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Abstract—This letter describes a preprocessing method called
subband-based stationary-component suppression method using
harmonics and power ratio (SHARP) processing for reverber-
ant speech recognition. SHARP processing extends a previous
algorithm called Suppression of Slowly varying components and
the Falling edge (SSF), which suppresses the steady-state por-
tions of subband spectral envelopes. The SSF algorithm tends
to over-subtract these envelopes in highly reverberant environ-
ments when there are high levels of power in previous analysis
frames. The proposed SHARP method prevents excessive suppres-
sion both by boosting the floor value using the harmonics in voiced
speech segments and by inhibiting the subtraction for unvoiced
speech by detecting frames in which power is concentrated in
high-frequency channels. These modifications enable the SHARP
algorithm to improve recognition accuracy by further reducing
the mismatch between power contours of clean and reverberated
speech. Experimental results indicate that the SHARP method
provides better recognition accuracy in highly reverberant envi-
ronments compared to the SSF algorithm. It is also shown that
the performance of the SHARP method can be further improved
by combining it with feature-space maximum likelihood linear
regression (fMLLR).

Index Terms—Harmonics, precedence effect, reverberation,
robust speech recognition.

I. INTRODUCTION

N OISE robustness remains an important issue in the field
of automatic speech recognition (ASR), because the per-

formance of most ASR systems is seriously degraded when
there are differences between training and testing environments.
Although many algorithms have been proposed to compensate
for these mismatches (e.g., [1], [2]), they are mainly focused
on coping with additive noise. Speech in rooms is frequently
corrupted by reverberation because it incurs multiple reflec-
tions from the rooms’ surfaces. Because direct dereverberation
in the time domain can be computationally costly (e.g., [3], [4]),
subband-based approaches are considered.
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While the human auditory system is more sensitive to mod-
ulation frequencies less than 20 Hz (e.g., [5]), very slowly
changing components (e.g., less than 5 Hz) are usually pro-
duced by noise sources (e.g., [6]). Thus, researchers have
tried to improve ASR performance by performing high-pass
or band-pass filtering of subband power on a frame-by-frame
basis (e.g., [7]). Recently, Kim and Stern proposed a pro-
cessing method called Suppression of Slowly varying com-
ponents and the Falling edge (SSF) that accomplishes onset
enhancement and steady-state suppression by applying a type
of high-pass filtering to the frame-by-frame power of signals
that had been passed through a bank of gammatone filters
[6]. They demonstrated that SSF processing can achieve sig-
nificant improvements in ASR performance in reverberant
environments.

Although SSF processing can improve robustness of ASR
systems, the power contours of processed signals for clean
and reverberated speech are still different. The major differ-
ence occurs in processing reverberated voiced speech with
high power contours, because the power contours of reverber-
ated voiced speech are more smeared over time than those
of clean voiced speech. In addition, in reverberant environ-
ments, SSF processing may inappropriately remove useful
features for recognizing unvoiced phonetic segments with
energy concentrations at high frequencies such as fricatives
because a high level of energy in a particular channel in
previous frames may cause over-subtraction in the current
frame.

To overcome these undesirable properties of SSF process-
ing, we present a preprocessing method based on stationary-
component suppression in the subband domain, which we refer
to as subband-based stationary-component suppression method
using harmonics and power ratio or “SHARP” processing. The
useful features of unvoiced speech are retained by detecting the
frames that contain them based on energy distributions across
frequency, and the degree of subtraction is reduced for these
frames. To more closely match the power contours of clean and
reverberated voiced speech, the floor value in the subtraction is
boosted to stretch the power contours along the time axis, using
a measure of harmonicity to detect voiced-speech frames. In
addition, the combination of SHARP processing with feature-
space maximum likelihood linear regression (fMLLR) [8] that
is known to be effective in achieving speaker adaptation is
demonstrated to provide improved robustness in reverberant
environments.
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Fig. 1. Summary of the SHARP processing procedure.

II. SHARP PROCESSING

Fig. 1 shows the overall SHARP processing procedure.
A short-time Fourier transform (STFT) is performed using
a 50-ms Hamming window with a 10-ms frame shift.1

Magnitude-squared STFT outputs are used to obtain the power
P [m, l] at the mth frame and lth gammatone channel as in [6]
and [9]:

P [m, l] =

N/2∑
k=0

|Xe[m, k]Hl[k]|2, 0 ≤ l ≤ L− 1 (1)

where N and L denote the discrete-Fourier-transform size and
the number of gammatone channels, respectively. Xe[m, k] is
the signal spectrum at the mth frame and kth frequency bin,
and Hl[k] is the transfer function of the lth channel evaluated
at the kth frequency bin, in a gammatone filter bank whose
center frequencies are linearly spaced in equivalent rectangular
bandwidth (ERB) [10] between 200 Hz and 8 kHz.

The power P [m, l] is low-pass-filtered to obtain M [m, l] by

M [m, l] = λM [m− 1, l] + (1− λ)P [m, l] (2)

where λ denotes a forgetting factor. In SSF processing [6], [9],
the processed power is obtained by

P̃ [m, l] = max(P [m, l]−M [m, l], c0M [m, l]) (3)

where c0 is a small fixed coefficient to set the floor value.
Because M [m, l] is subtracted from P [m, l], P̃ [m, l] is essen-
tially a high-pass-filtered signal with suppression of slowly
varying components and a falling edge in its power contour.

As an illustrative example, Fig. 2 shows the power spectra of
clean and reverberated speech using SSF processing of (3). The
original power spectra without any processing are also shown.

1A longer-duration window is used because “medium-time” processing is
more effective for noise estimation or compensation [6], [9].

Fig. 2. Power spectra of clean and reverberated speech in gammatone chan-
nels processed using either no or SSF processing. The reverberation time
RT 60 used to generate the reverberated speech was 1.2 s. The values are
depicted in log scale. (a) Clean speech without any processing. (b) Reverberated
speech without any processing. (c) Clean speech with SSF processing.
(d) Reverberated speech with SSF processing.

Onset enhancement and steady-state suppression by SSF pro-
cessing reduced the difference between the processed powers
of clean and reverberated speech than that between the unpro-
cessed powers. However, the power contours of the processed
signals for clean and reverberated speech are still different
mainly in the boxes. The solid and dashed boxes represent
the power contours corresponding to voiced speech with high
power and unvoiced speech with powers concentrated in high-
frequency channels, respectively. In the solid boxes, the power
contours of reverberated voiced speech are more stretched than
those of clean voiced speech, even after SSF processing is
applied. On the other hand, useful features of the processed
powers for reverberated speech in the dashed box were signif-
icantly removed by subtracting the low-pass-filtered powers of
previous high-power voiced speech.

In applying (3), to avoid removing features that are useful
for ASR in unvoiced speech such as fricatives, we estimate the
probability that a frame corresponds to unvoiced speech with
powers concentrated in high-frequency channels by measuring
the channel power ratio, which is defined as the ratio of the
power in high-frequency channels to the total power, given by

ζc[m] =

∑L−1
l=lu

P̄ [m, l]∑L−1
l=0 P̄ [m, l]

(4)

where lu determines the lowest channel index in high-frequency
channels and P̄ [m, l] describes the spectral power P [m, l]
with the reverberated components removed. Specifically, we
calculate

P̄ [m, l] = max

(
P [m, l]− 1

αmax

αmax∑
α=1

P [m− α, l], εg

)
(5)

where εg sets the floor value for P̄ [m, l]. This subtraction is per-
formed because reverberated components that had high power
in previous frames affect the power in the current speech frame,
so the reverberated components need to be removed to allow
the successful detection of unvoiced speech frames. For a frame
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with a channel power ratio ζc[m], the subtraction amount in (3)
is reduced so as to retain useful features by

P̃ [m, l] = max(P [m, l]− (1− ccζc[m])M [m, l], c0M [m, l])
(6)

where cc is a coefficient to adjust the dynamic range of ζc[m].
Additionally, differences between the power contours of

processed signals for clean and reverberated voiced speech
should be reduced to further improve the speech recognition
performance. More aggressive suppression of reverberant com-
ponents than that used in SSF processing can be considered;
however, it may also remove many useful features, because it
is very hard to estimate accurately the reverberant components.
Therefore, instead of using aggressive suppression to obtain the
processed power contours similar to those of clean speech, we
boost the floor value in (6) to stretch the power contours along
the time axis. In particular, the main difference happens in the
reverberation of voiced speech with high power contours, and
the voiced speech is detected based on harmonics. The har-
monic power ratio, which is defined as the ratio of the power
in harmonic-frequency bins to the total power, is introduced
to measure a probability that a frame corresponds to voiced
speech. Harmonic-frequency bins are the bins that represent
integer multiples of the fundamental frequency.

Although many methods have been proposed to estimate the
fundamental frequency (e.g., [11]–[13]), this letter employs a
simple and effective autocorrelation-based method, in which
the estimated fundamental frequency at frame m, F̂ ′

0[m], is
obtained from the time-lag τ0[m] that corresponds to the maxi-
mum autocorrelation, expressed as

F̂ ′
0[m] =

Fs

τ0[m]
, (7)

τ0[m] = arg max
τ0,min<τ<τ0,max

N−1∑
k=0

X[m, k]X∗[m, k]ej2πkτ/N (8)

where Fs denotes the sampling frequency, and τ0,min =
round(Fs/400 Hz) and τ0,max = round(Fs/70 Hz) represent
the time-lags corresponding to the maximum and minimum
fundamental frequencies that normal speakers can utter, respec-
tively. In practice, the value of F̂ ′

0[m] is averaged over adjacent
frames to avoid abrupt changes as follows:

F̂0[m] =
1

2βmax + 1

βmax∑
β=−βmax

F̂ ′
0[m+ β]. (9)

To measure the harmonic power ratio for the current speech
frame while excluding reverberant components from speech
from previous frames, the power averaged over the previous
αmax frames is subtracted from the power at the current frame:

P̄ ′[m, k] = max

(
|X[m, k]|2 − 1

αmax

αmax∑
α=1

|X[m− α, k]|2, εf
)

(10)

where εf sets the floor value for P̄ ′[m, k]. Then, the harmonic
power ratio estimated at frame m can be computed using

ζ ′h[m] =

∑hmax

h=1 maxδ∈Δ P̄ ′[m,κ(m,h) + δ]∑N/2
k=0 P̄

′[m, k]
(11)

where κ(m,h) denotes the frequency-bin index corresponding
to the hth harmonic frequency of F̂0[m], which is obtained
using round(h · F̂0[m] ·N/Fs); hmax = floor(4 kHz/F̂0[m])
is the number of harmonic frequencies in the band up to 4 kHz,
which contains dominant harmonic components. Δ denotes the
set of integer frequency-bin offsets from −δmax to δmax used
to search harmonic components with inaccurate F̂0[m], where
δmax is set to round(70 Hz ·N/Fs). Similar to the estimation
of F̂0[m], ζ ′h[m] values are averaged over adjacent frames to
obtain the desired harmonic power ratio as follows:

ζh[m] =
1

2βmax + 1

βmax∑
β=−βmax

ζ ′h[m+ β]. (12)

For a frame with a ζh[m] value, the floor value is boosted up
to the lhth gammatone channel by

P̃ [m, l] = max(P [m, l]− (1− ccζc[m])M [m, l], csM [m, l])
(13)

where

cs =

{
max(chζh[m], c0), l ≤ lh,
c0, otherwise.

(14)

ch is a coefficient to adjust the dynamic range of ζh[m].
Using the spectral reshaping approach described in [6] and

[9], the channel weighting coefficient w[m, l] is computed using

w[m, l] =
P̃ [m, l]

P [m, l]
, 0 ≤ l ≤ L− 1. (15)

Then, the spectral weighting coefficient μ[m, k] is
obtained by

μ[m, k] =

∑L−1
l=0 w[m, l]|Hl[k]|∑L−1

l=0 |Hl[k]|
, 0 ≤ k ≤ N/2. (16)

Assuming that the processed spectrum has the same phase as
the original spectrum, the processed spectrum for the lower half
of the frequency region is obtained using

X̃e[m, k] = μ[m, k]Xe[m, k], 0 ≤ k ≤ N/2. (17)

After invoking the Hermitian symmetry of the processed
spectrum to obtain the remaining frequency components, the
enhanced speech x̃[n] is resynthesized using the inverse STFT
and the overlap-add method as in [6] and [9].

III. EXPERIMENTAL RESULTS

To evaluate SHARP processing as a preprocessing method
for ASR, we conducted recognition experiments using the Wall
Street Journal database and the Kaldi toolkit [14]. The recogni-
tion system was based on hidden Markov models (HMMs) with
observation distributions of fully continuous Gaussian mixture
models trained on 37 416 clean utterances (si284). The test
set consisted of 836 utterances (dev93 and eval92). Speech
recognition was based on the observed values of 13th-order
mel-frequency cepstral coefficients with corresponding delta
and acceleration coefficients. The cepstral coefficients were
obtained from 23 mel-frequency bands with a frame size of
25 ms and a frame shift of 10 ms. We also compared our results
using SHARP as described above to the improvements provided
by the fMLLR method [8].
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Fig. 3. Source and microphone positions to obtain reverberated speech as test
data. Left panel: configuration for simulated speech. The room is 3 m high, and
the source and microphones are 1.5 m above the floor. Right panel: configu-
ration for live-recorded speech. The room is 2.47 m high, and the source and
microphones are 1.3 m above the floor.

TABLE I
PARAMETER VALUES USED IN THE EXPERIMENTS

Fig. 4. Power spectra of clean and reverberated speech in gammatone chan-
nels processed using SHARP processing. The input clean and reverberated
speech signals were the same as in Fig. 2. The values are depicted in log
scale. (a) Clean speech with SHARP processing. (b) Reverberated speech with
SHARP processing.

Test data with reverberated speech were obtained by con-
volving clean test data with room impulse responses generated
by the image method (using the software package [15]), which
simulates acoustics between two points in a rectangular room
[16]. Fig. 3(a) depicts the configuration of the virtual room used
to simulate the acoustic filters, which is the same virtual room
configuration as in [9]. The reflection coefficient was selected
to obtain a designated reverberation time RT 60.

Table I summarizes the parameter values used in the experi-
ments. N , L, λ, and c0 were set as recommended in [6]. αmax

was set to compute averaged powers over a time period of
longer than 100 ms for appropriate smoothed power contours.
βmax was chosen to avoid abrupt changes, and εg and εf were
set to a small positive floor value. The values of lu, lh, cc, and
ch were optimized empirically in pilot experiments.

Fig. 4 displays the power spectra of clean and reverberated
speech using SHARP processing of (13). The input speech sig-
nals were the same as in Fig. 2. By subtracting the reduced
amounts of low-pass-filtered power based on the channel power
ratio and by boosting the floor value using the harmonic power
ratio, the difference between the processed powers of clean
and reverberated speech when using SHARP processing was
much smaller than when using SSF processing, especially in
the locations indicated by the two boxes.

Fig. 5. Word accuracies obtained from SHARP processing.

TABLE II
WORD ACCURACIES (%) OBTAINED FOR LIVE RM DATA

Fig. 5 describes word accuracies obtained using either no
processing, SSF processing, and SHARP processing. While
both the SSF and SHARP methods achieve significant per-
formance improvements in reverberant environments, SHARP
processing provides greater recognition accuracies than SSF
processing in highly reverberant environments and compara-
ble accuracies in less reverberant environments. We also note
that SHARP provides good results despite the use of a very
simple autocorrelation-based method to estimate the fundamen-
tal frequency using (7)–(9) that is prone to estimating doubled
or halved fundamental frequencies. While the use of fMLLR
alone is less effective in highly reverberant environments, it
does improve the performance of systems that already incorpo-
rate SHARP or SSF processing. The incorporation of fMLLR
diminishes but does not eliminate the advantage of SHARP over
SSF processing in highly reverberant environments. For envi-
ronments with small reverberation times, the best performance
is obtained with fMLLR alone. In general, the interaction of
SHARP and fMLLR is complementary, as SHARP + fMLLR
performs better than either alone on average.

To confirm the effectiveness of SHARP processing for real
data, we repeated recognition experiments using the DARPA
resource management (RM) database [17]. The acoustic models
were based on the same types of HMMs trained on 3990 sen-
tences from the original training set, and test data were obtained
by rerecording the 300 test sentences in a normal office room
using the configuration depicted in Fig. 3(b). Table II sum-
marizes word accuracies for the live-recorded data, which are
consistent with Fig. 5.

IV. CONCLUSION

In this letter, we present the SHARP preprocessing method,
which extends the earlier SSF algorithm and makes use of
stationary-component suppression using harmonics and the
power ratio to achieve robust speech recognition. The SHARP
method provides substantial improvements in recognition accu-
racy in highly reverberant environments compared to the earlier
SSF algorithm. The use of fMLLR in reverberant environments
is also beneficial but only if SHARP or SSF processing is also
included.
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