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ABSTRACT

In this paper we present a new method of signal processing for
robust speech recognition using two microphones. The method,
loosely based on the human binaural hearing system, consists of
passing the speech signals detected by two microphones through
bandpass filtering. We develop a spatial masking function based on
normalized cross-correlation, which provides rejection of off-axis
interfering signals. To obtain improvements in reverberant envi-
ronments, a temporal masking component, which is closely related
to our previously-described de-reverberation technique known as
SSF. We demonstrate that this approach provides substantially bet-
ter recognition accuracy than conventional binaural sound-source
separation algorithms.

Index Terms— Robust speech recognition, signal separation,
interaural time difference, cross-correlation, auditory processing,
binaural hearing

1. INTRODUCTION

In recent decades, speech recognition accuracy in clean environ-
ments has significantly improved. Nevertheless, it is frequently ob-
served that the performance of speech recognizers is significantly
degraded under noisy or mismatched environments. These envi-
ronmental mismatch might be due to additive noise, channel distor-
tion, reverberation, and so on. Maintaining good error rates in noisy
conditions remains a problem that must be effectively resolved for
speech recognition systems to be useful for real consumer products.
Many algorithms have been developed to enhance speech recogni-
tion accuracy under noisy environments (e.g. [1, 2]).

It is well known that the human binaural system is very effec-
tive in its ability to separate sound sources even in difficult and clut-
tered acoustical environments (e.g. [3]). Motivated by these obser-
vations, many theoretical models (e.g. [4]) and computational algo-
rithms (e.g. [4, 5, 6, 7]) have been developed using interaural time
differences (ITDs), interaural intensity difference (IIDs), interaural
phase differences (IPDs), and other cues. Combination of binau-
ral information has also been employed, such as IPD and ITD (e.g.

[7, 8, 9]), ITD and interaural level difference (ILD) combined with
missing-feature recovery techniques (e.g. [10]), and ITD combined
with reverberation masking (e.g. [11]).

In many of the algorithms above, either binary or continuous
“masks” are developed to indicate which time-frequency bins are
dominated by the target source. Typically this is done by sorting the
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time-frequency bins according to ITD (either calculated directly or
inferred from estimated IPD). Spatial masks using ITD have been
shown to be very useful for separating sound sources (e.g. [9]), but
their effectiveness is reduced in reverberant environments. In [11],
they incorporated reverberation masks, but this approach does not
show improvement in purely reverberant environments (reverbera-
tion without noise) compared to the baseline system.

In this study we combine the use of a newly-developed form of
single-microphone temporal masking that has proved to be very ef-
fective in reverberant environments with a new type of spatial mask-
ing that is both simple to implement and effective in noise. We eval-
uate the effectiveness of this combination of spatial and temporal
masking (STM) in a variety of degraded acoustical environments.

2. SIGNAL SEPARATION USING SPATIAL AND

TEMPORAL MASKS

2.1. Structure of the STM system

The structure of our sound source separation system, which crudely
models some of the processing in the peripheral auditory system and
brainstem, is shown in Fig. 1. Signals from the two microphones are
processed by a bank of 40 modified gammatone filters [12] with the
center frequencies of the filters linearly spaced according to Equiv-
alent Rectangular Bandwidth (ERB) [13] between 100 Hz and 8000
Hz, using the implementation in Slaney’s Auditory Toolbox [14]. As
we have done previously (e.g. [15]), we convert the gammatone fil-
ters to a zero-phase form in order to impose identical group delay
on each channel. The impulse responses of these filters hl(t) are
obtained by computing the autocorrelation function of the original
filter response:

hl(t) = hg,l(t) ∗ hg,l(−t) (1)

where l is the channel index and hg,l(t) is the original gammatone
response. While this approach compensates for the difference in
group delay from channel to channel, it also causes the magnitude
response to become squared, which results in bandwidth reduction.
To compensate approximately for this, we intentionally double the
bandwidths of the original gammatone filters at the outset. Even
though doubling the bandwidth is not the perfect compensation, we
observe that it is sufficient for practical purposes. We obtain binary
spatial masks by calculating the normalized cross-correlation coeffi-
cient and comparing its value to a pre-determined threshold value, as
described in detail in Sec. 2.2. Along with the spatial masks, we also
generate binary temporal masks. This is accomplished by calculat-
ing the short-time power for each time-frequency bin and comparing
this value to a short-time average value that had been obtained by IIR



Filter Bank

Filter Bank
( )Rx t

( )Lx t

Obtain
Spatial
Masks

Obtain
Temporal 

Masks

Combine
Channels

Apply
Combined 

Masks

, ( )R lx t

, ( )L lx t

( )ly t ( )y t

Interaural
Cross-

corelation

Calculate
Short-term

Power)(txl

Fig. 1. The block diagram of the sound source separation system using spatial and temporal masks (STM).

sin( )d

S

d

TH

TH

Fig. 2. Selection region for a binaural sound source separation sys-
tem: if the location of the sound source is determined to be inside
the shaded region, we assume that the signal is from the target.

lowpass filtering, as described in detail in Sec. 2.3. We obtain the
final masks by combining these temporal masks and spatial masks
as described in Sec. 2.4. To resynthesize speech, we combine the
signals from each channel:

y(t) =
L−1X

l=0

yl(t) (2)

where L is the number of channels (40 at present) and yl(t) is the
signal from in each channel l after applying the masks. The final
output of the system is y(t).

2.2. Spatial mask generation using normalized cross-correlation

In this section, we describe the construction of the binary masks us-
ing normalized cross-correlation. In our previous research (e.g. [9]
[16]), we have frequently observed that an analysis window that is
longer than the conventional window of about 25 ms typically used
for speech recognition is more effective in noise-robustness algo-
rithms. Hence, we use a window length of 50 ms with 10 ms be-
tween analysis frames as in [17] for the present study. We define the
normalized correlation ρ(t0, l) for the time-frequency segment that

begins at t = t0 and belongs to frequency bin l to be

ρ(t0, l) =
1

T0

R
T0

xR,l(t; t0)xL,l(t; t0)dt
q

1
T0

R
T0

(xR,l(t; t0))2dt
q

1
T0

R
T0

(xL,l(t; t0))2dt
(3)

where l is the channel index, xR,l(t; t0) and xL,l(t; t0) are the short-
time signals from the left and right microphones after Hamming
windowing, and t0 refers to the time when each frame begins. If
xR,l(t; t0) = xL,l(t; t0), then ρ(t0, l) = 1 in Eq. (3). |ρ(t0, l)| is
less than one otherwise. We note that this statistic is widely used
in models of binaural processing (e.g. [18]), although typically for
different reasons.

Let us consider the case where the sound source is located at an
angle θ as shown in Fig. 2. We assume that the desired signal is
along the perpendicular bisector of the line between the two mics.
This leads to a decision criterion in which a component is accepted
if the putative location of the sound source for a particular time-
frequency segment is within the shaded region (i.e. |θ| < θTH ), and
rejected otherwise. If the bandwidth of a filter is sufficiently narrow,
then the signal after filtering can be approximated by the sinusoidal
function [6]:

xR,l(t; t0) = A sin(ω0t) (4a)
xL,l(t; t0) = A sin(ω0(t− τ)) (4b)

where ω0 is the center frequency of channel l. By inserting (4) into
(3), we obtain the following simple relation:

ρ(t0, l) = cos(ω0τ) = cos (ω0d sin(θ)) (5)

As long as the microphone distance is small enough to avoid spa-
tial aliasing, Eq. (5) implies that ρ(t0, l) decreases monotonically
as |θ| increases. Thus, we can retain a given time-frequency bin if
ρ(t0, l) ≥ ρTH and reject it if ρ(t0, l) < ρTH , where for each chan-
nel ρTH is given by ρTH = cos (ω0d sin(θTH)).

2.3. Temporal mask generation using modified SSF processing

Our temporal masking generation approach is based on a modifica-
tion of the SSF approach introduced in [19]. First, we obtain the
short-time power for each time-frequency bin:

Pl[m] =

Z
T0+Tf

T0

(x̄l(t; t0))
2 dt (6)

where x̄(t; t0) is the short-time average of xL,l(t; t0) and xR,l(t; t0),
which are the Hamming-windowed signals at time t0 in Channel l
from the two microphones. The index of the frame that begins at
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Fig. 3. Dependence of recognition accuracy on the type of mask used (spatial vs temporal) for speech from the DARPA RM corpus corrupted
by an interfering speaker located at 30 degrees, using various simulated reverberation times: (a) 0 ms (b) 200 ms (c) 500 ms. We used a
threshold angle of 15 degrees with STM, PDCW, and ZCAE algorithms.
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Fig. 4. Comparison of recognition accuracy using the STM, PDCW, and ZCAE algorithms for the DARPA RM database corrupted by an
interfering speaker located at 30 degrees, using various simulated reverberation times: (a) 0 ms (b) 200 ms (c) 500 ms.

t = t0 is m, and Tf is the window length. As in [19], we obtain a
first-order IIR lowpassed output:

Ql[m] = λQl[m− 1] + (1− λ)Pl[m] (7)

where λ is the forgetting factor which determines the bandwidth of
the filter. Based on a pilot study in [19], we use the value λ = 0.04.
If the power in a specific time-frequency bin is less than the low-
passed output developed in Eq. (7), we assume that it is masked
by temporal masking, so we accept a time-frequency segment if
Pl[m] ≥ Ql[m] and reject it if Pl[m] < Ql[m].

2.4. Application of spatial and temporal masks

If a specific time-frequency bin must be accepted by both the spatial
and temporal masking processes described Secs. 2.2 and 2.3, then
this time-frequency bin is selected; otherwise it is rejected. Binary
masking is applied according to the following equation:

(
yl(t, t0) = x̄l(t, t0) if selected

yl(t, t0) = µx̄l(t, t0) if rejected
(8)

where µ is a scaling factor that suppresses (but does not annihilate)
the signal in the rejected time-frequency bin. The signal yl(t, t0)
is the short-time signal in each time-freqeuency bin after applying
the mask, and x̄l(t, t0) is the average of the left and right short-time
signals starting at time t0 in the lth channel.

In previous work (e.g. [20]), we have observed that power floor-
ing (i.e. the imposition of a minimum power) is very important for

robust speech recognition. In this study as in others the choice of
the power flooring coefficient µ is important to prevent power from
approaching zero too closely. In pilot work we have found the fol-
lowing scaling factor to be useful:

µ =

vuuut
δ

“
1
T

R
T

0
x̄2

l
(t)dt

”

1
Tf

R
Tf
0

x̄2
l
(t; t0)dt

(9)

In the above equation, x̄l(t) is the average of the left and right sig-
nals for this lth channel for this utterance, T is the length of the
entire utterance, and Tf is the frame length (which is 50 ms in our
implementation). The above equation means that the input power of
time-frequency bins that are rejected is reduced to δ times the av-
erage power

“
1
T

R
T

0
x̄2

l (t)dt
”

in this channel. We have found that
δ = 0.01 is a suitable coefficient.

3. EXPERIMENTAL RESULTS AND CONCLUSIONS

In this section we present experimental results using the STM algo-
rithm described in this paper. We assume a room of dimensions 5
x 4 x 3 m, with two microphones located at the center of the room.
The distance between two microphones is 4 cm. The target is lo-
cated 1.5 m away from the microphones along the perpendicular bi-
sector of the line connecting two microphones, and an interfering
speaker is located at 30 degrees to one side and 1.5 m away from the
microphones. The target and interfering signals are digitally added



after simulating reverberation effects using the RIR software pack-
age. We used sphinx fe included in sphinxbase 0.4.1 for
speech feature extraction, SphinxTrain 1.0 for speech recogni-
tion training, and Sphinx3.8 for decoding, all of which are readily
available in Open Source form. We used a subset of 1600 utterances
from the DARPA Resource Management (RM1) training data for
acoustic modeling and a subset of 600 utterances from the RM test
data for evaluation.

Figure 3 describes the contributions of spatial masking and tem-
poral masking in the environments considered. We note that while
temporal masking scheme must be applied both to training and test
data to avoid increased Word Error Rate (WER) due to environmen-
tal mismatch, the system performance is essential the same regard-
less of whether spatial masking is used in training or no. This is
not surprising, as spatial masking should routinely accept all com-
ponents of clean speech from the target location.

In the anechoic environment (Fig. 3(a)), we observe that im-
provement with the STM algorithm is mostly provided by spatial
masking, with temporal masking providing only marginal improve-
ment. If T60 is increased to 200 ms (Fig. 3(b)), or 500 ms (Fig.
3(c)), however, we observe that the contribution of temporal mask-
ing becomes quite substantial. When both noise and reverberation
are present, the contributions of temporal and spatial maskings are
complementary and synergistic.

Figure 4 compares speech recognition accuracy for several algo-
rithms including the STM system described in this paper, the Phase
Difference Channel Weighting (PDCW) [9], and the Zero Crossing
Amplitude Estimation (ZCAE) in [6], all using binary masking. To
compare the performance of these different systems in the same con-
dition, we used a threshold angle of 15 degrees with all algorithms
to obtain binary masks. In the anechoic condition (Fig. 4(a)), the
STM approach provided slightly worse performance than the PDCW
and ZCAE algorithms. In reverberant environments the STM system
provides the best results by a very large margin, and the PDCW re-
sults were slightly better than the corresponding ZCAE results. In
terms of computational cost, PDCW requires the least amount of
computation due to its efficient frequency-domain implementation,
while STM and ZCAE require much more computation due to time-
domain filtering.

The MATLAB code for the STM algorithm can be found at
http://www.cs.cmu.edu/˜robust/archive/algorithms/
STM_ICASSP2011/.
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