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Abstract

Contemporary audio declipping algorithms often ignore the
possibility of the presence of additive channel noise. If and
when noise is present, however, the efficacy of any declipping
algorithm is critically dependent on the accuracy with which
clipped portions of the signal can be detected. This paper
introduces an effective technique for inferring the amplitude
and percentile values of the clipping threshold, and develops
a statistically-optimal classification algorithm for accurately
differentiating between clipped and unclipped samples in a
noisy speech signal. The overall effectiveness of the clipped
sample estimation algorithm is evaluated by the degree to
which automatic speech recognition performance is improved
when decoding clipped speech that has been declipped with
state-of-the-art declipping algorithms paired with the clipped
sample estimation algorithm. Up to 35% relative improvements
in word error rate have been observed. Beyond the accuracy
of the developed techniques, this paper generally underscores
the necessity of robust parameter estimation methods for
declipping in noise.

Index Terms: Nonlinear distortion, declipping, robust speech
recognition, speech enhancement, parameter estimation

1. Introduction

Audio clipping is a commonly-encountered problem in audio
engineering and related fields that consists of hard limiting the
peak amplitude of an audio waveform to a fixed level. Clipping
often occurs in one of three ways: (1) as a result of recording an
audio signal whose peak amplitude exceeds the dynamic range
limitations of the A/D converter, (2) as a result of writing im-
properly amplitude-normalized data to a file (e.g., MATLAB’s
wavwrite function requires values in the range [—1, 1]), or (3)
deliberately, to achieve some desired perceptual characteristic
(e.g., as with mastering of popular music). In many cases, clip-
ping is perceptually undesirable, causing unpleasant distortion
artifacts. Clipping distortion has been shown to significantly
decrease the accuracy of automatic speech recognition (ASR)
systems [1]. For these reasons, among others, a variety of de-
clipping algorithms have been developed over the years (e.g.
[1,2,3,4,5,6,7,8,9].

Most declipping algorithms assume that it is known which
samples are actually clipped. In the complete absence of noise
this information is trivial to obtain, but when noise is added af-
ter the application of clipping, it becomes much more difficult
to determine the value of the clipping level and exactly which
samples had been clipped. In order to use any of the various
practical declipping algorithms, one must estimate accurately
which samples of the audio signal had actually been clipped, if
any, and whether or not noise is present. Indeed, the identifica-
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tion of which samples are clipped is just as vital to the usability
and success of the application as is the accuracy of the actual
method to restore the original values of the clipped samples.
This paper introduces novel techniques for estimating the
necessary parameters associated with clipping in order to esti-
mate which samples of a given signal are clipped. The efficacy
of the methods that are introduced is evaluated both in terms of
the accuracy with which they estimate the associated clipping
parameters, as well as the accuracy of existing declipping algo-
rithms when used in conjunction with the proposed methods to
identify the clipped samples. The efficacy of declipping itself is
evaluated indirectly in terms of word error rate (WER) of ASR.

2. Audio Clipping and Noise

A mathematical definition of clipping that will be utilized in this
paper is as follows:

eoln] = {x[n] if [z[n]| <

T-sgn(z[n]) if|z[n]| > 7 M

In Eq. (1), z[n] is an unadulterated speech signal, z.[n]
is a clipped speech signal, and T is the clipping threshold or
clipping level, i.e., the absolute amplitude value beyond which
input signal samples are lost. In this paper, the threshold value
will be expressed in terms of percentiles of the absolute value
of the input speech. Thus, if 7 = P,, then r percent of the
speech data lies in (—7, +7) and (100 — r) percent of the data
is clipped. Computing 7 in this fashion causes the effect of
clipping to be independent of arbitrary scaling of the waveform,
allowing for more controlled experiments.

Furthermore, this paper assumes the presence of indepen-
dent additive white Gaussian channel noise, w([n], which com-
bines with the clipped signal to create the observed signal, y[n],
as follows:

yln] = zc[n] + win] @)

This model was adopted because it appeared to be an accu-
rate model of speech samples from the DARPA RATS program
(e.g. [10]). To the extent that the declipping is effective, the ef-
fects of noise that is added before the clipping distortion could
be mitigated by approaches such as vector Taylor series [11] or
spectral subtraction [12].

In this paper, the SNR of the observed signal, y,, is com-
puted with respect to the clipped signal, and thus does not ac-
count for noise associated with clipping distortion.

3. Parameter Estimation

This section develops the necessary tools for blindly inferring
qualities of an incoming speech signal such that it can be ac-



curately determined whether or not the speech signal contains
clipped segments, and if so, which samples of the signal com-
prise the clipped segments.

3.1. Clipping threshold estimation

Upon receipt of a speech signal, it must be determined whether
or not clipping is present, and if so, the corresponding value of
the clipping level, 7. Clipping has a marked effect on the am-
plitude distribution of the audio waveform and is characterized
by the presence of two sharp peaks in the distribution which are
symmetric about 0 and located at +=7. The addition of inde-
pendent Gaussian noise to the clipped signal according to Eq.
2 implies convolution of the Gaussian noise distribution with
the clipped signal amplitude distribution, and results in three
Gaussian-like lobes at 0 and £7.

Based on these observations, it stands to reason that in-
formation concerning the location of the peaks in the noisy
clipped speech amplitude distribution can be leveraged to de-
sign a method of estimating 7. Consider a sequence of data
with K peaks whose locations with respect to the independent
variable are {ko, k1, k2, ..., kx—1}. If an algorithm to estimate
these locations is applied to y[n]', an estimate of the value of 7
is given by:

1 K-1
F= ; |k A3)

When clipping of speech has occurred, K = 3 and the indi-
vidual peaks should in principle be found at ko = —7, k1 = 0,
ko = 7; the sum in Eq. 3 is then effectively 277 = 7. Ifno
clipping has occurred, K = 1, and the result diverges to co,
which is correct (i.e., if no clipping has occurred, then the clip-
ping level is effectively infinite). Thus, this technique simulta-
neously performs regression to predict 7 and binary classifica-
tion to determine whether or not the speech has been clipped at
all.

3.2. Threshold percentile estimation

As noted in Sec. 2, the clipping threshold is often expressed in
terms of percentiles. As will become evident in Sec. 3.3, being
able to infer not only the amplitude value of 7, but also the
percentile value of 7, from an observed noisy clipped speech
waveform will be a useful aid to the determination of which
samples are clipped.

The percentile value of 7 is equal to the integral (or cumu-
lative sum) of the probability density function of the observed
speech between amplitudes —7 and +7. Mathematically, where
c(z) is the PDF of the observed speech, and C'(z) is the corre-
sponding cumulative distribution function (CDF),

+7
percentile value of 7 = / c(z)dz (4a)
e -
= / c(z)dz — / c(z)dx (4b)
=C(r)—-C(-1) (4¢)

From basic calculus, the peaks of a signal can be found by finding
the zeros of the first derivative of the signal.
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Figure 1: Results of blindly predicting T as described in Sec.
3.1. The clipped speech is added to white Gaussian noise to
achieve the indicated SNR. For a given T value, T is predicted
over 500 independent trials of the same clipped speech added
to a newly-generated white noise sequence; the markers show
the sample mean of the T predictions; the error bars extend one
standard deviation above and below the mean.

3.3. Clipped sample estimation

In the presence of noise according to Eq. 2, the identification
of which samples are clipped — even given the value of 7 — is
not trivial. Because the addition of noise perturbs the ampli-
tude of the signal samples, it is no longer possible to know with
certainty whether the underlying speech signal’s samples were
clipped in a certain interval of time. We have found a probabilis-
tic approach to be useful in making an informed decision con-
cerning whether or not a given (series of) sample(s) is clipped.
In particular, the identification of clipped samples is a bi-
nary classification problem (i.e., a sample is either clipped or
not). For simplicity, it may be assumed that the probability of
any given sample being clipped is a function only of its ob-
served amplitude, y[n], the signal’s power, 02, the variance
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Figure 2: Results for predicting the percentile of value of T
given its amplitude value for a particular speech signal. As in
Fig. 1, the markers reflect the sample mean of 500 independent
predictions, where a new white noise sequence was generated
for each trial. The red dashed lines indicate the target (true)
percentile.

(power) of the white Gaussian noise, aﬁ,, and the (given) value
of 7.

To begin, it would be useful to determine the conditional
probability that the output of the clipping function of Eq. 1 is
equal to £7, given the above information. Proceeding mathe-
matically, the intention is to compute:

Pr(z.[n] = +7ly[n], 0}, 0%, 7) (5)
Using Bayes’ theorem [13],

Pr(azc[n] = :I:T‘y[nL 01213 0—1203 T) =

Pr(y[n]|ze[n] = £7,07, 0%, T)Pr(ze[n] = £7l0y, 03, 7)

Pr(y[n]|of, o, T)

6

The numerator can be simplified slightly by noting that the
probability of z.[n] being clipped is independent of the sig-
nal and noise power, and as will be shown, the probability of
y[n] given that z:.[n] = £7 is independent of the overall signal
power. Also, the denominator can be expanded, as follows:

Pr(zc[n] = :I:T\y[n],ai,oi,ﬁ) =
Pr(y[n]|zc[n] = £7, 05, 7)Pr(zc]n] = £7|7)/
Pr(y[n]|zc[n] = £7, 05, 7)Pr(zcn] = +7|7)
+ Pr(y[n]|zc[n] # £, 02, oo, T)Pr(zcn] # £7|7) (1)

Under the assumption of zero-mean additive white Gaus-
sian noise (AWGN) with variance o2, the probability of the
noisy signal having observed value y[n] given that z.[n] = +7
is:

Pr(y[n]|zc[n] = £, 012‘,, T) =

lylnll+e 4 _=m?
lim e 2w dt (8)
20 Sy[n)|—e V2TOw

Moreover, the probability that a given sample z[n] is equal
to =7 is related to the percentile value of 7:
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Figure 3: Mean classification accuracy for classifying individ-
ual noisy samples as either clipped or not clipped using the rule
inEq. 13.

Pr(zc[n] = £7|7) = 1 — percentile value of T )

Furthermore,

Pr(zc[n] # £7|7) = 1 — Pr(zc[n] = £7|7) (10)

The last term to define is the conditional probability of
the observed sample, y[n], given that the underlying noise-free
sample is not clipped. Note that y[n] = x.[n] + w[n], where
both z.[n] and w[n| are random variables. As described in Sec.
3.1, the PDF of y[n] would be equal to the convolution of the
PDF of z.[n] with the PDF of w[n]. Thus, this term requires the
estimation of the PDF of z.[n], which is not directly observable.
To avoid the complications involved in this density estimation,
it will be assumed that the conditional PDF of y[n] given that
Ze[n] # £7 can be modeled as a Gaussian distribution with
zero-mean and variance, Uf,, equal to the sample variance of the
observed noisy speech waveform. Therefore,

Pryfnllacln] £ 0% r) = lim [ ¢
r(y[n]|xzc[n T,0,,7T) = lim e “udt
! <=0 )iyl V270, "

With these quantities, it is now also possible to compute the
posterior probability of a sample of the noise-free signal being
unclipped:

Pr(zc[n] # +7lyln), oy, 00, 7) =
Pr(y[n]|zc[n] # £, 05, o2, T)Pr(x.[n] # +7|7)/
Pr(y[n]|zc[n] = £7, 05, T)Pr(zcn] = £7|7)
+ Pr(y[n]|xzc[n] # £, 05, oo, T)Pr(zen] # £7|7)  (12)

A given observed signal sample, y[n], can be classified
as either “clipped” or “unclipped” according to the optimal
Bayesian decision threshold [14] as follows:

class of y[n] =

2
. . 2,m)
{etipped it EETEETETET 21 (49

In practice, the value of o2, is estimated from the observed
speech by employing a VAD (e.g. [15]) and averaging the en-
ergy of the non-speech frames.
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Figure 4: Word error rates for automatic recognition of clipped
speech (T = Pys) after declipping using the indicated algo-
rithm. In the top panel, the knowledge of which samples are
clipped is known a priori. In the bottom panel, the algorithm
outlined in Sec. 3.3 is used to identify clipped samples before
declipping.

4. Declipping Techniques

In order to evaluate the practical effectiveness of the clipped
sample estimation technique developed in Sec. 3.3, the method
will be paired with two state-of-the-art declipping algorithms,
which are briefly summarized here.

4.1. Consistent iterative hard thresholding

Kitic et al. recently proposed a highly-effective sparsity-based
algorithm for declipping [9], which will be referred to as Kitic-
IHT. Each incoming frame of clipped speech is represented us-
ing a sparse linear combination of Gabor basis vectors. The
weights of the linear combination are learned using a modi-
fied form of Iterative Hard Thresholding [16]. The algorithm
is deemed “consistent” as it requires the interpolated sample
values to be greater than or equal to 7 in the absolute sense, and
carry the same sign as the corresponding clipped signal sam-
ples.

4.2. Constrained blind amplitude reconstruction

The Constrained Blind Amplitude Reconstruction (CBAR) al-
gorithm [1] was recently proposed by the present authors.
CBAR seeks to declip a signal by minimizing the energy of its
second derivative, subject to the constraint that the interpolated
samples agree with the sign of the underlying clipped signal and
are greater than the clipping level, 7, in the absolute sense.

5. Results
5.1. Estimation accuracy

The accuracy of estimating 7 in noise using the technique de-
veloped in Sec. 3.1 is depicted in Fig. 1. These data were
generated by predicting 7 over 500 independent trials of newly-
generated white noise added to clipped speech at the indicated
threshold. The markers in the plots show the mean value of the
T predictions over the trials. As can be seen, the technique is
quite accurate for SNRs of 4+-10 dB and above.

The accuracy of predicting the percentile value of 7, given
the correct inferred amplitude value of 7 for a particular speech
waveform is shown in Fig. 2. Finally, the accuracy of predicting
which samples are clipped, given perfect knowledge of the am-
plitude and percentile values of 7, using the technique presented
in Sec. 3.3, is shown in Fig. 3. In agreement with intuition, the
accuracy of clipped sample estimation decreases with both SNR
and the clipping level.

5.2. Declipping

The real measure of the degree to which clipped sample estima-
tion is potentially useful in practice is measured by how well a
given declipping algorithm performs in noise when paired with
the clipped sample estimation techniques.

The CMU Sphinx-III ASR system [17], trained on MFCC
features [18] extracted from the clean (unclipped) DARPA RM1
database [19], was used to decode’ speech that was clipped (at
7 = P75) and added to noise at various intensities. Figure 4
depicts the corresponding WER as a function of SNR and us-
ing the indicated declipping algorithms, both when oracle (or
perfect) knowledge of which samples were clipped is provided
to the declining algorithm (upper panel) and when the methods
developed in this paper are used to estimate which samples are
clipped (lower panel). The benefit of the declipping algorithms
becomes negligible at low SNRs when estimation of which sam-
ples are clipped is performed. Nevertheless, declipping remains
quite effective at higher SNRs. At SNR = 15 dB, for example,
the Kitic-IHT algorithm provides a 27.8% relative improvement
over no declipping when paired with clipped sample estimation.
At SNR = 20 dB, both CBAR and Kitic-IHT provide between
28% and 35% relative improvement over no declipping. While
these improvements are (unsurprisingly) smaller than the im-
provements that could be obtained using oracle knowledge, they
are nonetheless useful.

6. Conclusions

The results presented in this paper demonstrate the importance
of robust methods to estimate the nature of the clipping process-
ing when attempting to perform signal restoration from clipping
in the presence of noise. As evidenced by the poor declipping
results of state-of-the-art algorithms at low SNR compared to
their performance in an oracle-knowledge situation (Fig. 4),
declipping quality is only as good as the accuracy with which
the clipped samples are estimated. This paper has introduced an
effective technique for performing this estimation.

2Qur configuration of Sphinx-IIT uses a standard bigram language
model and 8-component GMM-based acoustic model. Sphinx-III is an
HMM-based system. The MFCC features use a 40-band Mel-spaced tri-
angular filter bank between 133 Hz and 6855 Hz. Windowing of 25.625
ms duration is performed at 100 frames per second using a Hamming
window. Utterance-level cepstral mean subtraction is performed before
training and decoding.
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