequency band) by back-
ground noise and it is computed from the log-spectral val-
ues in each frequency band.

4.1.3. Comb filter ratio

The comb filter ratio (CFR) used by Seltzer et al. (2004)
and described in Section 2 is used as the final feature for
mask classification in each frequency band.

4.2. Frequency-dependent mask classification using Gaussian
mixture models

In total, for each Mel-frequency band, the feature vector
for voiced-speech frames consists of five subband cepstral
coefficients, their corresponding first differences in time,
one SFM coefficient, and one CFR coefficient, producing
a 12-dimensional vector. Frames of unvoiced speech are
represented by the same features excluding the CFR mea-
sure, producing an 11-dimensional feature vector for each
frequency band.

The estimate-maximize (EM) method is used in conven-
tional fashion to develop four Gaussian mixture models

2 The smallest number of log-spectral components within each frequency
band (i.e. Mel-filter-bank) is 5, when an analysis window of 256 samples is
used.
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(GMMs) in each band. Specifically, separate models are
developed for spectral components that are deemed to be
reliable and unreliable (i.e. “missing”) for both voiced
and unvoiced speech frames. Each model consists of a prior
probability and a GMM of the distribution for the feature
vectors, which enable us to calculate the posterior proba-
bility of the input feature vector representing each frame.
The parameters of the models are obtained by a training
procedure that used a multi-band type of colored noise to
be described in the following section. For some of these
experiments we make use of perfect “Oracle” knowledge
that informs the system whether a particular time-fre-
quency segment should be regarded as reliable or unreli-
able, for the purpose of identifying the extent to which
recognition errors are mediated by mask classification
errors as opposed to other causes. This Oracle mask of
the mth frequency band at time ¢ is obtained by comparing
a difference in log-spectral value between the original clean
speech s,,(¢) (i.e. reference) and noise signal 7,,(¢) estimated
from input speech x,,(f) to a threshold « as in Eq. (5):

0, (1) = { 1 (reliable),  if s, (¢) — 7, (t) > o,

. ) 1<m<M,
0 (unreliable), otherwise,

(5)

where 7, () = log(exp(x,(t)) — exp(su (1)), if X,(1) > 5,(2).
In our experiments, we used —0.5 for the threshold o.

4.3. Experimental evaluation of frequency-dependent
classification

4.3.1. Experimental procedures

Our evaluations of the procedures described above were
performed in the context of the Aurora 2.0 evaluation
framework as developed by the European Language
Resources Association (ELRA) (Hirsch and Pearce,
2000). The task is connected English-language digits con-
sisting of eleven words, with each whole word represented
by a continuous-density HMM with 16 states and three
mixtures per state. In addition to the digits, two silence
models representing normal silences and short pauses are
employed. The feature extraction algorithm suggested by
the European Telecommunication Standards Institute
(ETSI) was employed for the experiments (ETSI, 2000).
An analysis window of 25-ms duration is used with 10 ms
between frames for speech that is sampled at 8 kHz. The
computed magnitude spectrum is passed through a Mel-
scaled filter-bank and 23 Mel-filter-bank outputs are trans-
formed to 13 cepstral coefficients in the usual fashion
(Davis and Mermelstein, 1980). After extracting the 13th-
order cepstrum, discrete-time approximations to the first-
and second-order time derivatives are included during the
decoding procedure producing a final feature vector of 39
dimensions.

Following the procedures specified in the Aurora 2.0
evaluation for clean-condition training and multi-condition
testing, the HMMSs of the speech recognizer and the

GMMs for cluster-based missing-feature reconstruction
were trained using a database that contains 8440 utterances
of clean speech. Rather than using the multi-condition test-
ing database in Aurora 2.0, evaluation data were obtained
by combining clean speech samples from Set A of the Aur-
ora 2.0 testing database with four types of noise samples:
white noise, car noise, speech babble, and background
music. The white noise and car noise represent stationary
noise conditions, and they were obtained from the NOI-
SEX92 and Aurora 2.0 databases, respectively. Speech
babble and background music represent non-stationary
noise environments; they were obtained from the Aurora
2.0 database and the initial instrumental segments (before
singing begins) of 10 Korean pop songs with varying
degrees of intensity and speed (i.e. beat and tempo). The
test database included speech samples that were corrupted
by each of the four types of noise at five SNRs: 20, 15, 10,
5, and 0 dB. We obtained 1001 samples of degraded speech
for each of the 20 noise conditions.

4.3.2. Comparison of frequency-dependent classification with
baseline performance

We now compare the performance of the frequency-
dependent classification procedure described in this section
with the baseline Bayesian classification procedure devel-
oped by Seltzer et al. (2004). The five features described
in Section 2 were used for the baseline mask classification
in voiced frames and the same features except for CFR
were used for the unvoiced frames. The pitch information
for CFR at every speech input was extracted using the his-
togram-based method described by Seltzer (2000). The fea-
tures used for mask classification were modeled as
Gaussian-mixture densities with 16 mixture components
and diagonal covariance matrices.

Table 1 compares the speech recognition performance
(Word Error Rate, or WER) of missing-feature reconstruc-
tion employing the frequency-dependent classification pro-
cedure described in this section with the baseline Bayesian
classification procedure developed by Seltzer et al. (2004)
for the four masker types, white noise, car noise, speech
babble, and background music at all five SNR conditions.
The performance obtained with no processing at all and
with traditional spectral subtraction (Boll, 1979; Martin,
1994) are also presented. In each case, the mask classifier
was trained using white noise that was presented at seven
SNRs (clean, 20, 15, 10, 5, 0 and —5 dB), and the recogni-
tion was performed without attempting to estimate the
SNR of each input sample. Different classifiers were applied
for mask classification of voiced and unvoiced speech
frames based on whether or not pitch was detected in each
incoming speech frame. Fig. 1 compares the performance of
the systems presented in Table 1, showing averages of WER
over the five SNRs (0, 5, 10, 15, and 20 dB).

It can be seen that the missing-feature procedures con-
sidered here provide a very considerable improvement
compared to the performance obtained with no processing
at all. It also is clearly seen that with the exception of the
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Table 1

Comparison of speech recognition performance in different background noise and SNR conditions using frequency-dependent classification with baseline

classification and spectral subtraction (WER, %).

0dB 5dB 10dB 15dB 20dB Average
White noise
No processing 79.93 48.58 25.62 11.60 5.55 34.26
Spectral subtraction 51.24 27.86 13.75 7.04 4.53 20.88
Baseline classifier 36.39 16.85 9.16 4.47 3.28 14.03
Frequency-dependent classifier S51.12 28.93 15.96 8.77 4.89 21.93
Car noise
No processing 88.07 63.91 27.71 8.38 2.92 38.20
Spectral subtraction 71.16 37.07 12.20 4.09 245 25.39
Baseline classifier 64.21 30.21 9.28 3.58 2.56 21.97
Frequency-dependent classifier 39.52 16.76 7.90 5.13 4.44 14.75
Speech babble
No processing 88.88 71.13 44.38 21.13 7.47 46.60
Spectral subtraction 85.91 63.33 38.78 19.62 8.46 43.22
Baseline classifier 73.91 49.33 25.06 12.39 5.35 33.21
Frequency-dependent classifier 46.70 23.52 10.55 6.17 3.81 18.15
Background music
No processing 74.27 51.34 28.11 12.19 4.84 34.15
Spectral subtraction 70.72 47.58 28.02 14.69 6.48 33.50
Baseline classifier 66.80 43.54 24.65 12.56 5.43 30.60
Frequency-dependent classifier 49.89 29.28 15.52 7.84 4.10 21.33
50
O white
’7 [ ] W car
40 -l
O babble
g - | @ music
1 B
2
x S
10 T T T 1

No Processing

Spectral Subtraction

Baseline Classifier  Freguency-dependent
Trained on White Classifier Trained on
Noise White Noise

Fig. 1. Performance comparison of the systems in Table 1 as average WERs over the five SNRs.

white-noise masker the results obtained using the fre-
quency-dependent Bayesian mask classification provide
better overall performance, and (more significantly) that
the variation in recognition accuracy with respect to mas-
ker type is sharply diminished. This suggests that each fre-
quency band is independently trained by the spectral events
of a given frequency region corresponding to the band in
training of the mask classifier described in this paper, so
that global similarity between training and testing condi-
tions is not so important. The baseline classifier outper-
forms our frequency-dependent classification for white-
noise maskers because in this case the training and testing
conditions are perfectly matched using the Bayesian mask
classifier developed by Seltzer et al. (2004).

While we are encouraged by these results, the results of
pilot studies described in Kim et al. (2005) suggest that bet-

ter results are obtained when the maskers used to train the
mask classifier reflect the spectral patterns and variations
that occur in the test conditions. In other words, while fre-
quency-dependent training and testing provides substantial
environmental independence, the white-noise maskers used
to train the classifier in this section may not be effective in
totally unknown environments as other types of maskers.
We explore this issue in the next section.

5. Colored-noise generation using multi-band partitioning

In the previous section we described a frequency-depen-
dent mask classifier that was trained using samples of a
white-noise process. The experimental results in Section 4
and our pilot study suggest that performance could be fur-
ther improved by training the mask classifier on maskers
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that exhibit a greater degree of local spectral and temporal
variability than is provided by white noise. We believe that
maskers of this sort resemble more closely the type of inter-
ference that is actually encountered in testing. In this sec-
tion we describe a method for generating colored noise
that can be used for training the frequency-dependent mask
classifiers. The maskers that we propose exhibit greater
spectral and temporal variability while at the same time
are generic in nature and do not represent directly any par-
ticular testing environment.

5.1. Construction of artificial colored-noise signals for
training mask classifiers

In our approach, each of the M Mel-frequency bands of
the original spectrum is divided into N narrow parts (or
“partitions”), with the partitions of each band unaffected
by those of other bands. We refer to this approach as the
“multi-band partition method” for generating colored
noise (Kim and Stern, 2006).

In multi-band partitioning for colored-noise generation,
each of the N partitions of each Mel-frequency band may
or may not contain noise components, resulting in 2" spec-
tral profiles that could be observed within each band. This
partitioning of each band into further combinations of
components is illustrated in Fig. 2. Because of the narrow-
ness of the partitions, the colored-noise maskers used to
train the system are generated by manipulating the fre-
quency representations of the subbands directly, rather

FB:FB; FBpe1 FBn
frgq_
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Fig. 2. Illustration of the multi-band partition method of generating
artificial colored noise, with the case of four partitions per Mel-frequency
band illustrated.

IIII-

than through the use of bandpass filters. Specifically, spec-
tral components of white noise are removed outside the fre-
quency regions of interest of the spectra of the noise
samples, and the resulting narrow-band restricted noise sig-
nal is obtained in the time domain through inverse Fourier
transformation. The phase information of the original
white noise sample is used for synthesizing the colored
noise in a manner similar to that of conventional spectral
subtraction.

Fig. 3 is a spectro-temporal representation of the multi-
band partition method for generating colored noise (again
showing the case of N = 4). As the figure shows, each Mel-
frequency band is split into four partitions of equal width
along the Mel scale. The multi-band scheme with N =4
has the effect of partitioning the entire range of frequencies
into four times of the number of Mel-filter-banks M, (or
24M combinations) since the mask classifier corresponding
to each band is trained independently. This means that we
can simulate a greater number of spectral patterns with a
relatively small number of combinations (i.e. M x 2%).

The 2" combinations of colored noise in a Mel-fre-
quency band that are used to train the mask classifier of
the corresponding frequency index are generated by com-
bining the narrow-band signals created by the N partitions
of each band. The exact combination is selected randomly
for each of a sequence of successive time intervals (typically
of duration 30, 60, or 300 ms in our experiments) if non-
stationary noise is desired, or a single combination of par-
titions is selected for the entire utterance if stationary noise
samples are desired. In the example shown in Fig. 3, the
colored noise was generated by the multi-band partition
method using N =4, where each combination of colored
noise is randomly selected every 30 ms. A noise-corrupted
speech database for training the frequency-dependent mask
classifier was produced by adding the colored-noise signals
described above to clean speech at various SNRs. We used
seven SNRs (clean, 20, 15, 10, 5, 0, and —5 dB) as a same
manner as the model training in white noise presented, in
Section 4.3.2.

5.2. Performance of frequency-dependent mask classification
trained using multi-band colored noise

In this section we discuss the effectiveness of the artificial
multi-band colored-noise signals described in Section 5.1,
using the frequency-dependent mask-classification strategy
discussed in Section 4. Fig. 4 presents the word error rate
obtained for four different types of noise maskers, using
the same 12 features for voiced speech and 11 features
for unvoiced speech discussed previously. The figure shows
how recognition accuracy depends on the number of fre-
quency partitions that are used in generating the colored
noise as in Fig. 2. Here the WER is an average value for
all five SNR conditions (i.e. 0, 5, 10, 15, and 20 dB). Note
that when there is only a single partition, the training mas-
ker becomes white noise, as was used in generating the
training data for the mask classifiers in Fig. 1. As seen in
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Fig. 3. Spectrograms of colored noise generated by (a) the single-frequency method (i.e. N =1), and (b) the multi-band partition method, with four

partitions in each of 23 Mel-frequency bands (i.e. N = 4).
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Fig. 4. Recognition performance in average WER over five SNRs (0, 5,
10, 15, and 20 dB) as a function of the number of partitions N used to
generate the multi-band colored noise that is used to train the multi-band
(i.e. frequency-dependent) mask classifier.

Fig. 4, recognition performance depends somewhat on
masker type (with speech babble in the background being
a bit of an outlier),” and the best overall average perfor-
mance is observed when the number of frequency parti-
tions is 2 or 4. These trends may be partially accounted
for by the nature of the spectral patterns of each noise.
As the number of partitions is increased from 1, we believe
that performance improves because the mask classification
system is exposed to a wider variety of masker spectra in
the training process. As the number of partitions continues

3 Recognition accuracy in speech babble is still best with a single
partition (i.e. white noise), while the other noise types present the better
performance with multiple partitions (i.e. >2) for the colored-noise
generation.

to increase, however, performance degrades because even-
tually there remains only a small number of training sam-
ples for each masker condition. While the best average
WER was obtained with two frequency partitions as
17.85%, it is worth to note that the maskers with four par-
titions provides better recognition performance for the dif-
ficult non-stationary speech babble and music maskers
with a comparable average WER as 17.87%.

6. Adaptive estimation of a priori probabilities for the mask
classifier

As described in Section 4.2, the mask classifier presented
in this paper consists of a prior model and a GMM formu-
lating a Bayesian classifier. The prior model consists of 23
values between 0 and 1 which represent the prior probabil-
ities of occurrence of the reliable components for each of
the Mel-filter-banks. (1.0 minus these values represents
the prior probabilities for the corresponding unreliable
components.) In the preceding experiments in Sections 4
and 5, these probabilities were estimated by training over
the same training data which is used for obtaining the
GMM for the classifier. As a result, the prior probabilities
that were obtained depend primarily on the acoustic char-
acteristics of the training database. From the results of
pilot experiments, we found that matching prior probabil-
ities more closely to the test conditions will produce better
speech recognition accuracy. In this section we describe an
adaptive method for estimating the prior probabilities.

6.1. Estimation of the probabilities of the mask

The distribution of the clean speech feature X in the log-
spectral domain is represented by a Gaussian mixture
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model consisting of K components as (wg, xi 2 xi)- A
noise model is estimated from non-speech segments in the
input speech as a single Gaussian pdf (uy,2y). In our
study, we assume that non-speech segments exist with
durations of at least 150 ms at the beginning and end of
each input utterance. In the proposed method, we estimate
the prior probabilities by assessing the degree of reliability
of the mean values of the clean speech model in the log-
spectral domain. Here, a reliability estimate Ry (m) of the
mth frequency band of the kth Gaussian component is
obtained by comparing a difference in log-spectral value
of the mean parameters of clean speech uy (m) and those
of the obtained noise model puy(m) to a threshold as
follows:

Ru(m) = {l(reliable), if pry o (m) — gy (m) >,
= 0 (unreliable), otherwise,

(6)

The parameter ( is a threshold for assessing the degree
of reliability, and a value of —2.5 provided best perfor-
mance over the noise conditions surveyed in this paper.
Finally, the prior probability Pr(m) is obtained by averag-
ing the reliability estimate Ry(m) over all K mixture
components:

Pr(n) = > Rilom). )

In this study we employ separate estimation of the a priori
probabilities for voiced and unvoiced speech. Using the
proposed estimation method, the prior probability for reli-
able/unreliable components in the test condition can be
adaptively estimated as the input speech utterances evolve.

6.2. Performance evaluation of the adaptive estimation
method of prior probability for mask classifier

In the same fashion as Fig. 4, Fig. 5 describes the recog-
nition accuracy of the frequency-dependent classifier
employing the proposed method of estimating the prior
probabilities for the masks, as a function of the number
of partitions for the colored noise. We note a similar
dependence of WER on partition number, with consider-
ably lower WERs observed compared to Fig. 4 over all
noise conditions. We obtained the best average WER over
all conditions (16.27%) using four partitions, which is an
improvement by 1.60% absolute compared to the case
when a fixed prior model was used, as in Fig. 4.

Fig. 6 compares directly the impact on recognition accu-
racy of all of the techniques discussed in this paper. Specifi-
cally, we compare the missing-feature reconstruction
method employing mask classification with adaptive estima-
tion of prior probabilities (as discussed in this section) to the
WER obtained using a baseline classifier (Section 2, Seltzer
et al.) features compensation using vector Taylor series
(VTS; Moreno et al., 1996) feature compensation, the fre-
quency-dependent classification described in Section 4, the

1<m<M.
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Fig. 5. Word error rates obtained using adaptive estimation of prior mask
probabilities averaged over five SNRs (0, 5, 10, 15, and 20 dB) as a
function of the number of partitions N used to generate the multi-band
colored noise that is used to train the multi-band mask classifier.

frequency-dependent classification with multi-band artificial
noise training (using five bands) described in Section 5, with
spectral subtraction (Boll, 1979; Martin, 1994) employed in
all approaches. Results are depicted as a function of SNR
for the four types of background noise conditions considered
in this paper. In all cases the results were obtained without
any specific a priori knowledge of which masker was used
for any particular sentence. These data are also tabulated
in Table 2 broken out according to types of background
noise and in Table 3 as a function of SNR.

The results in Fig. 6 and Tables 2 and 3 demonstrate
that the frequency-dependent classifier described in this
paper significantly outperforms the baseline classifier
except for the white noise condition. (As discussed previ-
ously, we expect that the baseline classifier would perform
better in white noise because its feature vector exploits
more knowledge over the full frequency rage of spectral
information and because its model parameters are obtained
by training in white noise.) More specifically, the fre-
quency-dependent classifier with multi-band training (FD
NM4 + SS) produced an average relative improvement*
of 9.27% WER over baseline, across all SNRs and all noise
conditions (including white noise). The addition of adap-
tive estimation of the prior probabilities of the masker
(AP + FD NM4 + SS) provides an similarly-averaged rela-
tive improvement of 25.45% over baseline conditions.
These results confirm that the mask classification scheme
described in this paper is effective at reducing WER in var-
ious types of background noise conditions, when it is
employed for missing-feature reconstruction without any
prior knowledge of background noise type.

We evaluated the statistical significance of the results
described in using the “Matched Pairs Sentence-Segment
Word Error (MAPSSWE) Test” provided by NIST.’
Except for the case of comparisons to baseline performance

4 The average relative improvement is computed by taking the average
of the obtained relative improvements.
3 <http://www.nist.gov/speech/tests/sigtests/mapsswe.htm>.
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Fig. 6. Word error rates obtained using our missing-feature approach employing a baseline classifier including spectral subtraction (SS), vector Taylor
series (VTS), frequency-dependent mask classification trained on white noise (FD NM1), multi-band artificial colored noise (FD NM4), and adaptive
estimation of the mask probabilities (AP FD NM4), all as a function of SNR.

Table 2
Comparison of WER (%) in four types of background noises averaged over all SNRs (0, 5, 10, 15, and 20 dB).
White Car Babble Music Average

No processing 34.26 38.20 46.60 34.15 38.30
SS 20.88 25.39 43.22 33.50 30.75
VTS + SS 21.72 14.71 19.49 23.19 19.78
Baseline classifier + SS 14.03 21.97 33.21 30.60 24.95
FD NM4 + SS 20.67 12.99 18.68 19.14 17.87
(Average relative improvement) (—62.90) (+12.85) (+47.51) (+39.61) (+9.27)
AP + FD NM4 + SS 18.89 10.63 17.52 18.06 16.27
(Average relative improvement) (—35.68) (+42.11) (+49.04) (+46.35) (+25.45)
Table 3
Comparison of WER (%) as a function of SNR conditions averaged over the four types of background noise.

0dB 5dB 10 dB 15dB 20 dB Average
No processing 82.79 58.74 31.46 13.33 5.19 38.30
SS 69.76 43.96 23.19 11.36 5.48 30.75
VTS + SS 53.52 25.81 10.80 5.50 3.26 19.78
Baseline classifier + SS 60.33 34.98 17.04 8.25 4.16 24.95
FD NM4 + SS 46.01 22.14 10.68 6.42 4.10 17.87
(Average relative improvement) (+16.89) (+23.74) (+22.12) (=5.12) (—11.29) (+9.27)
AP+ FD NM4 + SS 43.57 20.31 9.24 5.11 3.14 16.27
(Average relative improvement) (+21.05) (+29.68) (+35.70) (+22.49) (+18.35) (+25.45)

in the presence of white noise, virtually all of the techniques
discussed in Sections 4-6 were effective at a level of signif-
icance of p =.001 at SNRs of 0 and 5 dB, and at a level of
p = .05 at the higher SNRs considered.

7. Conclusions

In this paper we have described several useful improve-
ments to the process of estimating masks for speech
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recognition systems that employ missing-feature restora-
tion. The innovations we describe provide better speech
recognition accuracy for systems operating in the presence
of unknown background noise. We first described an alter-
nate approach to the Bayesian classification of missing-
feature masks in which the masks in each spectral subband
were developed independently of other subbands. The pro-
posed mask classifier employs a set of frequency-dependent
features including subband cepstral coefficients, spectral
flatness measure, and comb filter ratio. We also proposed
a new method of generating colored-noise signals to train
the frequency-dependent mask classifier, which is based
on masking noises with artificially-introduced spectral
and temporal variations. These signals simulate a number
of spectral patterns with a relatively small amount of train-
ing data within the proposed mask classifier framework. To
obtain a characterization of the prior probabilities for the
mask classifier, we also proposed an adaptive estimation
method. Our mask classification scheme was evaluated in
the context of a speech recognition system that exploits
missing-feature reconstruction. The experimental results
showed that the frequency-dependent mask classification
trained using the artificial colored-noise signals, and
employing the adaptive estimation of the probabilities of
the mask classifier, is effective in improving speech recogni-
tion accuracy in the presence of various types of noise
maskers, especially at lower SNRs, without any prior
knowledge of the test conditions.
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