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Abstract

In this paper, we present a new dereverberation algorithm called
Temporal Masking and Thresholding (TMT) to enhance the
temporal spectra of spectral features for robust speech recog-
nition in reverberant environments. This algorithm is moti-
vated by the precedence effect and temporal masking of hu-
man auditory perception. This work is an improvement of our
previous dereverberation work called Suppression of Slowly-
varying components and the falling edge of the power enve-
lope (SSF). The TMT algorithm uses a different mathematical
model to characterize temporal masking and thresholding com-
pared to the model that had been used to characterize the SSF
algorithm. Specifically, the nonlinear highpass filtering used
in the SSF algorithm has been replaced by a masking mecha-
nism based on a combination of peak detection and dynamic
thresholding. Speech recognition results show that the TMT
algorithm provides superior recognition accuracy compared to
other algorithms such as LTLSS, VTS, or SSF in reverberant
environments.

Index Terms: Robust speech recognition, speech enhancement,
reverberation, temporal masking, precedence effect

1. Introduction

In recent years, advances in machine learning techniques such
as Deep Neural Network [1], which exploits enhanced compu-
tational power [2] have greatly improved the performance of
speech recognition systems, especially in clean environments.
Nevertheless, the performance under noisy environments still
needs to be significantly improved to be useful for far-field
speech recognition applications.

Thus far, many researchers have proposed various kinds of
algorithms to address this problem [3, 4, 5, 6, 7, 8]. To some
degree, these efforts have been successful for the case of near-
field additive noise, however, for far-field reverberant speech,
the same algorithms usually have not shown the same amount
of improvement. It has been

For such environments, we have frequently observed that
algorithms motivated by auditory processing [9, 10, 11] and/or
multi microphones [12, 13, 14] are more promising than tradi-
tional approaches.

Many hearing researchers believe that human perception
in reverberation is facilitated by the “precedence effect” [15],
which refers to an emphasis that appears to be given to the first-
arriving wave-front of a complex signal in sound localization
and possibly speech perception. To detect the first wave-front,
we can either measure the envelope of the signal or the energy
in the frame [16, 17, 18].

Motivated by this, we introduced in previous work an al-
gorithm called Suppression of Slowly varying-components and
the Falling edge of the power envelope (SSF) to enhance speech
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Figure 1: The structure of the TMT algorithm to obtain the nor-
malized speech from the original input speech.

recognition accuracy under reverberant environments [19]. This
algorithm has been especially successful for reverberation, but
the processing introduces distortion in the resynthesized speech.
The nonlinear high-pass filtering in [19] is an effective model to
detect the first-arriving wavefront, but it might not be very close
to how actual human beings perceive sound.

In this paper, we introduce a new algorithm named Tempo-
ral Masking and Thresholding (TMT). In this algorithm, tem-
poral masks are constructed to suppress reflected wave files un-
der reverberant environments. We estimate the perceived peak
sound level after applying a power-law nonlinearity, and apply
a temporal masking based on this. We also apply thresholding
based on the peak power.

2. Structure of TMT processing

Figure 2 shows the entire structure of TMT processing. While
in the discussion below, we assume that the sampling rate of
the speech signal is 16 kHz, this algorithm may be applied for
other sampling rates as well. We observe that with the TMT
processing presented in this paper, it is better to not apply the
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Figure 2: Frequency responses of a gammatone filberbank
which is normalized using using (3).

algorithm to the silence portion. For this reason, it is better to
apply a Voice Activity Detector (VAD) before processing and
applying the TMT processing only for the speech portions of
the waveform.

Speech is segmented into 50-ms frames with 10-ms inter-
vals between adjacent frames. The use of this medium-duration
window is motivated by our previous research [20, 21]. A
Hamming window is applied for each frame, and a short-time
Fourier transform (STFT) is performed. Spectral power in 40
analysis bands is obtained. Temporal masking and thresholding
is performed in each channel, and the speech spectrum is re-
shaped based on these processing. Finally, the output speech is
resynthesized using the IFFT and the OverLap Addition (OLA)
method. The following subsections describe each stage in more
detail.

2.1. Gammatone frequency integration and auditory non-
linearity

As shown in Fig. 2, the first step of TMT processing is per-
forming a short-time Fourier transform (STFT) using Hamming
windows of duration 50 ms. We use this medium-duration win-
dow which is longer than those used in ordinary speech process-
ing, since it has been frequently observed that medium-duration
windows are more appropriate for noise suppression [20, 21].
As in [22], the gammatone spectral integration is performed by
the following equation:

K72 . . 2
Plm, 1] = > | X[m, &/ Hi(e*) M
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where K is the DFT size, m and [ represent the frame and
channel indices respectively. wy, is the discrete-time frequency
defined by wi = 2%, and H;(e’**) is the gammatone re-
sponse for the I** channel. P[m,[] is the power obtained for
the time-frequency bin [m,!]. When processing signals in the
frequency domain, we only consider the lower half of the spec-
trum (0 < k < %, since the Fourier Transform of real signals
satisfies the complex conjugate property:

X[m, &%) = X*[m, K -*). 2)

The gammatone responses H;(e/“’*) are slightly different
from those used in our previous research in [22, 6]. The fre-
quency responses are modified to satisfy the following con-
straint:

0<k<

K
5 3

where L is the number of the gammatone channels. The reason
for this constraint will be explained in Sec. 2.3. Even though
frequency responses @Q; (e’“*) of an ordinary filter bank usually
do not satisfy (3), we may normalize the filter responses to make
them satisfy (3) as follows:

|Qu(e”)]
S Q)|
For Ql(ejwk), we use the implementation described in [23].
Since the power P[m,!] in (1) is not directly related to how

human beings perceive the sound level, we apply an auditory
nonlinearity based on the power function [22, 24, 13].

S[m,l] = P[m,1]*° )]

Hl(ejwk) =

K
0<k< —.
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We use a value of ap =
[22, 13, 10].

% for the power coefficient, as in

2.2. Peak sound level estimation and binary mask genera-
tion

From S[m, [], we obtain the peak sound level for each channel
l. The peak sound level is the upper envelope of the S[m, [] as

shown in Fig. 3. We use the following simple mathematical
model.

Tm, 1] = max(A\T[m — 1,1], S[m,]) (6)

For the time constant A in (6), we use the value of A = 0.99.
Using the peak sound level T'[m, {], the binary mask u[m, ] is
constructed using the following criterion:

-y o

] > T m, 1] 7
] < T[m,l].
One issue with the procedure described in (6) and (7) is that the
peak sound level detection method in (6) does not consider the
absolute intensity of the peak of T'[m, []. If T'[m, [] itself is too
small for human listeners to perceive, then this onset should not
mask the falling portion following this onset. Thus, we should
not apply the TMT technique for silence portion of the utter-
ance. One easy way to achieve this objective is to apply a VAD
to remove silence portions of the input utterance before per-
forming the TMT processing. Fig. 2.2 shows the speech recog-
nition with VAD and without VAD using the TMT processing
on the Wall Street Journal 0 (WSJO) 5k test set. The experi-
mental configuration is described in Sec. 3. As shown in this
Fig. 2.2, to obtain better speech recognition accuracy, we need
to apply the TMT processing only to the speech portions of the
waveform. For VAD processing, we used a very simple ap-
proach based on the threshold of frame energy and smoothing
using a state machine.

In our previous SSF algorithm [19], we used a first-order
IIR lowpass filter output for a similar purpose, but in this work
we use a model more closely related to human perception. In
binary masking, it has been frequently observed that a suitable
flooring is necessary [20, 12]. In many masking approaches,
fixed multiplier values like 0.01, or 0.001 have been frequently
used for masked time-frequency bins to prevent them from hav-
ing zero power [20]. In the TMT algorithm, instead of using
such scaling constants, we use a threshold power level p[m, ]
motivated by auditory masking level, which depends on the
peak sound level T'[m, (] for each time-frequency bin:

plm, 1) = poT(m, [ ®
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Figure 3: Comparisons of sound level S[m, (] in (5) and peak sound level T'[m, ] in (6)
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Figure 4: Comparisons of power contours: (4a) power contour P[m, {] of unprocessed speech for clean and reverberant speech (T50 =
500 ms). (4b) power contour of TMT-processed speech for clean and reverberant speech (Tso = 500 ms). For processed speech, we

obtained the power contour from Y [m, /).

where ag is the power coefficient for the compressive nonlin-
earty in (5). Since the compressive nonlineary is expanded in
(8), it is evident that the threshold power level p[m, (] is 20 dB
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: +O Baseline MFCC
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below the time-varying peak power. This thresholding scheme Léj 70r
is also motivated by the human auditory masking effect. We S 60f
believe this thresholding approach is closer to the actual human = 501
perception rather than just using some fixed constants like 0.01. § 401
The final masking coefficients jr[mn, (] are obtained using 3 30 ,
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where P[m, ] is the power in the time-frequency bin [m, (] in

(1).

2.3. Channel Weighting

Using the masking coefficients p[m, [] obtained in (7), we ob-
tain the enhanced spectrum Y [m, [] using the channel weighting
technique [6, 19].

Yim o) = 3 (Vi DX {m, &) H(e))
=0

0<k< (10)

K
2
We obtained the square root of the floored masking coefficient
wy[m,l] in the above equation, because, the masking coeffi-
cients in Sec. 2.2 is defined for power. For higher frequency

Reverberation time TBO (s)

Figure 5: Comparison of speech recognition accuracy with and
without the use of a VAD for excluding non-speech portions.
The experiment was conducted using the Wall Street Journal 0
(WSIJO) SI-84 training and the 5k test set.

components, % < k < K — 1, the spectrum is obtained by the
symmetric property of real signals (2).

Now, we are ready to discuss why the constraint of unity
in (3) must be upheld for the frequency responses. In (10), if
pylm,l] =1forall0 <! < L — 1 at a certain frame m, then
we expect the output Y'[m, e/“*) to be the same as the input
X [m, e’*). From this, it is obvious that the filter bank needs
to satisfy the constraint (3). As before, m and [ are the frame
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Figure 6: Comparison of speech recognition accuracy using
TMT, SSF (Type-II), VTS, and the baseline MFCC: for (Fig.
6a) the Resource Management 1 (RM1) database and (Fig. 6b)
the Wall Street Journal (WSJ) SI-84 training and the 5k test
set. Fig. 6¢ shows speech recognition accuracy obtained from
the Google Icelandic database using TMT, SSF (Type-II), and
baseline processing.

and channel indices, and L is the number of channels. After
obtaining the enhanced spectrum Y [m, [], the output speech is
resynthesized using the IFFT and the overlap-addition (OLA)
method.

3. Experimental Results

In this section we describe experimental results obtained us-
ing the DARPA Resource Management 1 (RM1) database, Wall
Street Journal 0 (WSJ0) database, and the Google proprietary
Icelandic speech database. For the RM1 experiment, we used
1,600 utterances for training and 600 utterances for evaluation.
For the WSJO experiment, We used 7,138 utterances for train-

ing (WSJ SI-84), and used 330 utterances from the WSJO 5k
test set for evaluation. For the Google Icelandic speech recog-
nition experiment, we used 92,851 utterances for training and
9,792 utterances for evaluation.

For the RM1 and WSJO experiments, we used sphinx_fe
included in sphinx base 0.4.1 to obtain the MFCC fea-
ture. SphinxTrain 1.0 and Sphinx 3.8 [25] were used
for acoustic model training and decoding for these RM1 and
WSIJO experiments. For the Google Icelandic experiments, the
filter coefficients from 20 previous frames, the current frame,
and 5 future frames are concatenated to obtain the feature vec-
tor. For acoustic modeling and decoding for the Google Ice-
landic database, we used the proprietary DistBelief and
GRECO3.

Reverberation simulations in RM1 and WSJO were accom-
plished using the Room Impulse Response algorithm [26] based
on the image method [27]. We assume a room dimension of
5 x 4 x 3 meters, a distance between the microphone and the
speaker of 1.5 meters, with microphone locations at the cen-
ter of the room. Reverberation simulations with the Google
Icelandic database were accomplished using the Google pro-
prietary Room Simulator, which is also based on the image
method. The room size is assumed to be 4.8 x 4.3 x 2.9 meters,
and the microphone is located at the (2.04, 1.46, 1.0)-meter po-
sition with respect to one corner of the room with the distance
from the speaker being 1.5 meters.

We compare our TMT algorithm with our previous algo-
rithm SSF, Vector Taylor Series (VTS) [28] and baseline MFCC
processing. The experimental results are shown in Fig. 6a and
Fig. 6b. As shown in these two figures, the TMT algorithm
has shown consistent performance improvement over SSF. For
the smaller RM1 database, the performance difference between
TMT and SSF is very small, but as the database size increases in
Fig. 6b and Fig. 6c, the performance difference between TMT
and SSF becomes larger. VTS provides almost the same results
as baseline processing, and LTLSS provides slightly better per-
formance than the baseline for the RM1 database, but slightly
worse performance than the baseline for the WSJO database.
Both LTLSS and VTS produce significantly worse performance
than the TMT processing described in this paper. For both SSF
and TMT processing, we trained the acoustic models using the
same type of processing used in testing. Without such retrain-
ing, performance is significantly worse than what is shown in
these figures.

4. Conclusions

In this paper, we describe a new dereverberation algorithm,
TMT, that is based on temporal enhancement by estimating
the peak sound level and applying the temporal masking. We
have observed that even though the TMT algorithm is quite
simple, it provides better speech recognition accuracy than ex-
isting algorithms such as LTLSS or VTS. MATLAB code for
the TMT algorithm may be found at http://www.cs.cmu.
edu/~robust/archive/algorithms/tmt.
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