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ABSTRACT

This paper concerns the automatic recognition of speech that has
been distorted by frequency shifting introduced by a transmitter-
receiver frequency mismatch in communications systems using
single-sideband (SSB) modulation. The degradation in recognition
accuracy depends both on the frequency shift induced by mistuned
SSB and additive noise, with a reduction in SNR causing the degra-
dation produced by mistuned SSB to become more profound. We
consider the performance of a method for detecting frequency shifts
introduced by SSB; the shifts can be corrected easily if identified
correctly. The proposed method provides accurate estimates of
SSB-induced frequency shifts over a wide range of SNRs if at least
approximately 80 seconds of speech is available. The use of the
algorithm provides almost-complete amelioration of the effects of
mistuned SSB even for utterances shorter than 10 seconds, and
signal restoration is expected to improve for utterances of longer
duration.

Index Terms— Robust speech recognition, speech enhance-
ment, nonlinear distortion, single-sideband modulation

1. INTRODUCTION

Systems that attempt to transcribe long-range operational point-to-
point communications signals, including commercial and military
transmissions, must deal with the effects of a wide variety of linear
and nonlinear distortions. This paper concerns the automatic recog-
nition of speech that has been distorted by frequency shifting intro-
duced by a mismatch between the carrier frequencies of transmit-
ting and receiving oscillators of a single-sideband (SSB) modulator-
demodulator pair. We begin by describing the mathematical origins
of the frequency-shift effect and its impact on speech recognition
accuracy. We then describe and characterize the performance of a
method that has been developed to detect blindly and compensate for
the frequency shift, as well as the extent to which these approaches
are successful in restoring the speech recognition accuracy obtained
from the compensated signal.

Although analog modulation techniques including SSB have
been superseded by digital techniques in many communication
systems in developed countries, the use of SSB remains common
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in other parts of the world. Channels that are degraded by SSB
frequency shift are included by the DARPA Robust Automatic Tran-
scription of Speech (RATS) program in the simulations of degraded
speech signals that are important to military intelligence.
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Fig. 1. Single-sideband modulation and demodulation.

2. ORIGINS OF SSB DISTORTION

Single-sideband (SSB) modulation and demodulation has been pop-
ular in point-to-point communication systems because it reduces the
bandwidth of the modulated signal by a factor of two compared to
conventional double-sideband modulation.

While there are multiple ways to implement an SSB signal, the
basic procedures for ideal SSB modulation and demodulation are
summarized in simplest form in Fig. 1. We assume that the mes-
sage signal to be transmitted, m(t) is band limited to fas Hz. The
message signal m(t) is first multiplied by an oscillator at frequency
f1 and then passed through an ideal bandpass filter with passband
fi— v <|f] £ f1. As aresult, the modulated signal sz () has
frequency components only between fi1 — fas and fi Hz, the pass-
band of the ideal SSB filter. The modulated signal can be expressed
as

zssB(t) = m(t) cos(2m f1t) + m(t)sin(2w f1t) (1)
where () is the Hilbert transform of m(t). Demodulation is eas-
ily accomplished by multiplying the modulated signal by a local
oscillator of frequency f» and passing the signal through an ideal
lowpass filter with cutoff frequency fas Hz. If fi = f> and all
the filtering is ideal, the output signal m.-(¢) will equal the original
message m(t). Unfortunately, maintaining frequency synchrony be-
tween the modulator and demodulator oscillators can be difficult in



practice, and if f1 # f2 the output signal m,(t) will equal m(t) but
with the positive frequency components of m..(t) shifted upward by
fa = f2 — f1 and the negative frequency components of m(t) are
shifted downward by fa. This produces a characteristic distortion in
the audio that becomes more pronounced as | fa| increases, leading
to speech that can sound like the familiar cartoon character Donald
Duck. If this frequency shift is detected and estimated correctly, it is
easy in most cases to restore the original audio signal by performing
a compensatory modulation and demodulation with a deliberate fre-
quency mismatch of — fa. (This fails only when a large negative fa
causes the lowest frequency components of m(¢) to go through zero
and interfere with one another.)

The DARPA RATS Program began in 2011 with the objective
of developing methods to provide automatic speech recognition in
realistic highly-degraded channels. The data used for system devel-
opment and evaluation consist of careful simulations of operational
audio signals, and some of these channels exhibit frequency shifts.
Fig. 2 is a histogram of the estimated values of fa for utterances
from one such simulated operational channel.
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Fig. 2. Distribution of frequency shifts in selected channel of the
DARPA RATS data.
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Fig. 3. Effects of SSB-induced frequency shifts on speech recogni-
tion accuracy for clean speech and speech degraded by street noise
with SNRs of 5 and 15 dB.

2.1. Impact of SSB-based frequency shifts on speech recognition
accuracy

As noted above, the distortion produced by frequency shifting in-
creases as fa increases, and interacts with other factors such as ad-

ditive noise in a nonlinear fashion. Fig. 3 provides some sample
error rates obtained using a version of the CMU Sphinx-III system
with a weakened language model, applying frequency shifts in the
manner described in Section 2 to sentences from the DARPA RM1
database in the manner described in Section 4. Results are plotted
for clean speech and speech degraded by digitally-added street noise.
We note, unsurprisingly, that the observed word error rate (WER) in-
creases monotonically as the frequency shift increases and the SNR
decreases. There is an interaction between the two types of degrada-
tion, as decreasing the SNR causes recognition accuracy to become
impaired for frequency shifts of increasingly small magnitude.

3. DETECTION AND COMPENSATION FOR
FREQUENCY-SHIFTED SPEECH

3.1. Initial detection based on estimated fundamental frequency
and spectral peak locations

Over the years a small number of algorithms have been proposed
to detect blindly the values of fa for a particular incoming utter-
ance. In general these algorithms work by estimating the funda-
mental frequency of voiced segments, typically using cepstum-based
techniques, and then observing the actual peaks in the log spectrum.
The frequency shift fa is inferred by comparing indirectly the loca-
tions of the actual spectral peaks to the locations of spectral peaks
that would have been produced by a true harmonic series.

One such algorithm was proposed by Suzuki et al. [1]. The
Suzuki et al. approach begins by estimating the fundamental fre-
quency fo using cepstral techniques, computing the inverse DCT of
the log of the spectrum. The estimate of fy is unaffected by the value
of fa because the spectrum of a frequency-shifted signal exhibits the
same periodocities over frequency regardless of frequency shift. The
estimated fundamental frequency fo is obtained by searching for a
maximum in the cepstrum at an appropriate quefrency correspond-
ing to the nominal period of the periodic signal. The peaks of the log
spectrum of a frequency-shifted signal will appear at frequencies

fx=Fkfo+ fa )

where fj represents the spectral peak corresponding to the correct
harmonic, & is the harmonic number, and fj is the true fundamental
frequency. In practice, fy can be estimated fairly accurately because
this estimate is based on information from all the harmonics of the
signal, but the estimated locations of the individual spectral peaks f
tend to be more errorful. Suzuki ef al. obtained estimates of fa by
plotting the estimated peaks of the log spectrum fk as a function of
k, fitting a line to these points using linear regression, and producing
an estimated frequency shift fA from the intercept of this line with
the vertical axis. Suzuki et al. [2] also proposed a second approach
in which fa is inferred from the degree of symmetry of the cepstrum
in each voiced frame.

3.2. Complete estimation of frequency shift independent of har-
monic number

A major shortcoming of the approach of Suzuki et al. [1] is that the
algorithm is critically dependent on a correct match between the pu-
tative harmonic number k and the frequency of each peak in the log
magnitude spectrum. This can be difficult, especially in telephone
channels in the POTS network which typically have a bandpass fre-
quency response with a low-frequency corner of approximately 300
to 350 Hz. We worked on a variety of techniques to overcome this
shortcoming, but eventually stumbled on an algorithm, originally
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Fig. 4. Histogram of candidate values of fA for an utterance with a
true fa of -120 Hz. The peak is located at exactly -120 Hz and the
next-largest peaks are closely grouped in frequency.

described by Dick in an obscure technical report in 1980 [3], that
requires no a priori information about harmonic peak number and
which provides a more robust solution. It works by exploiting the
usual variations in fo during normal, spontaneous speech.

Speech is sampled at 16 kHz and short-time Fourier transforms
are computed in the conventional fashion using 80-ms Hamming
windows with 50% overlap. For each N-point time frame, the “com-
plex correlation” C[m)] is calculated by computing the inverse DFT
of the magnitude of the N/2 + 1 positive frequency components of
the signal’s Fourier transform, padded with N/2 — 1 zeros. The re-
sulting complex-valued signal is referred to by Dick as the complex
correlation. (This is similar to the more familiar analytic signal, but
is based on the inverse transform of the positive-frequency compo-
nents of the magnitude of the spectrum, rather than of the original
complex spectrum itself.)

An estimate of f is obtained by searching for the peak in the
magnitude of C[m] for each time frame, in a similar fashion to ob-
taining an estimate of fo using the magnitude of the complex cep-
strum. An estimate of fy is obtained by the simple relation

fo="— 3

where p represents the index in the time domain at which the peak
of C[m] is found and f is the sampling frequency.

The set of all possible estimates of fa for a given frame is ob-
tained from the real and imaginary parts of C[p] according to the
equation

;o _ [ Jo SCpl 7
fa, = (27r arctan ?RC[p]) +rfo 4)
where the index r denotes one individual possible value of fA within
the set. The estimation accuracy of the exact location of the maxi-
mum of C[m] is improved using polynomial interpolation, thus al-
lowing the maximum value to lie between two integer values of m;
interpolation is similarly used to obtain values of SC'[p] and RC'[p]
for non-integer values of p.

While Eq. 4 does not have a unique solution, the ambiguity
is easily resolved because the correct value of r will lead to an es-
timate of fa that remains invariant over multiple analysis frames,
even though fo is constantly changing. In contrast, the other (in-
correct) values of r will produce estimates fAT that vary over time.
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Fig. 5. Percentage of estimates of fa that are within 5 Hz of the
correct value as a function of utterance duration.

This observation enables us to identify the correct value of r by ac-
cumulating a histogram of the multiple frequency estimates fA,‘ on
a frame-by-frame basis, each incremented by the square of the value
of maximum C'[p] for the current frame. Note that in order for Eq. 2
to be meaningful, the signal must be periodic, so we are principally
interested only in the voiced frames. Because unvoiced speech is
strongly aperiodic, in contrast, the peak of the complex correlation
will have a small magnitude in the corresponding unvoiced frames.
Thus, incrementing the histogram of fA,, by the magnitude of this
peak for each time frame is reasonable in that it implicitly takes voic-
ing into account. The final estimate of fa is obtained by simply
selecting the largest peak in this histogram of frequency estimates.

Figure 4 shows the histogram of fA estimates obtained over ap-
proximately 3.5 seconds of speech for which the true fa is —120
Hz. The (correct) value of —120 Hz is adopted for fA because it
is the frequency corresponding to the maximum value of the his-
togram. As can be seen, other candidate values of fA also appear in
the histogram at clusters of frequencies separated by multiples of the
fundamental frequency fo.

Figure 5 describes the sensitivity of the compensation algorithm
to utterance duration. The speech signals had been degraded by ad-
ditive noise and linear filtering that modeled the estimated character-
istics of selected channels of the 2011 Development Data from the
DARPA RATS Program using the Ellis renoiser procedure [4].
The figure shows, as a function of the duration and input SNR, the
percentage of utterances for which the estimated fA is within +5 Hz
of the true frequency shift fa. For these data it is clear that durations
of at least 60 seconds are sufficient to provide estimates of the fre-
quency shift that are accurate at least 90% of the time. The shapes
of the curves imply an asymptotic rise toward 100% accuracy with
increasing input duration.

4. RECOGNITION OF SPEECH WITH COMPENSATED
FREQUENCY SHIFTS

The CMU SPHINX-III speech recognition system was used with
the DARPA RM1 database to evaluate the impact of blind compen-
sation for SSB mistuning using both clean and degraded speech. For
these comparisons we used a bigram language model and a three-
state HMM-based acoustic model with mixture densities consisting
of 8 Gaussians. A subset of the RM1 database that included 1600
training utterances and 600 test utterances was utilized. The ASR
was trained using clean data in all cases. The clean test utterances,
as well as the utterances mixed with real-world street noise at SNRs
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Fig. 6. WER obtained for original and blindly-compensated speech
with SSB-induced frequency shifts using short segments of speech.
Filled symbols denote WERs obtained for SSB-compensated speech
while open symbols denote WERs for the original uncompen-
sated speech. Estimation of frequency shift was performed on an
utterance-by-utterance basis for a set of utterances averaging 3.7 s in
duration.

of 15 and 5 dB, were automatically compensated using the SSB mis-
tuning detection algorithm described in Section 3.2. Feature extrac-
tion was performed using standard MFCC coefficients with cepstral
mean normalization.

Figure 6 describes the WER obtained for a subset of the fre-
quency shifts depicted in Fig. 3, before and after blind compen-
sation, using the compensation method described in Sec. 3.2. For
these experiments, compensation was performed on an utterance-
by-utterance basis, and the average duration of the utterances was
only 3.7 seconds with a standard deviation of 1.25 seconds. It can
be seen that in general the compensation procedure is quite effec-
tive, and the results are especially dramatic when the SSB-induced
frequency shift is large in magnitude. Some performance degrada-
tion is observed when no frequency shift is actually present. This is
a consequence of the short average duration of the Resource Man-
agement utterances, as noted above. With this short duration, the
SSB-induced frequency shifts are correctly estimated to within 10
Hz for only 84.3% of the clean utterances, so 16% of the utterances
are inadvertently degraded by mis-estimation of the frequency shift.

Figure 7, in contrast, shows the WER obtained when estimation
accuracy of the frequency shift is 100%. To achieve 100% estima-
tion accuracy, the frequency shift detector was run over the entire
database of approximately 40 minutes of test speech with all utter-
ances frequency shifted by the same amount. This type of processing
would be appropriate for the case of a communications channel that
is known to have fixed characteristics. Comparison of Figs. 6 and
7 underscores the assertion that the algorithm performs quite well
even when the durations of the speech segments are relatively brief.

Finally, Fig. 8 describes recognition accuracy obtained for ut-
terances with additive noise and linear filtering that simulated the
two channels of the 2011 DARPA RATS development set (Channels
D and H) that exhibited substantial frequency shift. We compare
results using three types of training procedures: (1) training using
clean speech, (2) “multi-style” training using speech samples that
had been degraded by all of the simulated RATS devset channels,
and (3) “matched” training in which the training data are degraded
by the same environmental conditions as the test data. While blind
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Fig. 7. Ideal WER obtained for original and perfectly-compensated
speech with SSB-induced frequency shifts using a long sequence
of speech. Filled symbols denote WERs obtained for SSB-
compensated speech while open symbols denote WERSs for the origi-
nal uncompensated speech. A single estimate of frequency shift was
obtained for the entire 40-minute database resulting in 100% estima-
tion accuracy.

Channel D (3.5-dB SNR, f, =-180.9 Hz)

-
(=3
o

Before After Before After Before After

WER (%)
(4]
o

Clean Multistyle Matched

Channel H (3-dB SNR, fA =-120.7 Hz)
100 T T T
Before After Before After Before After

WER (%)

Matched

Clean Multistyle

Fig. 8. WER before and after compensation for SSB mistuning for
two simulated RATS-like channels using various training styles.

compensation for SSB-induced frequency shifts provided the great-
est benefit using multi-style training, some improvement was ob-
served for clean training as well. Unsurprisingly, little improvement
is seen for the matched-training condition because the ASR system
has incorporated the characteristics of the degraded speech into its
acoustic models, including the frequency shift.

5. SUMMARY

We describe an algorithm that provides very accurate estimation of
the SSB-induced frequency shifts, over a wide range of SNRs, if
about 60 seconds of speech are present. The use of the algorithm pro-
vides almost-complete amelioration of the effects of mistuned SSB
even for utterances shorter than 10 seconds, and recognition accu-
racy improves further when longer durations of degraded speech are
available to estimate the frequency shifts.
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