
 

Abstract

 

Combining information from parallel feature streams generally
improves speech recognition accuracy. While many studies have
attempted to determine the stage of the recognition system that
provides best combination performance and the specific nature
of how features are combined, relatively little attention has been
paid to the design or selection of parallel feature sets when used
in combination. In this paper we propose a new parallel feature
generation algorithm based on the criterion of maximizing the
normalized acoustic likelihood of the features after they are com-
bined, which is closely related to the recognition accuracy
obtained using the combination of these features. We use a gradi-
ent ascent procedure to manipulate the values of a set of transfor-
mation matrices through which individual features are passed
before they are combined in a fashion that maximizes the nor-
malized acoustic likelihood term after the features are combined.
The function that combine the parallel features together is an
intrinsic part of the optimization process. The use of the optimal
linear transformation provides a relative decrease of 12.7 percent
Word Error Rate on the DARPA Resource Management task.

 

1. Introduction

 

Many studies have demonstrated the advantages of combining
information from complementary parallel feature streams in
speech recognition system (

 

e.g.

 

 [1-10]). Generally speaking,
there are two major issues associated with feature combination,
the features to be combined and the method by which these fea-
tures are combined, and the performance of systems that use
combined features depends on both of these factors. 

While many studies have attempted to determine the stage of the
recognition system that provides best recognition accuracy and
the specific nature of how features are combined, much less
attention has been paid to the design or selection of the parallel
features in order to provide the best performance when used in
combination. There are a number of different ways in which
complementary feature sets can be generated. For example, Ellis
and Bilmes used the criterion of conditional mutual information
to select parallel features to be combined from a set of predeter-
mined candidates [6]. Other groups have developed parallel fea-
tures through the use splitting techniques  (

 

e.g. 

 

[8], [9], [10]).
For example, Halberstadt [8] split the speech recognition task
into several sub-tasks, and designed parallel features that per-
form well within each sub-set. In [9] and [10], Bourlard and Her-
mansky split the whole spectrum into several frequency bands,

extracting feature within each sub-band and subsequently com-
bining them. Sets of parallel features have also been developed
by adjusting specific system parameter values as in the variation
of analysis frame rate between 80 and 125 frames per second by
Billa 

 

et al. 

 

in the BBN BYBLOS system [7]. While all of these
studies have demonstrated the potential of parallel feature com-
bination methods for improved recognition accuracy, we are
motivated in the present work to develop a way to optimize the
choice of features to be combined, and in a takes into account the
combination function itself.

The method of generation of parallel features that described in
this paper will take a different approach from existing methods.
It will transform the parallel feature generation process into an
optimization process, whose objective function is directly related
to the word error rate (WER) of the combined system. Specifi-
cally, we use the normalized acoustic likelihood of the most
likely state sequence as our objective function, and search for the
feature generation function that maximize this objective func-
tion. To simplify the process, we limit the parallel feature sets to
be the linear transformations of traditional log-spectral feature.
The objective function then becomes a function of the feature
transformation matrices and the specific function that is used to
combine the feature streams. Again, we note that the choice of
combination function is an intrinsic part of the optimization pro-
cess, which we believe to be helpful in reducing WER. 

In the following section we describe how we generate parallel
feature streams through the linear optimization process. We
begin this discussion with the generation of a single optimal fea-
ture stream, and then extend our approach to the case of parallel
feature stream generation. We present our experimental result in
Section 3, and a discussion and conclusion in Section 4.

 

2. Linear feature generation by maximizing nor-
malized acoustic likelihood

 

As described in the introduction section, new features are gener-
ated using an optimization process whose objective function is
the normalized acoustic likelihood of the true (or most likely)
recognition class over all the classes. We first consider the sim-
plest case of the generation of linear feature stream, then develop
the case of parallel feature streams generation.
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2.1 Generation of a single feature stream

 

The task of linear feature generation is to find a matrix 

 

 that
transforms the original feature vector (such as log-spectral fea-
tures) into some new feature space. If the feature vector, mean,
and variance of each phoneme or recognition state in the original
feature space is labelled ,  and  respectively, the corre-
sponding parameters in the transformed feature space will

become , , and .

 

As noted above, our feature generation process is an optimization
process. The objective function, which is the normalized likeli-
hood 

 

 of the most likely state sequence in the new feature

space can be written as

 

(1)

where 

 

 represents the model parameters (

 

i.e. 

 

the mean, vari-

ance, and Gaussian mixture weights) of the most-likely recogni-
tion Class  (which could be a state or a phoneme) in frame 

 

i,

C

 

 is the total number of recognition classes. 

 

Under the general Gaussian mixture model assumption, the
acoustic likelihood term 

 

 can be written as:

 

(2)

where 

 

 is the coefÞcient of component 

 

m 

 

within the mixture,

 is the individual Gaussian probability of compo-

nent 

 

m, 

 

which can be written as

 

(3)

where 

 

D

 

 is the dimensionality of the new feature space.

Substituting Eq. (2) and Eq. (3) into Eq. (1), it is clear that the
normalized acoustic likelihood term 

 

 becomes a function of the

transformation matrix 

 

A, 

 

and that this function can be optimized
using a gradient ascent approach. Because of space limitations,
will not provide details about this procedure here, but the inter-
ested reader is referred to our related previous papers [11][12].

 

2.2 Generation of parallel feature streams

 

The generation of parallel feature streams that maximize the nor-
malized acoustic likelihood in the combined system is very simi-
lar to the generation of a single feature stream. The only
difference is that when we generate parallel feature streams, the

acoustic likelihood term 

 

 now becomes a function of

acoustic likelihood terms from each individual feature stream. In
the case of two streams, the likelihood term becomes

 

(4)

where 

 

 

 

and

 

  

 

are the acoustic likeli-

hoods from Feature Streams 1 and 2 respectively as in Eqs. (2)
and (3). The symbol 

 

F 

 

specifies the function used to combine the
probabilities (typically 

 

summation, multiplication,

 

 or 

 

maximiza-
tion

 

 in our work). 

Substituting Eq. (4) into Eq. (1), it is clear that the normalized
acoustic likelihood term 

 

 now becomes a function of the trans-

formation matrices  and , and the combination function 

 

F.

 

Given a particular combination function 

 

F, 

 

 becomes only a

function of the transformation matrices  and . 

 

The gradient ascent procedure is based on the derivative of the
acoustic likelihood  of each individual feature stream

 

i

 

 with respect to its transformation matrix  as in [11][12]. If the

combination function 

 

F

 

 is differentiable (as in the case of . 

 

sum-
mation, linear regression

 

 and 

 

multiplication

 

), we can compute the
derivative of  with respect to an individual transformation

matrix  using the chain rule, and optimize it using the gradient

ascent method.. While the 

 

maximization

 

 function is not directly
differentiable, its derivative can be obtained by computing the
limit of the derivative of the R-norm function 

(5)

as R approaches infinity..

As an example, consider the generation of two linear feature

streams (via transformation matrices and ) using 

 

summa-

tion

 

 as the combination function. 

 

, 

 

the normalized acoustic

likelihood of the combined system, now becomes

(6)

where the meaning of the parameters 

 

is the same as in 

 

Eq. (1)

 

.

 

By taking the log of 

 

 and computing the partial derivative of

 with respect to the transformation matrix , we obtain

 

(7)

where 

 

 and  are the acoustic likeli-

hoods of Class  obtained from Feature Streams 1 and 2, as

computed from Eq. (3). Similarly,  is the

derivative of acoustic likelihood of Class  from feature

stream 1 with respect to transformation matrix  as in [11]

 

[12].
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Following the same approach, we can also compute the partial
derivative of  with respect to the transformation matrix

. By using the gradient ascent approach, we then find the trans-

formation matrices  and  that maximize the normalized

acoustic likelihood term  iteratively.

At this point we offer several comments about the procedure.
First, we have made a fundamental assumption in our application
of the linear feature generation method that the partitioning of the
training data according to decision class is the same before and
after the transformation via the matrix . This enables us to

apply Eq. (3) to compute the acoustic likelihood term in the
space. This assumption can be relaxed through the use of an itera-
tive procedure in which we use the partition of a previous itera-
tion to initialize the parameters of the current iteration. Second,
the mean and variance of the features in the transformed feature

space as  and  will only be used in the process of obtain-

ing the transformation matrices A. While the actual model param-
eters of recognition classes (e.g. states) used in speech recognition
in the transformed feature space will be Maximize Likelihood
(ML) estimated directly based on the new feature using the con-
ventional Baum-Welch training algorithm. Finally, we only use
training data to generate the transformation matrices, and the
transformation matrices generated are non-square. (e.g. from 40
log spectral coefficients to 13 cepstral coefficients.)

3. Experimental results

We carried out a series of experiments using the DARPA
Resource Management (RM) database to compare the perfor-
mance of our parallel feature generation method with conven-
tional linear feature generation methods. All experiments were
conducted using the CMU Sphinx III continuous speech recogni-
tion system with a 3-state continuous HMM structure. We used a
context-dependent tied model structure with the total number of
tied states equal to 2000. A bigram language model was used.

All the features tested were linearly transformed from log-spectral
features. Augmentation by delta and double-delta components,
log-spectral features produced a 120-dimensional feature vector
before transformation that was reduced to a new 39-dimensional
feature space by the transformation matrices. A baseline system
was developed that used a feature set that was obtained by apply-
ing linear discriminant analysis (LDA) and principal component
analysis (PCA) to the original log-spectral features. Feature com-
bination was performed at the state probability level (sometimes
middle combination  [4][9]) by either summing or multiplying
the probabilities of the PDA and LDA features together. The par-
allel features were generated using a gradient ascent proedure,
with the transformed LDA and PCA taken as initial values. The
ascent process was terminated when the normalized acoustic like-
lihood term  converges.

Experimental results are reported in terms of WER in Figure 1.
Results in Fig. 1 are presented in three groups. The first group of
results was obtained using the LDA and PCA features directly,
either in isolation, or in multiplicative or additive from left to

right. The center block of results was parallel features generated
using the optimal linear transformations using multiplicative
combination, and the third group represents results obtained using
parallel features generated using additive combination. The best
results were obtained using parallel features generated using sum-
mation, with summation also used to combine these features in
the decoding process. This configuration produces a 12.7% rela-
tive decrease in WER compared to the comparable result without
the optimizing linear transformation, and a relative decrease in
WER of more than 30% compared to the WER using the LDA or
PCA features in isolation. 

We also compare a subset of the results with the normalized
acoustic likelihood term  in Table 1. We observe in Table 1 that

best performance is obtained using parallel features when those
features are generated using the same combination function as the
one with which they are combined in the decoding process. This
confirms the sensitivity of the parallel features that to the nature
of the combination function used to generate them, and also indi-
cates (unsurprisingly) that .lowest WER is achieved when parallel
features are combined in decoding in the manner with which they
are generated. 

By comparing the Sum  and Prod  rows in Table 1, we also

LogPc
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A1 A2

Pc

Ai

Aµ AΣA
T

Pc

Figure 1: Word error rates (WER) for the DARPA RM corpus
obtained using LDA features, PCA features, and optimized fea-
tures that are derived from them, both individually and in com-
bination. Results are clustered into three blocks according to
how the features are generated. Results within each block differ
according to whether features are used in isolation or in either
additive or multiplicative combination.
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Table 1. Normalized acoustic likelihood log  and WER

obtained for various sets of parallel features combined with dif-
ferent combination functions. parafeat(sum) and parafeat(prod)
represent parallel features that are generated by using summation
and multiplication as combination function respectively. 
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Parafeat
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WER
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Sum 5.28 4.83 4.61

Prod 7.06 5.99 6.1

Log Sum -60.5 -58.1 -57.6

Prod -78.3 -72.7 -74.9
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note that for each type of combination function, when WER
scores decreases the corresponding values of the  deÞned in

Eq. (1) increase. These limited comparisons suggest that maxi-
mizing  as the objective of the gradient ascent will indeed tend

to reduce WER. 

It is frequently considered desirable for parallel sets to represent
complementary attributes of the speech waveform. Although our
linear parallel feature streams were generated without any regard
to the complementarity of the features that were produced, we
were curious about the extent to which increases or decreases of
complementarity would correspond to changes in WER. We
defined an ad hoc measure of complementarity in the form of 

(8)

The variables  and  in the above equation refer to the

error rates obtained by a phonetic recognizer for phoneme i using
feature 1 and feature 2, respectively. The fraction p represents the
fraction of phonemes for which feature 1 performed better than
feature 2. Hence the complementarity measure S reßects both the
differences between results obtained using the two feature sets
and the extent to which the phonemes are approximately evenly
split between those that perform better with those that perform
better with feature 2. 

Table 2 compares the values of S measure that were observed by
developing parallel features from LDA and PCA directly, and
through the transformation matrices using multiplication and
summation respectively. Comparing across these three conditions,
we note that the complementarity measure S increases as WER
decreases. While any serious confirmation of the value of this
measure can only be obtained after many more results are consid-
ered, we regard the results of this limited experiment as both
interesting and promising. 

4. Summary and conclusions

We describe an approach to the development of parallel features
for use in automatic speech recognition systems. Parallel sets
were generated by passing initial log-spectral through several lin-
ear transformations that are manipulated using gradient ascent
approach to maximize normalized acoustic likelihood. Features
obtained using the LDA and PCA methods were used to initialize
the gradient ascent process. The function that determines how
feature streams are combined was an intrinsic part of the optimi-
zation process. The use of parallel features that were generated
using the linear transformation matrices and gradient ascent pro-
vided a decreases in WER on the DARPA Resource Management

task of 12.7% compared to the comparable result without the opti-
mizing linear transformation, and a relative decrease in WER of
more than 30% compared to the WER obtained using either the
LDA or PCA features in isolation. 
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Table 2. Complementarity measure S for LDA and PCA fea-
tures, and for parallel feature streams that are generated using
multiplicative and additive combination functions (see text) .

LDA & PCA Parafeat 
(prod)

Parafeat 
(sum)

S 0.7368 0.8067 0.9932


