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ABSTRACT | In recent years, a number of feature extraction

procedures for automatic speech recognition (ASR) systems

have been based on models of human auditory processing, and

one often hears arguments in favor of implementing knowl-

edge of human auditory perception and cognition into

machines for ASR. This paper takes a reverse route, and argues

that the engineering techniques for automatic recognition of

speech that are already in widespread use are often consistent

with some well-known properties of the human auditory

system.

KEYWORDS | Auditory perception; feature extraction; speech

recognition

I . INTRODUCTION

Automatic speech recognition (ASR) by machines attempts

to emulate the part of the human speech communication
chain that recovers the linguistic message from the speech

signal. By some estimates, this involves reducing the

information rate of the speech signal by about three orders

of magnitude [1].

ASR is currently dominated by stochastic approaches,

as outlined by Jelinek [2] in which the string of recognized
words

Ŵ ¼ arg maxW pðxjWÞpðWÞf g (1)

where x represents a series of measurements describing

the speech signal and W refers to strings of words

generated from the given stochastic model. The architec-

ture of the stochastic model that generates W and the type
of data x that describe the given speech segment need to be

specified by the designer. Leaving aside the architecture of

the model, we will discuss what the data x (usually

referred to as ‘‘speech features’’) might be.

A typical process that executes (1) is shown in Fig. 1.

A. Features That Describe Speech
An ASR front end attempts to derive message-relevant

information from the speech signal. The feature extraction

module supports this goal. The signal itself contains

extraneous information which has little to do with the

words of the sentence (a message), such as information

about who is speaking, information about the acoustic

environment in which the speech was produced, informa-

tion about the communication channel through which the

speech was processed, etc. Ideally much of this unneces-
sary information would be eliminated so the features x
would carry only information about the message.

The feature extraction module is a critical part of a

speech recognizer. The useful information which is not

passed to the ASR system is lost forever. On the other hand,

irrelevant information which is not removed has to be dealt

with by the ASR system, often at significant expense.
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B. Perceptual Approaches to ASR
Human listeners solve the problem of speech recogni-

tion daily, and seemingly effortlessly. It is very likely that

speech evolved under forces of nature over millennia,

optimizing the use of the human auditory system. Thus, it
is likely that important information-carrying elements in

speech are easily heard and some of the elements which do

not carry information are suppressed by the hearing

system. Understanding human auditory perception and of

the ways to emulate it in engineering systems should be

useful for ASR.

Unfortunately, the situation is not so simple. Listening

for the message in speech is not the only task that human
auditory perception must accomplish. Knowing what and

what not to emulate when recognizing the message in

speech is important. We suggest that one way to proceed

is to focus on successful and well-accepted ASR solutions

and compare their properties with what we know about

the perception of signals, and of speech in particular.

Often, as we show in this paper, the engineering solution

turns out to be a reflection of particular characteristics of
hearing.

Hence, we suggest that clues from many engineering

techniques for speech feature extraction can be understood

as reflections of some more general characteristics of the

hearing systems of humans. The important characteristics

of perception can be sorted from the less important ones

by assessing our current solutions.

II . COMPENSATING FOR
DIFFERENT TALKERS

The first issue that we address is how ASR can accomplish

its task independently of the identity of the talker.

A. The Problem of Speaker Variability
When different speakers produce the same message,

the speech signal can be very different. The differences

come from different anatomies and different speaking

habits of the speakers. This introduces differences in the

spectral composition and in the temporal structure of the
signal. In spite of these differences, the message can be

easily decoded by a human listener.

Differences in speaking rate induce differences in the

temporal length of phones, words, and phrases but also

differences in their spectral properties. Some ways of

handling the differences in speaking rate are discussed in

Section III; here we will focus on differences induced by

speaker anatomy.

1) Effects of Gender: Since the time of the first ASR

attempts to develop a voice-operated typewriter [4], the

short-time power spectrum with its short-time phase

eliminated was used as features for speech recognition.

The most obvious spectral characteristic in the speech of

different speakers is the fundamental frequency created by

the periodic excitation of the vocal tract. Male speakers

Fig. 1. Speech features x are derived in regular intervals of about 10 ms from segments of the speech signal. The blue rectangles under the

waveform represent the initial feature vectors x. The values of the features are used in the pattern classification module (which could be based on

a Gaussian mixture model or an artificial neural network) to derive vectors of likelihoods of subword units pðxjWiÞ, which are presumed to be

related to the sounds of speech, and which are represented by the next row rectangles below (higher likelihoods are indicated by warmer colors).

A stochastic search (typically a Viterbi search) yields the best sequence of subword units representing the recognized utterance W. The remaining

part of the information used in the search, represented by PðWÞ, is supplied by a language model that is typically derived from text data,

together with a lexicon that specifies which words are expected to occur and how they are pronounced.

Hermansky et al. : Perceptual Properties of Current Speech Recognition Technology

Vol. 101, No. 9, September 2013 | Proceedings of the IEEE 1969



generally have lower frequencies of vocal cord vibrations
in the production of voiced sounds than do female

speakers. These differences are obvious in the detailed

structure of the short-time spectrum of speech, seen in

Fig. 2. This structure, heard as ‘‘pitch,’’ does not interfere

with conversations among humans.

Many of the remaining differences in spectral envel-

opes between speakers are due to differences in the lengths

of their vocal tracts. These differences are easily seen in
comparisons of spectral envelopes (formant structure) of

the short-time spectrum of speech. More subtle differ-

ences in spectral composition of speech come from speaker

differences such as accents or dialects. They are often

observed in spectral properties of sonorants such as

vowels. These do present some difficulties in speech

communication, but a human listener adapts relatively

quickly.

2) Speech of Children: The easily understood speech of

small children is produced by small vocal tracts which

could be as short as half the length of adult speakers and

have fewer resonant modes (formants) than adult speakers

do. Small children can also have extremely high funda-

mental frequency. As such, the speech of children presents

a significant challenge to any spectrum-based feature ex-
traction scheme. The left part of Fig. 2 (adopted from [5])

shows spectrograms of voiced utterances with identical

messages produced by an adult male and by a four-year-old

child. Substantial differences are obvious.

B. Engineering Approaches to
Speaker-Independent Features

1) Extracting Spectral Envelope: The differences in fine

spectral structure of short-time speech spectrum of

different speakers are so obvious that no practical ASR

system uses the full speech spectra directly. There is

always some kind of spectral smoothing done in the feature

extraction module so that the overall spectral envelope is
emphasized. Deriving the spectral envelopes of the short-

time spectra compensates for the effects of differences in

fine spectral structures. However, the differences in

spectral envelopes still remain.

2) Use of a Nonlinear Frequency Axis: The decreasing

spectral resolution with frequency was known and well

accepted by some early speech engineers and attempts
were made to include it in engineering designs. However,

the spectrograph, developed during World War II,

employed a linear frequency scale. The fact that human

perception is sensitive to relative rather than to absolute

changes in formants [1], thus implying use of the

logarithmic rather than linear frequency scale, was known

but largely ignored by ASR engineers until Bridle and

Brown proposed to derive features from speech by taking
the cosine transform of the output of a nonuniform

filterbank whose bandwidths follow the mel scale [7]. This

idea was advanced by Mermelstein [8] who implemented a

mel-scale filterbank by triangularly weighting adjacent

bands of the Fourier power spectra of speech. This process

is now widely referred to as computing the mel cepstrum.

At about the same time, Itahashi and Yokoyama in Japan

[9] described mel-scale-based linear prediction coeffi-
cients (LPCs), where the spectrum of the autoregressive

LPC model is warped to the mel scale and approximated by

another LPC spectrum; Makhoul and Cosell subsequently

proposed mel spectral warping in an LPC vocoder [10].

Strube [11] used an all-pass filter to warp the Fourier

spectrum prior to its approximation by an all-pole

autoregressive model. Many groups in the 1970s used

nonlinear warping of the frequency spectrum in their
definition of speech features, usually represented in a low-

dimensional orthogonal space. This made speech recogni-

tion much less sensitive to the identity of the speaker(s).

One such technique, which has survived through time,

is perceptual linear predictive (PLP) analysis, developed by

Hermansky et al. [3], [12] in the 1980s. Unlike standard

LPC analysis, which approximates the power spectrum of

speech, the PLP method applies linear prediction in the
modified spectral domain [13] using a cube-root transfor-

mation to compress the auditory-like spectrum1 prior to its

approximation by an all-pole model. PLP features, together

Fig. 2. Spectrograms of the speech of adults and children. Note

differences in both the fine structures as well as in the overall spectral

shapes. Adopted from [3].

1A Fourier power spectrum integrated over critical bands and pre-
emphasized by a simulated equal loudness curve.
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with mel cepstral features, are currently the dominant
feature sets used in ASR systems.

An auditory-like frequency scale also emerges from data-

driven investigations. Biem and Katagiri minimized classifi-

cation error in multispeaker phonetic classification by

deriving a proper filterbank [14]. The optimized filterbank

center frequencies followed an auditory-like frequency scale.

Attempts were made to find a universal frequency-warping

function that would make the formants of the steady parts of
vowels of four adult speakers similar, yielded mel-like

warping [15]. In further support of this finding, Kamm et al.
[16] found mel-like warping optimal for the classification of

vowels. Subsequently, linear discriminant analysis of short-

time spectral vectors taken from hand-labeled vowels from

about 30 min of telephone speech yielded spectral bases that

exhibited spectral resolution that was consistent with the

nonuniform resolution of human hearing [17]. This analysis
was repeated on a much larger and more realistic machine-

labeled database, which confirmed the earlier observations

[6]. Spectral bases derived by linear discriminant analysis

(LDA) techniques are shown in Fig. 3. Higher spectral

resolution at low frequencies, consistent with critical-band

spectral resolution of human hearing, is evident from closer

spacing of their zero crossings at lower frequencies and was

demonstrated experimentally [6], [17]. Paliwal et al. also
derived auditory-like warping by equalizing the spectral

energy of speech in different frequency bands [18].

The fact that an auditory-like spectral resolution can be

derived by optimizing speech sound classification is

important. It supports the optimality of the speech code

with respect to human auditory perception.

One algorithm for minimizing the distance between
the same sounds created by different speakers is vocal tract

length normalization (VTLN), developed by Andreou et al.
[19] at the 1994 Workshop on Speech Recognition at

Rutgers University (Piscataway, NJ, USA). They discovered

that the first-order effects of vocal tract length variation

can be accounted for by a single parameter, and that

setting this parameter in switchboard data halved the error

rates of a state-of-the-art recognizer. The procedure is
widely used today, and it seems to positively affect all other

normalization schemes, although not always providing

reductions in error rate of 50%.

3) The Broad Shape of the Speech Spectrum: The first

practical speech recognizer based on two-parameter

temporal trajectories used two frequency bands with a

lower bandwidth of about 1 kHz and the upper bandwidth
close to 3 kHz [20]. It outperformed the elaborate short-

time-spectrum-based scheme of Galt [4].

Nevertheless, ASR research soon returned to more

detailed spectral envelopes as the basis for ASR features. It

was only some three decades later when it was shown that

the ASR performance of a low spectral resolution two-peak

PLP model from the fifth-order PLP representation is

noticeably less speaker dependent than LPC models that
approximate linear power spectra or higher order PLP

models that model more spectral details of auditory-like

spectra [3], [21]. Speech synthesized from the low-order

model was reported to be intelligible in informal listening

tests [22]. This is consistent with results of later, more

formal experiments [23], which show high intelligibility of

Fig. 3. Spectral bases derived by LDA analysis. Higher spectral resolution at low frequencies is evident from closer spacing of their zero crossings

at lower frequencies. From [6], used with permission.
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speech resynthesized from three to four bands of spectral

energy.

The formants themselves must be speaker specific since

they represent the shape of the whole vocal tract, which is,

of course, speaker specific. However, smoothing out the

formants emphasizes contributions of the underlying front

cavity resonance and makes the spectral representation less

speaker specific. The ability of the low-order PLP model to
approximate the less speaker-dependent resonance fre-

quency of the front part of a vocal tract was also

demonstrated in [5]. Fig. 4 illustrates the key result.

Further support for the relative speaker independence

of the model with low spectral resolution comes from

experiments where speaker-specific linear regression

models were used in generating male-like and female-

like formants of voiced speech from the low-order PLP
model [24]. Speaker-specific mapping between a high-

order and low-order order model by a speaker-specific

multilayer-perceptron neural network was successfully

used in a speaker recognition experiment [25].

C. Physiological and Psychophysical Correlates
It is known from early experiments of von Békésy that

the decreasing frequency resolution of hearing with

decreasing frequency has its origin in resonance properties

of the basilar membrane. The frequency channels that are

formed in the periphery persist all the way to the auditory
cortex (cf., [26]).

This decreasing spectral resolution with frequency is

reflected in a number of psychophysical phenomena. Early

experiments [27] revealed a logarithmic-like dependency

of perceived pitch on frequency above about 800 Hz.

Experiments in simultaneous masking indicate the exis-

tence of bandpass-like channels in human hearing. Above

800 Hz, the width of these bands increases approximately

logarithmically with the band center frequency. Flanagan

[28] demonstrated that human sensitivity to formant move-

ments follows an approximately logarithmic scale, i.e., the

just noticeable difference in the formant position depends on

relative (rather than absolute) changes in formant frequency.

Fig. 5 from [5] shows tracings of the vocal tract of an

adult and a child in the production of two vowels that
indicate substantial speaker invariance of the front cavity

shape, and the anatomical studies of Goldstein [29]

support this notion. Experimental results with synthetic

vocal tract shapes [30] show that formant positions in

voiced speech are directly proportional to the frequency of

Fig. 4. Formants for three different simulated vocal tracts with different lengths are different but are always related to the resonance frequencies

of the front cavity of the simulated vocal tract, which is always the same for all three tract lengths. The second peak from the fifth-order PLP model

does not directly track individual formants but tracks the resonance frequency of the front cavity. Notice approximately linear relation

between the cavity length and its resonance frequencies, first of which is indicated by dashed red line, resulting from the auditory-like

Bark frequency scale. This relation would have been hyperbolic if the frequency was shown in hertz [30]. Adopted from [5].

Fig. 5. Tracing of x-rays of the vocal tracts of adults and children

in the production of vowels /aa/ and /iy/. Front parts of vocal tracts

depend mainly on phonetic quality of the vowel, which the back part

are highly speaker specific. (From [5], used with permission.)
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the nearest mode of the front cavity. Kuhn [31] experi-
mentally demonstrated how the changes in higher

formants of real voiced speech approximately follow

changes in resonance modes of the vocal tract front cavity.

The relation between cavity resonance frequency and its

length is hyperbolic. This has important implications

because, as the front cavity changes its length and thus its

resonance mode, it induces larger absolute frequency

changes for higher formants and smaller changes for lower
formants. Computing the logarithm of the frequency makes

these relations linear. Thus, the logarithmic frequency scale

is more appropriate for extracting the information coded in

changes of the cavity shape and, subsequently, if one accepts

the hypothesis pursued in [3] and [5], then the front cavity

shape is the prime carrier of the speaker-independent

phonetic information in speech, for extracting the message.

Even though perceptual experiments with nonspeech
sounds suggest critical-band spectral resolution, there are

indications that when it comes to speech perception, the

processing of broader spectral spans than the critical band

may be taking place. Newton heard vowel-sound sequences

from the extreme back-rounded =u= to the extreme front

=i= in gradually filled tall glass of beer [32]. Consistent with

Newton, Helmholtz [33] discovered a single resonance

frequency in back vowels and a combination of two
resonances in front vowels. Histograms of frequencies of

pure tones evoking different vowels in a number of

listeners [34] also indicated such broad spectral features.

Chistovich’s perceptual experiments [35] indicate that

human speech perception integrates spectral peaks that are

closer than about three critical bands.

Pitch is a characteristic of human speech that is

perceptually distinctive, and in tonal languages such as
Mandarin, it carries phonetic information. Pitch is often

used for source separation in systems based on computa-

tional auditory scene analysis (CASA, e.g., [36] and [37]),

and it was a cue for speech separation in most systems

participating in the 2011 PASCAL CHiME Challenge [38].

Pitch is occasionally used as part of the front end in ASR,

and the addition of a pitch parameter, along with ‘‘toneme’’

phonetics, can often result in reductions in error rates for
tonal languages on the order of 10%–15% [39]. An

approximate pitch can be derived from MFCC parameters

[40], and hence pitch is represented at least indirectly in

the standard ASR front ends. Explicit pitch representation

is not often found in ASR systems for western European

languages, including English.

III . COMPENSATING FOR VARIATIONS
IN THE RATE OF SPEECH PRODUCTION

It has been clear since Potter, Kopp, and Green’s spectral

displays of speech sounds that phonetic elements of speech

with identical phonetic values can occur with varying lengths

and variable timings, and that their spectral properties

depend on other surrounding speech sounds [41]. This

temporal variability presents one of the most fundamental
difficulties in recognizing speech.

A. The Problem
The natural variations in timing among speakers,

speaking conditions, and social interactions have little

effect on the intelligibility of speech for human listeners.

ASR’s inability to compensate for temporal variation

remains a substantial source of error in current systems.

One surprising recent finding was the very low error rates
of ASR systems observed when decoding Mandarin

broadcast news, on the order of 2.5% character error

[42]. Upon investigation, it was discovered that the Chinese

government trains all newscasters to speak at the same

tempo (they actually practice to a metronome) and thus

identical sentences spoken by different announcers have

very small temporal variability. Hidden Markov model

(HMM) training captured this lack of variability, leading to
the low error rates. Spontaneously produced speech, on the

other hand, is not recognized nearly as well.

B. Engineering Approaches
Early attempts at large-vocabulary ASR [4] assumed

initial segmentation of speech into classifiable subword

units (phones), and decoding the resulting phonetic

stream yielded the message. Attention was focused on

finding the correct phonetic string underlying the speech;

given the correct phonetic transcription, recovering the
words is a relatively simple task. The underlying assump-

tion of these segmentation efforts was that the speech can

be represented by a ‘‘beads on a string’’ model, where one

speech sound (phoneme) follows another (as in the upper

panel of Fig. 6). This would inherently take care of the

Fig. 6. The ‘‘beads on a string’’ model of speech (upper part of the

figure) and the ‘‘eggs-passed-through-the-wringer’’ model of speech

(middle part of the figure). The bottom part illustrates a suggestion

discussed in Section III-B2 where information from a sufficiently long

segment of the signal is used as an input to a neural net classifier to

derive estimate of a posterior probability of the underlying

coarticulated phoneme.
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variable speech production rates; all that would matter
would be the order in which the speech sounds occur; the

timing between them would be of no consequence for the

decoding the message. Thus, phonetic-first analysis

finessed the timing differences in the signal, but unfortu-

nately, at that time, the assumed solution turned out to be

impossible to implement. Pursuit of these techniques led

to the influential paper ‘‘Whither speech recognition’’ by

Pierce [43], which led to a substantial decrease in funding
for speech recognition research for more than a decade.

After that fiasco, the ‘‘beads on a string’’ model yielded

to a more sensible model: ‘‘eggs on a stretchy belt after

having been passed through a wringer.’’ Not only are the

elements smeared, but they are distributed in unequal time

intervals (as in the middle part of Fig. 6).

Current ASR solutions manage this problem by dynam-

ically modifying the relative timing of either a model or of the
speech to be recognized. Dynamic time warping (DTW) is a

method that attempts to find the smallest error path through

potential compression and expansion of a template and the

input speech simultaneously, and it was independently

developed at several research institutions [44]–[46]. This

method allowed limited stretching or squeezing of one

utterance with respect to a second, and it met with success in

small- and medium-vocabulary speech systems.
DTW has been supplanted by hidden Markov modeling,

developed in parallel at IDA and at the IBM Research

Laboratories (e.g., [2]). In hidden Markov modeling, phones

(or related segments) are represented as ‘‘states,’’ where

timing variability is associated with the dwell time in a state

during decoding, and search algorithms automatically found

the best matching temporal pattern. Despite substantial

success, these models allow unrealistic spectral dynamics in
the model matches, and imply exponential probability

distributions for the segment lengths which do not match

the actual duration distributions found in the data.

1) Dealing With Coarticulation: Modifying the temporal

axis by techniques such as DTW or HMM would not be

necessary if the speech sounds could be derived from

coarticulated speech. More recent techniques based on
multilayer perceptron (MLP) artificial neural networks

aim at direct estimation of posterior probabilities of speech

sounds, thus rejuvenating interests in the old ‘‘beads on a

string’’ model. To avoid the pitfalls that were encountered

earlier, the coarticulation of speech sounds would have to

be addressed. There is some recent evidence that this is

possible, as will be discussed below.

2) Estimating Phonemes From Coarticulated Speech: The

posterior probabilities of phoneme classes can be estimated

by trained MLP artificial neural network [47]. One of the

important advantages of MLP-based classifiers is that they

do not put too many restrictions on the type of input

features used for the classification. Indeed, improvements

in the MLP-based recognition of spelled English letters by

including long temporal context (up to 500 ms) has been
observed by Fanty et al. [48]. Such a time interval is

consistent with data-driven discriminative RASTA filters

derived by the LDA technique. These are Mexican-hat-like

finite impulse response (FIR) filters with impulse re-

sponses on the order of 200 ms [6], as discussed in the next

section. Taken to extreme, the TempoRAl Patterns

(TRAPs) approach uses 1001-ms trajectories of spectral

energies in critical bands of hearing as inputs to MLP
classifiers that estimate at each frequency the posterior

probability of the phoneme that is in the center of this long

time interval. Such estimates are then fused by another

MLP to yield the final phoneme posteriors. Later, the TRAP

concept was extended by including spectral slope estimates

with each spectral energy measurement [49]. The MRAS-

TA approach [50] projects 1-s-long critical-band spectral

trajectories onto a number of time–frequency bases as
inputs to the MLP that estimates phoneme posteriors. A

Hungarian phoneme recognizer [51] that is currently being

used in a number of speech applications uses 310-ms

temporal segments of speech data. Pinto et al. [52] use a

hierarchy of two MLPs where the second MLP’s inputs are

syllable-length segments of phoneme posteriors estimated

by the first MLP.

Relatively long segments of the signal are now often
used as inputs to nonlinear classifiers. When a long

segment of the signal that contains most of the coarticula-

tion pattern of a given phoneme forms the input to a

classifier, the classifier has enough information to classify

the phoneme in the center of the pattern correctly, as in

Fig. 7. A cartoon illustration of the situation is shown in

the bottom panel of Fig. 6.

There has been some success in deriving time
signatures of phonemes using matched filters. The task is

Fig. 7. Posterior probabilities of phonemes are indicated in the

posteriogram by various colors, warmer colors indicating larger

posteriors. Phoneme classes indicated by highest posteriors are

indicated in the figure. These posterior probabilities were derived

from the telephone-quality utterance ‘‘one-one-three- five-eight’’

by the MRASTA technique [50].
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to filter each phoneme probability trajectory with a
matched filter that represents a typical probability

trajectory in the vicinity of this phoneme [53]. The local

maxima of such filtered trajectories indicate the centers of

the phonemes. Such estimates form a sparse pattern in

time that has been used successfully in extremely fast

keyword searching [54], [55].

The MLP-derived posterior probabilities of phonemes

could be scaled by phoneme priors to derive the scaled
likelihoods that are appropriate for stochastic search for

the best sound sequence in the HMM framework [56].

This technique is often used in estimation of phoneme

strings in recognition of phonemes, where it can yield

better than 80% phoneme string accuracies on well-

articulated speech without the use of any word-level

language knowledge (e.g., [57]). Some recent experiments

[58] indicate that such accuracy is roughly in line with
human performances on similar tasks.

In addition, the posterior probabilities of the decision

classes form the smallest feature set for classification [59].

Posterior probabilities of phonemes could be used as an

intermediate representation for deriving normally distrib-

uted and decorrelated features for current HMM-based

LVCSR systems. The tandem approach [60], illustrated in

Fig. 8, can be applied to turn posterior estimates into such
features, and it is currently used in many state-of-the-art

LVCSR systems. Results indicate that better posterior
probability estimates yield more efficient features for

ASR, independently of the crude temporal models used.

C. Psychophysical and Physiological Correlates
The identity of the basic unit with which humans

recognize speech has still not been established, partly

because there may be different answers for different

situations. It is possible that frequently encountered words

or whole phrases are recognized as single units in casual

conversation, and that human listeners resort to recogni-

tion of subword units only when holistic recognition fails.

When recognizing subword units, syllables are sometimes
suggested as appropriate elements to be recognized [61],

supported by the observation that coarticulation appears to

be weaker across syllable boundaries than it is within a

syllable. Nevertheless, reaction times when recognizing

consonant–vowel syllables by human listeners show that

the consonant is always recognized before the vowel [62].

This, in addition to the short time delay associated with

speech shadowed by another person [62], provides
evidence that is clearly inconsistent with syllabic-level

holistic recognition. This validates the proposition by

Kozhevnikov and Chistovich [62] that the units of

human decision are phoneme-level speech sounds, but

decisions are based on information collected from larger

Fig. 8. The tandem approach: Posterior probabilities of speech sounds, estimated by an artificial neural net, are first transformed by a static

nonlinearity so that their distributions are closer to normal. They are then decorrelated by a Karhunen–Loeve transform and reduced in

dimensionality to be used as features for a conventional Gaussian-mixture-model-based HMM ASR. The matrices below the feature distributions

indicate the correlations among the features at each stage.
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contexts that typically extend over several neighboring
phonemes.

The existence of such a temporal buffer for providing

evidence about underlying speech sounds is supported by

many phenomena in psychoacoustics as well as in the

physiology of higher levels of neural processing and motor

control (e.g., [63]). One example is the well-known

phenomenon of temporal forward masking which suggests

that components outside the critical time interval of about
200 ms do not contribute to detection of components

inside this critical interval, implying that phones interact

within 200 ms. The temporal component of a typical

spectrotemporal receptive field in the auditory cortex

often spans time intervals that would be consistent with a

syllable-length temporal buffer. This does not, however,

imply that human perception necessarily recognizes these

relatively long speech segments (syllables) [61]. It merely
implies that, due to coarticulation, these segments carry

the information about elements (speech sounds) within

them [62], [64]. Temporal interference using feedback

[65] reinforces this finding. Many talkers, when listening

to feedback consisting of their own speech, become unable

to talk as the feedback delay is increased to about 200 ms.

In addition, when reversing short segments of speech,

there is no intelligibility loss when these segments are
shorter than about 50 ms. As the segments get longer, the

intelligibility of speech gradually decreases and the speech

becomes completely unintelligible for the reversed seg-

ments longer than 200 ms [66].

IV. COMPENSATING FOR THE EFFECTS
OF LINEAR DISTORTION

A. The Problem of Linear Distortion
Speech contains components over a broad range of

frequencies, spanning many octaves. Many conditions

including electrical equipment, filters, and room rever-

beration cause some of these frequencies to be amplified

while others are decreased in amplitude. Such linear

distortions are typically introduced through the recording
or communication channels. Such distortions are typically

perceived, but unless they are very severe they do not have

significant effect on the accuracy of human speech

recognition. However, when not anticipated and not

observed in training data, or compensated for by the

ASR system, linear channel distortion can dramatically

degrade performance of machine ASR.

B. Engineering Solutions
It is quite straightforward to show that purely linear

and steady distortions can be handled well by normalizing

the magnitudes of components at various frequencies [67].

One of the early demonstrations of the (reversible) effect

of linear distortion was the work of Stockham et al. [68].

He adjusted the long-term spectrum of the Caruso

recordings to match that of the modern tenors, thus
cancelling many of the effects of the fixed frequency

characteristics of a recording horn used in early record-

ings. The first experimenter who approached the problem

of linear distortion in ASR was (to our knowledge) Itakura

[69], who divided the LPC-derived spectrum in each frame

of an utterance by a spectrum of a two-pole autoregressive

model derived from the whole utterance, thus subtracting

an estimate of the long-term logarithmic spectrum of the
utterance from the logarithmic spectrum at each frame.

This process is functionally equivalent to cepstral mean

subtraction, used almost everywhere today.

Cepstral mean subtraction of speech utterances re-

moves fixed biases and apparently does no harm to speech

information. However, the time span over which the mean

is computed changes the character of this simple proces-

sing. For purely static distortions, the mean can be removed
from the whole recording. When each utterance might be

corrupted differently, utterance-level mean removal is

often performed. When the length of short utterances

changes dramatically, such utterance-level mean removal

can introduce additional spectral distortions.

It is possible to approximate this utterance-level

solution with calculations from a moving window. The

most extreme is to compute temporal differences between
neighboring short-time speech spectra, which effectively

removes the mean of two neighboring frames. This

solution was applied in [70] and later evolved into widely

used and successful dynamic features [71] that describe

local dynamics of logarithmic spectrum. Computation of

dynamic features typically removes means from about 50–

100-ms spans. Local adaptation to recent events in the

band-limited spectrum yielded robust speech recognition
results in Cohen’s auditory model produced at IBM in 1985

[72], and was also important in the models of Seneff [73]

and Ghitza [74]. These models showed promise in the

1980s, but were later superseded by processes which

produced similar effect but at greatly reduced computa-

tional load [75].

RelAtive SpecTrAl (RASTA) processing introduces

bandpass filtering of temporal trajectories of logarithmic
critical-band spectral energies to emphasize typical rates of

spectral changes in speech. The filter was designed

experimentally to optimize recognition accuracy on

telephone speech. The impulse response of the RASTA

filter [76] implies mean removal from exponentially

weighted past spectral values with a time constant on the

order of 200 ms. This time span is longer than the time

span implied by dynamic features but shorter than the
length of a typical speech utterance.

RASTA processing can be very effective in handling

linear distortions. Fig. 9 shows the original utterance and

the utterance filtered in such a way that the vowel in the

utterance has, in effect, a flat spectrum. While spectrograms

of both utterances differ dramatically, the spectrograms

derived by the RASTA–PLP technique are almost identical.
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Data-driven discriminative RASTA filters, shown in

Fig. 10, derived by the LDA technique [77], are Mexican-

hat-like FIR filters with an impulse response with an

effective length on the order of 200 ms (about one syllable)

and have frequency responses that are consistent with the
original RASTA filter and its temporal derivatives. This

analysis was repeated on a much larger and more realistic

machine-labeled database of continuous telephone speech,

which confirmed the earlier observations [6]. An analysis

of RASTA processing suggests that the most important

processing step that alleviates both the effects of linear

distortion and coarticulation is the subtraction of a

running average of the logarithmic spectrum of neigh-
boring speech segments within about 200 ms, from the

spectrum of the current phoneme.

C. Relation to Human Auditory Perception
It is well accepted that perception is more sensitive to

changes in the stimulus than it is to its steady components.
Starting at the auditory nerve where the firing rate is

largest at the onset of the stimulus, firing rates throughout

the auditory system indicate greater sensitivity to changing

stimuli than to steady state ones.

In a convincing demonstration that the channel has

only minor effect on conveying the linguistic information

in speech, Husein Yilmaz (personal communication, 1972)

observed that vowels with a flat spectrum obtained by

filtering the whole speech utterance through a filter that

approximated the inverse of the spectral envelope of that

particular vowel (shown in the upper part of Fig. 9) are

clearly heard with their original vowel quality. It seems
that, while the human listener senses modifications in the

long-term spectrum of speech, these modifications do not

affect their ability to correctly identify phonetic values of

underlying speech sounds. Later, Watkins and Makin [78]

demonstrated more formally that fixed linear distortions

do not have significant effect on human judgments of

phonetic quality of vowels. They designed a set of filters

that could change a phonetic value of a particular vowel.
The perceived vowel value changed when the filter was

applied only to this vowel but not when it was applied to a

whole utterance that contained the vowel.

Time constants that seem to be effective for the

compensation of linear distortions in human hearing may

suggest that this phenomenon is related to temporal

forward masking. The nonlinear effect of temporal forward

masking lasts about 200 ms, independent of the level of the
masker [79]. The consistency of RASTA processing with

forward temporal masking of human hearing has been

observed and is discussed in [64].

More on this topic as well as on its relevance to

modulation spectra of speech may be found in [80].

Fig. 9. The left panel of the figure shows the time domain signal of the utterance ‘‘beet’’ (/b/ /ee/ /t/) together with its spectrogram computed

by the conventional DFT analysis (as in the left middle part of the figure) and by the RASTA–PLP technique (left bottom part of the figure).

Above the speech waveform, a single spectral slice from the spectrogram, extracted at the instant indicated by the arrow (spectrum of the

vowel /ee/), is shown, together with its spectral envelope. The right part of the figure shows the speech waveform, the conventional spectrogram,

the RASTA–PLP-derived spectrogram, and the spectral slice from the /ee/ vowel part after the speech waveform was filtered by the filter

that has a frequency response that is the inverse of the spectral envelope of the vowel /ee/. The filtering flattens the spectral envelope

of the vowel /ee/ but has only a negligible effect on the RASTA–PLP representation of speech.
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V. COMPENSATING FOR THE EFFECTS
OF ADDITIVE NOISE

Additive noise can degrade the accuracy of ASR systems in

almost every practical application environment, regardless

of whether the source is acoustical, electrical, or electro-

magnetic in nature. Because the general topic of compen-
sation for additive noise has received a great deal of

attention over the past several decades, our treatment of

the subject in this paper will be somewhat superficial, with

an emphasis on identifying the major approaches to

ameliorating the effects of the noise and relating these

approaches to physiological processing. Readers seeking a

more detailed discussion of these issues are encouraged

to consult one of the many relevant reviews including
[81]–[83], and especially the recent treatise edited by

Virtanen et al. [84], among many other sources.

A. The Problem of Additive Noise
While the presence of noise is almost ubiquitous, the best

approach to compensation will depend on the nature of the

interference. It is relatively straightforward to compensate

for additive quasi-stationary noise such as white noise, wind
noise in a car, ambient air flow from a ventilation system,

speech babble in a crowded cafeteria, or many types of

continuous machinery. More difficult compensation chal-

lenges are posed by transient interference-like slamming

doors, ringing telephones, percussive machinery (such as

hammers and punches), and gunshots. Background speech

and background music are doubly challenging because of

their highly transient nature, and because many speech

and music sources are easily confused with the desired

speech signal. In addition to the acoustic noise sources,
nonlinear channel distortion in the presence of noise

creates a mixing between the wanted and unwanted signals

that is difficult to disentangle. While the distortion-

producing carbon button microphones in the traditional

telephone network are now rarely encountered, nonlinear

distortion remains commonplace in lossy coding for cell-

phones and voice transmission over the Internet, as well as in

the modulation and demodulation processes in many
practical point-to-point communication systems used by

the military and in industry.

B. Engineering Approaches to Noise Compensation

1) Statistically-Based Approaches: The first viable ap-

proach to noise compensation for speech enhancement and

ASR was the spectral subtraction method proposed by Boll

[85]. Spectral subtraction is accomplished by estimating the

magnitude spectrum of noise in the absence of speech,

subtracting the noise estimate from the degraded speech on a
frame-by-frame basis, and then reconstructing the signal by

combining the noise-subtracted magnitude with the original

phase of the degraded signal. Short-term differences in noise

power can cause negative magnitudes to be computed for

some spectra (a physical impossibility). Many of the dozens

(if not hundreds) of extensions to this seminal approach that

appeared over the ensuing years dealt with alternate methods

Fig. 10. Impulse responses of finite impulse response filters, derived as the first four linear discriminants by LDA technique. These discriminants

suggest that the most effective temporal strategy is to average components within a phoneme and subtract components from the nearest

neighboring phonemes. Frequency responses of the implied filters are not shown here but they are all bandpass, mainly attenuating modulation

spectrum components below 1 Hz and above 10–15 Hz. (From [6], used with permission.)
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to avoid the problems of oversubtraction of the noise
estimate and its consequences.

Acero and Stern [86] noted that the effects of additive

noise and linear filtering combine in a nonlinear fashion.

By characterizing degraded speech as clean speech that is

passed through an unknown linear filter and corrupted by

unknown stationary noise, they developed several useful

compensation algorithms such as codeword-dependent

cepstral normalization (CDCN) which estimates the
parameters that characterize the noise and the filter. Using

the E–M algorithm, they obtained compensated cepstra

using ML estimation. This approach is a generalization and

unification of Boll’s spectral subtraction combined with

homomorphic deconvolution as proposed by [68].

The vector-Taylor series (VTS) approach [87] is a further

generalization of this approach, using the same model of

degradation but characterizing its effects in the cepstral
domain, statistically using Gaussian mixtures to represent

the cepstra of speech and a single Gaussian for the effects of

noise. A very large number of variations of this approach have

been proposed over the years (e.g., [88] and [89]).

2) Missing-Feature and Multistream Approaches: Algo-

rithms such as VTS work reasonably well in the presence of

quasi-stationary noise but are ineffective in the presence of
transient interference such as background music (e.g., [90]).

The use of ‘‘missing-feature’’ techniques (e.g., [91] and [92])

is useful for speech recognition in the presence of the type of

transient interference that is not handled well by algorithms

like VTS, as reviewed in [93]. Briefly, in missing-feature

approaches, one attempts to determine which portions of

speech are unreliable by mapping the signal to a spectrogram-

like time–frequency display, and retaining only those
components of the spectrogram that are deemed to be

reliable. These approaches can be extremely effective when

the ‘‘missing’’ spectrotemporal cells are correctly identified,

but identifying the degraded elements is frequently difficult

to accomplish without substantial a priori knowledge about

the nature of the degradation, and success is critically

dependent on the extent to which the missing cells can be

identified correctly.
The multiband approach has similar goals and was

developed contemporaneously [94]–[96]. In the original

multiband method, speech is processed using multiple

parallel classifiers in different frequency bands. The

outputs of these channels are combined in a fashion that

is intended to give greater weight to those channels that

provide a more reliable representation of the incoming

speech signal. This approach subsequently evolved into the
more general multistream processing, in which classifica-

tion is performed using a variety of complementary

parallel techniques and the results from these different

classification streams are combined in making the final

decision. The different streams may use different projec-

tions of the incoming data [97], where some projections

could be affected by a particular unexpected corruption

less than other. Individual streams may also differ in their
prior constraints (e.g., [98] and [99]), where one stream

uses full strength of a language model and of global HMM

search, while the other one classifies speech sounds only

from local acoustics. Information from individual streams

can be fused to yield the final output or compared to find

sources of corruption. Efficient engineering techniques for

accomplishing these goals remain an open problem [100]–

[102], with more detail provided in [103].

3) Physiologically Motivated Auditory Models: Over the

years a number of researchers have proposed signal

processing schemes based on computational models of the

auditory system, and three of the original models proposed in

the 1980s [73], [74], [104] have been widely circulated in

MATLAB implementations by Slaney [105]. Additional

relevant computational auditory models include the work
of Cohen [72], Tchorz and Kollmeier [106], Chi et al. [107],

D.-S. Kim et al. [108], and C. Kim et al. [109]. All of these

processing schemes (and others) typically produce recogni-

tion accuracy that is comparable to that which is obtained by

MFCC or PLP processing in clean speech, and better

recognition accuracy in the presence of additive noise.

As an example, Kim and Stern [110], [111] recently

described a processing approach called power-normalized
cepstral coefficients (PNCCs). PNCC processing represents

an attempt to develop a pragmatic computationally efficient

feature extraction procedure that is motivated by auditory

processing in the spirit of PLP and (more abstractly) MFCC

processing, but that also has built-in robustness with respect

to additive noise. In addition to elements that are common to

most of the approaches listed above, PNCC processing

includes ‘‘medium-time’’ nonlinear processing that sup-
presses the effects of additive noise and room reverberation,

along with a power-law nonlinearity. The ‘‘medium-time

processing’’ in effect performs a nonlinear high-pass filtering

of the cepstral coefficients that both suppresses noise by

filtering in the modulation spectrum domain and reduces

differences between the training and testing environments

by the same processing. In addition, the use of the power-law

nonlinearity renders PNCC insensitive to changes in input
amplitude. PNCC has been shown to be as effective in

reducing the impact of additive noise as VTS processing and

the ETSI advanced front end (AFE), at a computational cost

that is similar to that of MFCC and PLP processing [110],

[111]. The success of relatively simple physiologically

inspired feature extraction procedures such as PNCC

suggests that the potential benefits from the use of auditory

processing are widespread, and that we will continue to
improve robustness in speech technologies as we deepen our

understanding of the auditory processing of natural speech.

C. Physiological and Psychophysical Correlates
There are many physiological mechanisms that assist in

suppression of noise and unwanted background information.

Auditory processing, like many sensory systems, emphases
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change in the physical input in several dimensions. For
example, the auditory system enhances the temporal onsets

and offsets of the envelopes of signals in each frequency band

(e.g., [112]), and emphasizes differences in frequency

through lateral suppression (e.g., [113]). These processes

result in suppression of many forms of slowly changing

background noise, as has been noted by Wang and Shamma

[114]. Modulation spectral analysis, as described in more

detail in [80], also aids in the suppression of background
noise, as the envelope modulation frequencies of speech in

each analysis band are typically at different modulation

frequencies than those of typical background noise. Units

that are sensitive to envelope modulation frequencies, and

which consequently may be used to implement modulation

spectral analysis have been described by Langner and

Schreiner [115] and others.

Another physiological mechanism which contributes to
noise suppression is the nonlinear representation of signal

intensity in each frequency band. The apparent response

rate of auditory-nerve fibers is an S-shaped function of

signal intensity, with no response to the incoming signal at

low intensities (below threshold for a given fiber), a log-

linear response in an intermediate range, and finally

saturation at high intensities where there is relatively little

change in response. As has been noted by Wang and
Shamma [114] and Chiu and Stern [116], noise suppression

would be accomplished if responses to speech were

captured in the log-linear range, while the response to

the background stimulation at a lower level were below the

threshold of active response. More generally the auditory

system suppresses weak stimuli when excited by stronger

ones. (This property is frequently used in communications

in such nonlinear processes as frequency modulation.)
Finally, the auditory system records not only the short-

time average energy of the frequency components of the

signal as a function of time, but also the temporal patterns of

the signal as well. In fact, Licklider and Pollack [117]

demonstrated that speech remained quite intelligible even if

a speech signal is infinitely clipped, so that only zero

crossings of the signal remain intact. It is well documented

that the peripheral auditory systems preserve the cycle-by-
cycle temporal variations of a signal at low frequencies, along

with the cycle-by-cycle temporal variations of the low-

frequency envelopes of higher frequency components. For

example, Young and Sachs [118] have noted that the average

localized synchrony rate (ALSR, a measure of the extent to

which the temporal patterns of neural response are

synchronized to the timing of the incoming signal) produces

a response to steady-state vowels that is more robust (at least
with respect to signal intensity) than the mean rate of

response, which is more of a measure of short-time energy as

a function of frequency. A number of speech researchers

have incorporated the temporal response (as well as mean

rate) into computational models of the auditory system,

beginning with the DOMIN model of Blomberg et al. [119],

continuing with the classical models of Seneff [73] and

Ghitza [74], and followed by several more recent imple-
mentations (e.g., [108], [109], and [120]).

VI. EXPLOITING THE SPATIAL
CHARACTERISTICS OF SIGNALS

All of the attributes of auditory processing cited above are

essentially single channel in nature. It is well known that

human listeners compare information from the two ears to
localize sources in space and separate sound sources that

are arriving from different directions, a process generally

known as binaural hearing. The mechanisms of binaural

hearing can be emulated in computational speech proces-

sing systems to improve recognition accuracy, signal

separation, and speech enhancement.

A. Exploiting Spatial Information
for Speech Recognition

Let us begin with a discussion of the type of information

that is the basis for source separation based on source

location in computational auditory scene analysis (CASA).

As originally suggested by Lord Rayleigh [122], the human

auditory system is able to identify the direction of arrival of

incoming sound sources by estimating the difference in

arrival time [interaural time delay (ITD)] at low frequen-
cies and interaural intensity differences (IIDs) at high

frequencies. [In some cases, ITDs are calculated as

interaural phased differences (IPDs).] More recent studies

indicate that we are able to make use of the ITDs of low-

frequency envelopes of high-frequency signal components

as well. Elevation angles and front–back ambiguities are

most likely disambiguated by a combination of cues based

on the spectral coloring of the outer ear and head-motion
information. A number of studies have demonstrated that

competing speech sources are more easily individually

segregated and understood by humans when they are more

spatially separated (e.g., [123] and [124]).

There are several ways in which signal processing

approaches based on exploitation of ITDs and/or IIDs can

be useful in automated speech processing. First and most

obviously, this information can be used as cues to enable
the separation of simultaneously presented sources in a

complex acoustical field. Second, the use of two ears (and

correspondingly, two microphones) has been demonstrat-

ed to improve the intelligibility of speech signals in

reverberant environments (e.g., [125]). Finally, speech

(and other) signals are much more easily detected in the

presence of maskers when the interaural differences for

the target signal are different from those of the masker. The
first two of these phenomena have been demonstrated to be

useful in automatic speech recognition, and are probably

useful as well for techniques such as speaker identification

and verification, language identification, keyword spotting,

etc. The latter phenomenon is potentially useful for speech

activity detection. We described some of the approaches

that have been followed below.
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B. Engineering Approaches to Binaural Enhancement

1) Separation According to Estimated ITD and IID: The

first computational system for binaural processing of

simultaneously presented speech sounds was developed by

Lyon [126], based on the ‘‘correlogram,’’ which describes

the short-time cross correlation of paired outputs of his

model for auditory nerve activity. The most common

application of binaural processing is through the use of
systems that provide selective reconstruction of spatialized

signals that have been degraded by noise and/or reverber-

ation by selecting those spectrotemporal components after

short-time Fourier analysis that are believed to be

dominated by the desired sound source. Modern systems

that adopt this approach typically: 1) compute the short-

time Fourier transforms of the incoming signal to the two

microphones; 2) estimate the ITD (or IPD) of each
spectrotemporal component by comparing the phases of

the STFTs; 3) select the subset of spectrotemporal

components that have ITDs that appear to correspond to

the ITD corresponding to the direction of the desired

speaker; 4) (optionally) fill in the missing spectrotemporal

components using missing-feature techniques; and finally

5) either develop cepstral coefficients directly from the

subset of spectrotemporal components that remain or
resythesize an enhanced target waveform using the

overlap–add method or a similar technique (e.g., [121]

and [127]–[132]). As an example, the upper panel of Fig. 11

depicts the spectrogram of two concurrent speech signals,

one coming from an azimuth on the perpendicular bisector

of two microphones separated by 4 cm, and the other from

an azimuth 45� to one side. The lower two panels depict

the spectrograms of the two speech signals after separation
using the phase difference channel weighting (PDCW)

algorithm, which separates signals according to the ITDs of

their spectrotemporal components. Good recognition

accuracy is obtained using this procedure [121].

Some systems also explicit extract IIDs and use that

information to further enhance those time–frequency

components that exhibit a plausible combinations of ITD

and IID that are associated with the target azimuth (e.g.,
[127], [129], and [130]).

2) Processing for Robustness to Reverberation: Some CASA

systems intended for use in reverberant environments have

also incorporated into their processing the precedence

effect, which is the observation that localization is

dominated by the first arriving components of a complex

sound [133]. The precedence effect is clearly helpful in
enabling the perceived location of a source in a reverberant

environment to remain constant, as it is dominated by the

characteristics of the direct field (which arrives straight

from the sound source) while suppressing the potential

impact of later arriving reflected components from other

directions. In addition to its role in maintaining perceived

constancy of direction of arrival in reverberation, the

precedence effect is also believed by some to improve

speech intelligibility in reverberant environments.
Several groups have incorporated processing based on

the precedence effect, typically through the use of

enhancement of the leading edge of envelopes of the

outputs of the bandpass filters that are part of all feature

extraction systems for speech. This emphasis can be

implemented both at the monaural level (e.g., [134] and

[135]) and at the binaural level (e.g., [129], [136], and

[137]), and it has been shown to be particularly effective in
reverberant environments in both cases [129], [135].

C. Physiological and Psychophysical Correlates
There is extensive neurophysiological evidence in the

brainstem and the cortex that supports the type of

Fig. 11. Upper panel: spectrograms of two concurrent speech signals

arriving at azimuths separated by 45�. Central and lower panels:

spectrograms of the speech signals following separation using the

PDCW algorithm [121], which is based on the difference of arrival time

of the spectrotemporal components to the two microphones.
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computational processing that is developed in this section.
For example, physiologists have observed units in the

superior olivary complex and the inferior colliculus that

appear to respond maximally to a single ‘‘characteristic’’ ITD

(e.g., [138] and [139]). In other words, the function of this

unit appears to be the detection of a specific ITD, and that

ITD of best response is sometimes referred to as the

characteristic delay (CD) of the unit. An ensemble of such

units with a range of CFs and CDs can produce a display that
represents the interaural cross correlation of the signals to

the two ears after the frequency-dependent and nonlinear

processing of the auditory periphery. Over the years many

theories have been developed that describe how a display of

this sort can be used to describe and predict a wide range of

binaural phenomena as described in recent reviews (e.g.,

[140] and [141]). Units have also been described that appear

to record the IIDs of a stimulus (e.g., [138]).

VII. CONCLUSION

In summary, we have seen that representations and

modifications of the speech signal used in modern ASR

often mimic the psychophysical or physiological processes

found in mammalian auditory systems. Sometimes this

happened when researchers explicitly modeled some
aspects of the system, and sometimes it occurred when

optimizing processes were used to tune the performance of

a classifier or of the entire system. In every case, however,

the information-reduced representation used in the speech

recognizer could be cast as modeling one or more

characteristics of the auditory system.

Given this convergence, it is still true that speech

recognition remains an underperforming discipline. Mod-
ern systems fail in noise and reverberation, except under

very carefully controlled circumstances. They do not
gracefully account for accents, new words, or distorted

acoustics, although people have little difficulty in these

situations. What we have shown, however, is that the best

recognizers of today mimic nonlinear frequency repre-

sentations, power-law scaling, longer temporal buffers,

signal-adaptive responses, focused acoustic attention, and

noise adaptation when the noise is particularly well

behaved.
Other aspects of the perception of speech, however, are

not accounted for in current systems. We do not generally

take advantage of pitch, although the auditory system

appears to be pitch synchronous up to 2 kHz or so. We do

not generally account for syllabic structure, although even

unschooled speakers of native languages can all count

syllables and speak in rhythm. We separate different

sources occurring simultaneously with difficulty, although
people are very good at this process. Of course, we also do

not have even reasonable models of language, although

that is a discussion for another day.

It is our hope that this review has highlighted those

physiological and psychophysical processes which we believe

to be important, leaving better models and more insight to

those working in the field. We do not mean to exclude yet

other processes, although we have started here to sort the
more likely speech analysis characteristics from the less

likely, in terms of the performance of speech systems. We

look forward to further insights as systems improve, and as

our knowledge of biological processes expand.

Of course, there is more to speech recognition than

the features and their modifications, but we feel that

getting those right might allow us to avoid the constraints

of ‘‘garbage-in, garbage-out’’ transformations. Good luck to
us all. h
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