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Abstract—A novel algorithm that normalizes the distribution
of spectral power coefficients is described in this paper. The al-
gorithm, called power-function-based power distribution (PPDN)
is based on the observation that the ratio of arithmetic mean to
geometric mean changes as speech is corrupted by noise, and a
parametric power function is used to equalize this ratio. We also
observe that a longer “medium-duration” observation window (of
approximately 100 ms) is better suited for parameter estimation
for noise compensation than the briefer window typically used
for automatic speech recognition. We also describe the imple-
mentation of an online version of PPDN based on exponentially
weighted temporal averaging. Experimental results shows that
PPDN provides comparable or slightly better results than state
of- the-art algorithms such as vector Taylor series for speech
recognition while requiring much less computation. Hence, the
algorithm is suitable for both real-time speech communication or
as a real-time preprocessing stage for speech recognition systems.

Index Terms: Power distribution, equalization, ratio of arith-
metic mean to geometric mean, medium-duration window

I. INTRODUCTION
Even though many speech recognition systems have pro-

vided satisfactory results in clean environments, one of the
biggest problems in the field of speech recognition is that
recognition accuracy degrades significantly if the test envi-
ronment is different from the training environment. These
environmental differences might be due to additive noise,
channel distortion, acoustical differences between different
speakers, etc. Many algorithms have been developed to en-
hance environmental robustness of speech recognition systems
(e.g.[1], [2], [3], [4], [5], [6], [7], [8], [9]). Cepstral mean
normalization (CMN) [10] and mean-variance Normalization
(MVN) (e.g.[1]) are the simplest kinds of these techniques
[11]. In these approaches, it is assumed that the mean or the
mean and variance of the cepstral vectors should be the same
for all utterances. These approaches are especially useful if
the noise is stationary and its effect can be approximated by a
linear function in the cepstral domain. Histogram Equalization
(HEQ) (e.g. [2]) is a more powerful approach that assumes
that the cepstral vectors of all the utterances have the same

probability density function. Histogram normalization can be
applied either in the waveform domain (e.g. [12]), the spectral
domain (e.g. [13]), or the cepstral domain (e.g.[14]). Recently
it has been observed that applying histogram normalization to
delta cepstral vectors as well as the original cepstral vectors
can also be helpful for robust speech recognition [2].
Even though many of these simple normalization algorithms

have been applied successfully in the feature (or cepstral) do-
main rather than in the time or spectral domains, normalization
in the power or spectral domain has some advantages. First,
temporal or spectral normalization can be easily used as a pre-
processing stage for any kinds of feature extraction systems
and can be used in combination with other normalization
schemes. In addition, these approaches can be also used as
part of a speech enhancement scheme. In the present study, we
perform normalization in the spectral domain, resynthesizing
the signal using the inverse Fast Fourier Transform (IFFT) and
combined with the overlap-add method (OLA).
One characteristic of speech signals is that their power

level changes very rapidly while the background noise power
usually changes more slowly. In the case of stationary noise
such as white or pink noise, the variation of power approaches
zero if the length of the analysis window becomes sufficiently
large, so the power distribution is centered at a specific level.
Even in the case of non-stationary noise like music noise,
the noise power does not change as fast as the speech power.
Because of this, the distribution of the power can be effectively
used to determine the extent to which the current frame
is affected by noise, and this information can be used for
equalization. One effective way of doing this is measuring
the ratio of arithmetic mean to geometric mean (e.g. [15]).
This statistic is useful because if power values do not change
much, the arithmetic and geometric mean will have similar
values, but if there is a great deal of variation in power the
arithmetic mean will be much larger than the geometric mean.
This ratio is directly related to the shaping parameter of the
gamma distribution, and it also has been used to estimate the
signal-to-noise ratio (SNR) [16].
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In this paper we introduce a new normalization algorithm
based on the distribution of spectral power. We observe that
the the ratio of the arithmetic mean to geometric mean of
power in a particular frequency band (which we subsequently
refer to as the AM–GM ratio in that band) depends on the
amount of noise in the environment [15]. By using values of
the AM–GM ratio obtained from a database of clean speech,
a nonlinear transformation (specifically a power function) can
be exploited to transform the output powers so that the AM–
GM ratio in each frequency band of the input matches the
corresponding ratio observed in the clean speech used for
training the normalization system. In this fashion speech can
re-synthesized resulting in greatly improved sound quality as
well as better recognition results for noisy environments. In
many applications such as voice communication or real-time
speech recognition, we want the normalization to work in
online pipelined fashion, processing speech in real time. In this
paper we also introduce a method to find appropriate power
coefficients in real time.
As we have observed in previous work [15], [17], even

though windows of duration between 20 and 30 ms are optimal
for speech analysis and feature extraction, longer-duration
windows between 50 ms and 100 ms tend to be better for
noise compensation. We also explore the effect of window
length in power-distribution normalization and find the same
tendency is be observed for this algorithm as well.
The rest of the paper is organized as follows: Sec. II

describes our power-function-based power distribution normal-
ization algorithm at a general level. We describe the online
implementation of the normalization algorithm in Sec. III. Ex-
perimental results are discussed in Sec.IV and we summarize
our work in Sec. V.

II. POWER FUNCTION BASED POWER DISTRIBUTION
NORMALIZATION ALGORITHM

A. Structure of the system
Figure 1 shows the structure of our power-distribution

normalization algorithm. The input speech signal is pre-
emphasized and then multiplied by a medium duration (100-
ms) Hamming window. This signal is represented by xi[n]
in Fig. 1 where i denotes the frame index. We use a 100-
ms window length and 10 ms between frames. The reason for
using the longer window will be discussed later. After window-
ing, the FFT is computed and integrated over frequency using
gammatone weighting functions to obtain the power P (i, j)
in the ith frame and jth frequency band as shown below:

P (i, j) =
N−1
∑

k=0

|X(i, ejωk)Hj(e
jωk)|2 (1)

where k is a dummy variable representing the discrete fre-
quency index, and N is the FFT size. The discrete frequency
ωk is defined by ωk = 2πk

N
. Since we are using a 100-ms

window, for 16-kHz audio samples N is 2048. Hj(ejωk) is
the spectrum of the gammatone filter bank for the jth channel

Fig. 1. The block diagram of the power-function-based power distribution
normalization system.

evaluated at frequency index k, and X(i, ejωk) is the short-
time spectrum of the speech signal for this ith frame. J in
Fig. 1 denotes the total number of gammatone channels, and
we are using J = 40 for obtaining the spectral power. After
power equalization, which will be explained in the following
subsections, we perform spectral reshaping and compute the
IFFT using OLA to obtain enhanced speech.

B. Normalization based on the AM–GM ratio
In this subsection, we examine how the frequency-

dependent AM–GM ratio behaves. As describe previously, the
AM–GM ratio of of P (i, j) for each channel is given by the
following equation:

g(j) =
1
I

∑I−1
i=0 P (i, j)

(

∏I−1
i=0 P (i, j)

)
1

I

(2)

where I represents the total number of frames. Since addition
is easier to handle than multiplication and exponentiation to
1/I , we will use the logarithm of the above ratio in the
following discussion.

G(j) = log

(

I−1
∑

i=0

P (i, j)

)

−
1

I

I−1
∑

i=0

log P (i, j) (3)
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Fig. 2. The logarithm of the AM–GM ratio of spectral power of clean
speech (upper panel) and of speech corrupted by 10-dB white noise (lower
panel). Data were collected from 1,600 training utterances of the Resource
Management database.

Figure 2 illustrates G(j) for clean and noisy speech corrupted
by 10-dB additive white noise. It can be seen that as noise is
added the values of G(j) generally decrease. We define the
function Gcl(j) to be the value of G(j) obtained from clean
training speech. We now proceed to normalize differences in
G(j) using a power function.

P̃cl(i, j) = kjP (i, j)aj (4)

In the above equation, P (i, j) is the medium-duration power
of the noise-corrupted speech, and P̃cl(i, j) is the normal-
ized medium-duration power. We want the AM–GM ratio
representing normalized spectral power to be equal to the
corresponding ratio at each frequency of the clean database.
The power function is used because it is simple and the
exponent can be easily estimated. We proceed to estimate kj

and aj using this criterion.
Substituting P̃cl(i, j) into (3) and canceling out kj , the

ratio G̃cl(j|aj) from this transformed variable P̃cl(i, j) can
be represented by the following equation:

G̃cl(j|aj) = log

(

1

I

I−1
∑

i=0

P (i, j)aj

)

−
1

I

I−1
∑

i=0

log P (i, j)aj (5)

Fig. 3. The assumption about the relationship between Pcl(i, j) and P (i, j).

For a specific channel j, we see that aj is the only unknown
variable in G̃cl(j|aj). Now, from the following equation:

G̃cl(j|aj) = Gcl(j) (6)

we can obtain a value for aj using the Newton-Raphson
method.
The parameter kj in Eq. (4) is obtained by assuming that

the derivative of P̃cl(i, j) with respect to P (i, j) is the unity
at maxiP (i, j) for this channel j, we set up the following
constraint:

dP̃cl(i, j)

dP (i, j)

∣

∣

∣

∣

∣

maxiP (i,j)

= 1 (7)

The above constraint is illustrated in Fig 3. The meaning of
the above equation is that the slope of the nonlinearity is unity
for the largest power of the jth channel. This constraint might
look arbitrary, but it makes sense for additive noise case, since
the following equation will hold:

P (i, j) = Pcl(i, j) + N(i, j) (8)

where Pcl(i, j) is the true clean speech power, and N(i, j) is
the noise power. By differentiating the above equation with
respect to P (i, j) we obtain:

dPcl(i, j)

dP (i, j)
= 1 −

dN(i, j)

dP (i, j)
(9)

At the peak value of P (i, j) , the variation of N(i, j) will be
much smaller for a given variation of P (i, j), which means
that the variation of P (i, j) around its largest value would
be mainly due to variations of the speech power rather than
the noise power. In other words, the second term on the right
hand side of Eq. (9) would be very small, yielding Eq.(7). By
substituting (7) into (4), we obtain a value for kj :

kj =
1

aj
max

i
P (i, j)1−aj (10)

3



Using the above equation with (4), we see that the weight for
P (i, j) is given by:

w(i, j) =
P̃cl(i, j)

P (i, j)

=
1

aj

(

P (i, j)

maxi P (i, j)

)aj−1

(11)

After obtaining the weight w(i, j) for each gammatone chan-
nel, we reshape the original spectrum X(i, ejωk)] using the
following equation for the ith frame:

X̂(i, ejωk) =

√

√

√

√

J−1
∑

j=0

(w(i, j)|Hj(ejωk)|)2X(i, ejωk) (12)

As mentioned before, Hj(ejωk) is the spectrum of the jth

channel of the gammatone filter bank, and J is the total
number of channels. X̂(i, ejωk) is the resultant enhanced
spectrum. After doing this, we compute the IFFT of X̂(i, ejωk)
to retrieve the time-domain signal and perform de-emphasis to
compensate for the effect of the previous pre-emphasis. The
speech waveform is resynthesized using OLA.

C. Medium-duration windowing
Even though short-time windows of 20 to 30 ms duration

are best for feature extraction for speech signals, in many
applications we observe that longer windows are better for
normalization purposes (e.g. [15] [17]). The reason for this is
that noise power changes more slowly than the rapidly-varying
speech signal. Hence, while good performance is obtained us-
ing short-duration windows for ASR, longer-duration windows
are better for parameter estimation for noise compensation.
Figure describes recognition accuracy as a function of window
length. As can be seen in the figure a window of length
between 75 ms and 100 ms provides the best parameter
estimation for noise compensation and normalization. We
will refer to a window of approximately this duration as a
”medium-duration window”.

III. ONLINE IMPLEMENTATION
In many applications the development of a real-time “on-

line” algorithm for speech recognition and speech enhance-
ment is desired. In this case we cannot use (5) for obtaining
the coefficient aj , since this equation requires the knowledge
about the entire speech signal. In this section we discuss how
an online algorithm of the power equalization algorithm can
be implemented. To resolve this problem, we define two terms
S1(i, j|aj) and S2(i, j|aj) with a forgetting factor λ of 0.9 as
follows.

S1(i, j|aj) = λS1(i, j − 1) + (1 − λ)Qi(j)
aj (13)

S2(i, j|aj) = λS2(i, j − 1) + (1 − λ) lnQi(j)
aj (14)

aj = 1, 2, ..., 10

In our online algorithm, we calculate S1(i, j|aj) and
S2(i, j|aj) for integer values of aj in 1 ≤ aj ≤ 10 for each

frame. From (5), we can define the online version of G(j)
using S1(i, j) and S2(i, j).

G̃cl(i, j|aj) = log(S1(i, j|aj)) − S2(i, j|aj)

aj = 1, 2, ..10 (15)

Now, â(i, j) is defined as the solution to the equation:

G̃cl(i, j|â(i, j)) = Gcl(j) (16)

Note that the solution would depend on time, so the estimated
power coefficient â(i, j) is now a function of both the frame
index and the channel. Since we are updating Gcl(i, j|aj) for
each frame using integer values of aj in 1 ≤ aj ≤ 10, we use
linear interpolation of G̃cl(i, j|aj) with respect to aj to obtain
the solution to (16). For estimating kj using (10), we need to
obtain the peak power. In the online version, we define the
following online peak power M(i, j).

M(i, j) = max(λM(i, j − 1), P (i, j)) (17)
Q(i, j) = λQ(i, j − 1) + (1 − λ)M(i, j) (18)

Instead of directly using M(i, j), we use the smoothed online
peak Q(i, j). Using Q(i, j) and â(i, j) with (11), we obtain:

w(i, j) =
1

â(i, j)

(

P (i, j)

Q(i, j)

)â(i,j)−1

(19)

Using w(i, j) in (12), we can normalize the spectrum and
resynthesize speech using IFFT and OLA. In (17) and (18),
we use the same λ of 0.9 as in (13) and (14). In our
implementation, we use the first 10 frames for estimating the
initial values of the â(i, j) and Q(i, j), but after performing
this initialization, no look-ahead buffer is used in processing
the remaining speech.
Figure 5 depicts spectrograms of the original speech cor-

rupted by various types of additive noise, and corresponding
spectrograms of processed speech using the online PPDN
explained in this section. As seen in 5(b), for additive Gaussian
white noise, improvement is observable even at 0-dB SNR.
For the 10-dB music and 5-dB street noise samples, which
are more realistic, as shown in 5(d) and 5(f), we can clearly
observe that processing provides improvement. In the next
section, we present speech recognition results using the online
PPDN algorithm.

IV. SIMULATION RESULTS OF THE ONLINE POWER
EQUALIZATION ALGORITHM

In this section we describe experimental results obtained
on the DARPA Resource Management (RM) database using
the online processing as described in Section III. We first
observe that the online PPDN algorithm improves the sub-
jective quality of speech, as can be assessed by the reader
by comparing processed and unprocessed speech in the demo
package at http://www.cs.cmu.edu/∼robust/archive/algorithms/
PPDN ASRU2009/DemoPackage.zip
For quantitative evaluation of PPDN we used 1,600 ut-

terances from the DARPA Resource Management (RM)
database for training and 600 utterances for testing. We used
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Fig. 4. Speech recognition accuracy as a function of window length for noise
compensation corrupted by white noise and background music.

SphinxTrain 1.0 for training the acoustic models, and
Sphinx 3.8 for decoding. For feature extraction we used
sphinx_fe which is included in sphinxbase 0.4.1. In
Fig. 6(a), we used test utterances corrupted by additive white
Gaussian noise, and in Fig. 6(b), noise recorded on a busy
street was added to the test set. In Fig. 6(c) we used test
utterances corrupted by musical segments of the DARPA Hub
4 Broadcast News database.
We prefer to characterize improvement as amount by which

curves depicting WER as a function of SNR shift laterally
when processing is applied. We refer to this statistic as the
“threshold shift”. As shown in these figures, PPDN provided
10-dB threshold shifts for white noise, 6.5-dB threshold shifts
for street noise and 3.5-dB shifts for background music. Note
that obtaining improvements for background music is not easy.
For comparison, we also obtained similar results using the

state-of-the-art noise compensation algorithm Vector Taylor
series (VTS) [3]. For PPDN, further application of Mean
Variance Normalization (MVN) showed slightly better perfor-
mance than applying CMN. However for VTS, we could not
observe any performance improvement by applying MVN in
addition, so we compared the MVN version of PPDN and the
CMN version of VTS. For white noise, the PPDN algorithm
outperforms VTS if the SNR is equal to or less than 5 dB, and
the threshold shift is also larger. If the SNR is greater than or
equal to 10 dB, VTS provides doing somewhat better recogni-
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Fig. 5. Sample spectrograms illustrating the effects of online PPDN
processing. (a) original speech corrupted by 0-dB additive white noise, (b)
processed speech corrupted by 0-dB additive white noise (c) original speech
corrupted by 10-dB additive background music (d) processed speech corrupted
by 10-dB additive background (e) original speech corrupted by 5-dB street
noise (f) processed speech corrupted by 5-dB street noise

tion accuracy. In street noise, PPDN and VTS exhibited similar
performance. For background music, which is considered to be
more difficult, the PPDN algorithm produced threshold shifts
of approximately 3.5 dB along with better accuracy than VTS
for all SNRs.
A MATLAB implementation of the software used for these

experiments is available at http://www.cs.cmu.edu/∼robust/
archive/algorithms/PPDN ASRU2009/DemoPackage.zip.
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Fig. 6. Comparison of recognition accuracy for the DARPA RM database
corrupted by (a) white noise, (b) street noise, and (c) music noise.

V. CONCLUSIONS

We describe a new power equalization algorithm, PPDN,
that is based on applying a power function that normalizes
the ratio of the arithmetic mean to the geometric mean of
power in each frequency band. PPDN is simple and easier to
implement than many other normalization algorithms. PPDN is
quite effective against additive noise and provides comparable
or somewhat better performance than the VTS algorithm.
Since PPDN resynthesizes the speech waveform it can also be
used for speech enhancement or as a pre-processing stage in
conjunction with other algorithms that work in the cepstral do-
main. PPDN can also be implemented as an online algorithm

without any lookahead buffer. This characteristic the algorithm
potentially useful for applications such as real-time speech
recognition or real-time speech enhancement. We also noted
above that windows used to extract parametric information for
noise compensation should be roughly 3 times the duration of
those that are used for feature extraction. We used a window
length of 100 ms for our normalization procedures.
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