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Abstract
In this paper, we propose an effective mask-estimation method
for missing-feature reconstruction in order to achieve robust
speech recognition in unknown noise environments. In
previous work, it was found that training a model for mask
estimation on speech corrupted by white noise did not provide
environment-independent recognition accuracy. In this paper
we describe a training method based on bands of colored noise
that is more effective in reflecting spectral variations across
neighboring frames and subbands. We also achieved further
improvement in recognition accuracy by reconsidering frames
that appeared to be unvoiced in the initial pitch analysis.
Performance is evaluated using the Aurora 2.0 database in the
presence of various types of noise maskers. Experimental
results indicate that the proposed methods are effective in
estimating masks for missing-feature reconstruction while
remaining more independent of the noise conditions.

1. Introduction
The presence of background noise typically causes

differences between training and testing conditions, which
can significantly degrade the recognition accuracy of speech
recognition systems. Various schemes for reducing these
differences have been developed over the last several decades
and they have demonstrated reasonable success in the
presence of stationary noise. Nevertheless, these approaches
are still vulnerable to the effects of time-varying noise such as
background music, since most of these schemes are primarily
based on the estimation of corrupting noise components.

Missing-feature methods have been more effective in
coping with the effects of non-stationary noise conditions on
speech recognition accuracy. These methods depend mostly
on the characteristics of speech that are resistant to noise,
rather than the characteristics of the noise itself. This enables
(in principle) an improvement in accuracy that is independent
of the specific nature of the masking noise, even when the
noise is transient in nature [1-3].

The missing-feature method consists of two steps. The
first step is the estimation of a “mask” which determines
which parts of a representation of noisy input speech are
considered to be unreliable. The second step is to bypass or
reconstruct the unreliable regions. In this paper, we focus on
the first step. Seltzer et al. [2] have previously proposed a
Bayesian classifier for mask estimation, which was trained on
speech corrupted by white noise for the purpose of
environment-independent mask estimation. We have found,
however, that the use of white noise for training the Bayesian
classifier does not in fact provide the desired environment
independence in mask estimation, for reasons that we believe
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ated to the inability of white noise to reflect spectral
ons of practical noise environments realistically over
nd frequency. For this reason we propose a new
g method that employs a combination of colored noises.
ition, we propose a modified decision method that
es some additional improvement in accuracy for voiced
that are improperly recognized as being unvoiced in

t-pass pitch detection process.
is paper is organized as follows. We first review the
g-feature method in Section 2. We then describe the
ed approaches in Sections 3 and 4. Representative

mental procedures and results are presented and
sed in Section 5. Finally, in Section 6, we summarize
dings.

Overview of the missing-feature method

ask estimation

issing-feature approach requires that we determine
sk” which classifies the spectrum into reliable and
ble (“missing”) regions for missing-feature
truction. Seltzer et al. [2] proposed a Bayesian
ier for the mask estimation, employing speech features
make no assumption about the corrupting noise signal.
spirit of their work, we designed a Bayesian classifier
sk estimation using the following several features.

Comb filter ratio (CFR)

ed speech, the ratio of the energy at harmonics of the
ental pitch to the energy at the spectral valleys (at

ning frequencies) can be a reasonable measure of noise
presence in speech signal. To calculate the energy at the
nics, we used a comb filter represented by the following
r function.
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p and g are the pitch period and a parameter that
ls the sharpness of the filter shape respectively. For
outside the harmonic frequencies, a shifted version of

mb filter was used. We can obtain the CFR for every
lter-bank output using the filtered speech signal.

Subband energy to fullband energy ratio

tio of subband energy to fullband energy can indicate
uch a particular band of speech is corrupted by the
ound noise. Generally, this ratio decreases as the signal
es more corrupted.



2.1.3. Subband energy to fullband/subband noise floor
ratio

The ratio of energy to a floor value of noise is another
measure of noise corruption. To estimate the noise floor, we
used the minimum-statistics method which is originally
designed for spectral subtraction [4].

2.1.4. Flatness

Spectral shape along adjacent frames and subbands also
indicates the amount of corrupting noise. We define
spectral ”flatness” as the average difference between energy
in a particular frame and spectral band and in neighboring
frames and bands.

2.2. Missing-feature reconstruction

The cluster-based and correlation-based methods have been
proposed previously by Raj et al. [3]. They restore unreliable
parts of speech representations using the known distributions
of speech sounds and the reliable regions as indicated by the
masks obtained using Bayesian detection and estimation. In
this paper, we employ the cluster-based reconstruction
method.

The distributions of the log spectra of clean speech are
modeled by Gaussian mixture densities with K clusters.
Consider, for example, a noisy speech vector S(t) with
unreliable (i.e. missing) components Sm(t) and reliable
components So(t). The cluster membership k of S(t) is
nominally determined by its a posteriori probability. S(t) has
unreliable elements, and these elements must be obtained by
integrating them out:
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where )(tYm
represents the observed values of the unreliable

parts. Finally, the unreliable parts Sm(t) are restored using
bounded MAP estimation based on the observations in the
reliable regions, the Gaussian model of the cluster as
determined by (2), and the upper bound of Ym(t).
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3. Training using colored-noise combinations
In the work of Seltzer et al., white noise was used for

training the classifier for mask estimation in order to reduce
the effects of unknown noise [2][5]. The acoustic models for
the mask estimation were trained using a speech database that
was corrupted by white noise. The trained classifier was then
applied to factory noise and music noise conditions without
any prior information about the test conditions. Observed
performance was comparable to the matched training
conditions where the types of maskers used in training and
testing the Bayesian mask estimator are identical.

Our own results obtained using matched training
conditions as well as multi-condition training produced
comparable results to those of Seltzer et al. Nevertheless, we
found that the use of white-noise backgrounds to train the
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igure 1: Spectrogram of 8-subband colored noise.

an mask classifier failed to provide robust recognition
cy that remained good in the presence of all types of
ting noise.

believe that training the Bayesian mask classifier on
noise does not provide good recognition accuracy over
es of noise (at least in our experiments) because
c noise signals do not corrupt every spectral band of
ech signal evenly. White noise should be predictive of
for other types of noise if the mask estimates obtained
y subband were in fact totally independent from those
jacent frames and other subbands, utilizing such
ting property of white noise for the purpose of an
nment-independent model looks reasonable.
fortunately, independent mask estimates across frames
ectral bands are not generally obtained in practice. For
le, the first subband energy feature (Sec. 2.1.2) uses a
for the noise floor that is typically estimated from the
oring frames. In addition, the flatness feature (Sec.
directly exploits the spectral differences compared to
ghboring frames and subbands.
other words, we believe that the spectral variations
adjacent frames and subbands can influence the

s obtained from a particular subband. Therefore, in
to obtain environment-independent models for the
an mask estimator, we must incorporate the spectral
ons across frames and subbands into each subband
, which in effect simulates the occurrences of various
f noise conditions.
this paper, we propose a training method that uses

nations of colored noises for the purpose of generating
ironment-independent model that can be used for mask
tion. We incorporate the effects of spectral variation
adjacent frames and subbands by training the acoustic

s for mask estimation on speech databases that have
orrupted by various random combinations of colored

e colored noise samples are obtained by first
ning the entire spectrum into N adjacent frequency
that increase in bandwidth as the center frequency
es according to the Mel scale. A set of 10th-order

worth bandpass filters is realized with center
ncies and bandwidths corresponding to the N frequency
described above. A particular colored-noise sample is
ed by passing white noise through a subset of the



Butterworth filters that is chosen at random. For a particular
colored noise sample, a new random selection of bandpass
filters is obtained every 30 ms, 60 ms, 300 ms, or never. (The
first three durations between changes in filter selection are
intended to represent non-stationary noise conditions, while
the last condition is intended to represent stationary noise.)
Figure 1 shows examples of spectrograms obtained from
typical noise samples with 8 subbands. The combination of
subbands actually used changes every 30 ms in the lower
panel and never in the upper panel.

4. Voiced-frame restoration
Many features used for mask estimation in voiced frames

(such as comb filter ratio) are based on pitch information. In
noisy environments, however, the initial pitch extraction
process can cause some voiced frames to be misidentified as
unvoiced frames. For these frames, the classifier designed for
unvoiced speech would normally be used for mask estimation
even though the frame is voiced, which leads to incorrect
results.

In this section, we describe a procedure that reconsiders
the nature of frames that had initially been determined to be
unvoiced and that correctly identifies some of these frames as
voiced. The proposed restoration method uses the identical
Bayesian classifier that is used for mask estimation. Since
frames where pitch is not detected have a high probability of
being unvoiced speech or non-speech, we reclassify an
“unvoiced” frame as “voiced” only in the strict condition that
the lowest likelihood computed from the voiced model is
greater than the highest likelihood obtained from the unvoiced
model.

More specifically, the voiced-frame restoration is
accomplished by estimating conditional probabilities on a
frequency-by-frequency basis. In each frequency band that is
used to extract log spectral coefficients in conventional Mel-
frequency analysis, four probabilities are computed:

P1 = P[reliable band | voiced frame]
P2 = P[unreliable band | voiced frame]
P3 = P[reliable band | unvoiced frame]
P4 = P[unreliable band | unvoiced frame]

In each frequency band, an overall probability of the frame
being voiced is obtained from the minimum of P1 and P2

above, and the overall probability of the frame being
unvoiced is obtained from the maximum of P3 and P4. The
overall probabilities of being voiced and being unvoiced are
multiplied together across all frequency bands to produce the
final probability from which the ultimate voiced/unvoiced
decision is made. Once a given frame is determined to be
voiced speech, the mask estimation proceeds on that basis.

5. Experimental results
We evaluated the performance of the procedures described

in the previous two sections using the Aurora 2.0 evaluation
procedure. The Aurora 2.0 procedure uses 23 Mel-filterbanks
for feature extraction, which means that the cluster-based
missing-feature method was applied using 23 log-spectral
coefficients per analysis frame.

The recognizer was trained using the standard Aurora 2.0
training database that contains 8,440 utterances of clean
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Figure 2: Accuracy of baseline system at 5-dB SNR.
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gure 3: Accuracy using environment-specific masks.
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Figure 4: Accuracy using masks derived from
exclusive multi-condition training.

. A testing database of degraded speech was obtained
bining clean speech from the Aurora 2.0 database with
pes of noise samples: white noise, car noise, speech
, and background music. The white noise and car noise
nt stationary noise conditions, and they were obtained
he NOISEX92 and Aurora 2.0, respectively. Speech
and background music stand for the non-stationary

nments; they were obtained from the Aurora 2.0 and
f Mozart (KV545, K265, K525, K622, and KV618).
st database included speech that was corrupted by each
four types of noise at 5 kinds of SNRs, (20, 15, 10, 5,
dB). Each of these 20 noise conditions is represented
01 samples of degraded speech.
e first examined the baseline system’s accuracy at 5 dB
as shown in Figure 21. Results are compared using no
ompensation (“baseline”), spectral subtraction (“SS”),
-based missing-feature restoration using masks derived
racle knowledge (“missingO”), and a combination of

tter two methods. 16-component Gaussian mixtures
ll covariance matrices were used for modeling the log
l coefficients. Best performance was obtained by

ning spectral subtraction with missing-feature
tion. This combination was used for all remaining

accuracy in these experiments is 100% minus the NIST word
te, which includes a penalty for insertions.



experiments in this paper, with the spectral subtraction
preceding the missing-feature algorithms.

The remainder of the experiments used missing-feature
recognition based on blind mask estimation. The Bayesian
mask estimator was trained using noise that was presented at
seven SNRs (clean, 20, 15, 10, 5, 0 and -5 dB). Different
classifiers were designed for mask estimation of voiced and
unvoiced speech frames, where each frame could in general
include both reliable and unreliable frequency bands. The five
features described in Section 2 were used for mask estimation
in voiced frames and the same features except for CFR were
used for the unvoiced frames. We used a pitch-detection
algorithm based on histograms [5]. The mask-estimation
features are modeled by 16 Gaussian mixtures with diagonal
covariance. The performance of a given mask estimation
method is inferred by the recognition accuracy that it provides.

Figure 3 describes the recognition accuracy obtained at 5-
dB SNR when masker was trained on a single type of noise.
Unsurprisingly, greatest accuracy was obtained when testing
conditions matched the type of noise with which the mask
was trained. Multi-style training of the mask estimator
(“multi-train”) appears to provide comparable accuracy.
Recognition accuracy was fairly high when car noise was
used for the testing data under most conditions. We believe
that this is a consequence of the predominantly low-frequency
spectral profile of car noise, which happens to be similar to
the average spectrum of babble and music noise as well. We
also measured the recognition accuracy was trained in multi-
style fashion, but excluding the specific noise used in the
training data Figure 4. Except for car speech, this training
causes accuracy to degrade compared to results in Figure 3
obtained when training and testing conditions are matched.

From the pilot works above, we suggest that the database
used to train the mask estimator should reflect the spectral
variations that occur in the test conditions. While multi-
condition training could be a good solution, it may not be
effective in totally unknown environments.

Figure 5 shows the recognition accuracy obtained using
the colored-noise mask training method for mask estimation
described in Sec. 3. Recognition accuracy is plotted as a
function of the number of subbands of colored noise used for
training. It appears that training on colored noise with a small
number of bands is best when testing with white noise and car
noise, while training on colored noise with 8-12 subbands is
best when testing in speech babble or music noise. We believe
that these differences reflect the fact that the spectra of white
noise and car noise tend to be smoother than those of speech
babble or music noise. The proposed training method
provides accuracy that is comparable to that obtained in the
“ex-multi” condition, and it has the advantage that it is not
necessary to collect noise samples under multiple conditions.

The plots in Figure 6 show evaluation results for the
entire test set as a function of SNR. ”Mask1” refers to results
obtained using masks trained on colored noise with 12
subbands, while “Mask2” refers to results obtained when the
voiced-frame restoration method (Sec. 4) is implemented as
well. Except for babble noise at low SNRs, the restoration
method for voiced frames provides significant improvement,
and in stationary noise cases such as white noise and car noise,
the relative improvement can be as great as 12.3%. These
results show that the restoration method is effective in
estimating the correct mask by restoring the voiced frames
when pitch-detection fails due to noise corruption.
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gure 5: Performance as the number of subbands for
combinations of colored noise used in training.
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Figure 6: Accuracy over the entire test set.

6. Conclusions
s paper, we have described an effective method of
nment-independent mask estimation for missing-feature
hms. The proposed method employs model training
a combination of colored noise and a decision step for
tion of voiced frames. The experimental results show
posed training method is useful for the environment-

ndent mask estimation and the decision procedure for
frame is effective to accurately estimate the mask.
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