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Abstract

This paper discusses the relative impact that different stages
of a popular auditory model have on improving the accuracy
of automatic speech recognition in the presence of additive
noise. Recognition accuracy is measured using the CMU
SPHINX-III speech recognition system, and the DARPA
Resource Management speech corpus for training and testing.
It is shown that feature extraction based on auditory process-
ing provides better performance in the presence of additive
background noise than traditional MFCC processing and it is
argued that an expansive nonlinearity in the auditory model
contributes the most to noise robustness.

Index Terms: auditory modeling, robust speech recognition,
auditory analysis

1. Introduction
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In Sec. 2 we review some of the previous work that has
motivated our formulation and system implementation. The
extracted features are evaluated and a more detailed analysis
of the robustness contribution of each stage of the auditory
model is discussed in Sec 3. Finally in Sec. 4, we support our
assertion that the auditory nonlinearity is of paramount impor-
tance by applying it to a conventional log Mel spectrum.

2. Background

In general, to extract features from an incoming speech signal
for speech recognition, the incoming speech is segmented into
short time segments and these segments are analyzed to reveal
their frequency characteristics while preserving the time-
varying characteristics inherent in the signal.
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Although the conventional MFCC and PLP methods for
feature extraction function quite well when acoustical envi-
ronments for training and testing are matched, their perform-
ance degrades seriously when they are applied in noisy envi-
ronments especially when training and testing conditions are
mismatched. A number of feature extraction methods that are
motivated by results from auditory physiology have been
developed over the years, which have yielded systems that
outperform traditional approaches such as MFCC or PLP in
the presence of noise and other adverse conditions [5-9].

In this paper, we first describe the feature extraction
scheme used, which is based on an implementation of the
detailed model of the auditory periphery by Seneff [2]. We
then discuss the impact of each stage of the auditory model on
speech recognition accuracy. Similar analyses have been per-
formed in [5, 6]. Ohshima and Stern [5] considered only the
short-term adaptation, lowpass filter, and automatic gain con-
trol (AGC) stages, which are not critical in our analysis.
Tchorz and Kollmeier [6] concluded that the adaptive com-
pression stage of the auditory model (which corresponds to
the hair cell model of the Seneff model) is of the greatest
importance. We elaborate on this issue in the present paper.
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Figure 1 Block diagram of traditional MFCC processing (upper
panel) compared with the Seneff auditory-based speech processing
system (lower panel).

2.1. Feature extraction in the auditory periphery

Generally speaking, models of auditory-based feature extrac-
tion can be divided into two main stages. The first stage is the
model of the auditory periphery, for which we adopt the im-
plementation of Seneff [2] to deal with sound transformations
occurring in the early stages of the hearing process. The sec-
ond stage is a series of operations intended to convert the
auditory outputs into estimates of short-term average firing
rate, and subsequently into features that are like cepstral coef-
ficients. Fig. 1 summarizes this processing (lower panel) and
compares it to conventional MFCC processing (upper panel).
The Seneff auditory model is expanded in the block diagram
in Fig. 2.
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Figure 2 Detailed structure the Seneff auditory model.

2.1.1. Basilar Membrane

After amplitude adjustment such that the maximum amplitude
of the input signal normalized to 1, the speech signal is passed
through a Bark-scaled filter bank of 40 bandpass filters repre-
senting the frequency analysis by the basilar membrane in the
cochlea. The bandwidth of the filters is designed to mimic
human frequency resolution with relatively narrow-band fil-
ters in the low-frequency region and wider-band filters in the
high frequency region.

2.1.2. Hair Cell Model

Seneff’s hair cell model attempts to capture the electrochemi-
cal transformation from basilar membrane vibration, repre-
sented by the output of the filter bank, to the time-varying
neural firing rate of each fiber. It consists of several stages:
(a) halfwave rectification with a compressive nonlinearity, to
represent the inherently positive nature of the rate of spike
generation and the input-output relationships between ampli-
tude and spike rate, which is referred to here as the rate-level
function (b) short-term adaptation, which models certain as-
pects of the electrochemical spike generation process, (c) a
lowpass filter, which represents the loss of detailed timing
information at higher frequencies, and (d) a rapid automatic
gain control (AGC) which represents, among other attributes,
the limit on spike rate imposed by the inability to generate
spikes in short succession. The panels of Fig. 3 illustrate the
response of the system to a tone burst at 2000 Hz after the
initial bandpass filtering, after the initial rectification and
saturation, after the initial adaptation, and after the AGC,

respectively.
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Figure 3 Output of each intermediate stage in the Seneff inner hair
cell model in response to a 2-kHz input signal.

2.1.3. Discharge Rate Estimation

As observed from neural recordings in physiological experi-
ments, we could describe the sound representation in higher
stage of auditory system by the number of firings within a
short time interval in its response to sound stimuli, as it is
proportional to the loudness of the sound stimuli (e.g. [12]).
When the input stimulus is kept at an appropriate level to
avoid saturation in the auditory nerve fibers, the “firing pat-
tern” characterized by the number of firings could well pre-

1001

serve the frequency content and describe how sound is repre-
sented in higher stages of the auditory system in the human
brain. Since the outputs of the auditory model are measured in
spikes/second, we consider the discharge rate to be described
by the number of spikes within a certain time interval. We
integrated these outputs over a 20-ms frame because that du-
ration is widely used for automatic speech recognition:

A =fs,.(t)dt fori=12,..,N (1)
T

where N is the number of channels. For a speech frame at
time n, the corresponding feature coefficients are computed
by the DCT of the channel outputs as in MFCC processing to
reduce the dimension and obtain the final features.

3. Experimental Results

3.1. Performance compared with MFCC processing

The feature extraction scheme described above was applied to
the DARPA Resource Management (RM) database. This da-
tabase contains Naval queries with 1600 training utterances
and 600 testing utterances (72 speakers in the training set and
another 40 speakers in the testing set representing a variety of
American dialects). To evaluate the performance under noise,
white noise from NOISEX-92 was artificially added to the
testing set with energy adjusted according to a pre-specified
noise level (with SNRs of 0 dB, 5 dB, 10 dB, 15 dB, 20 dB).
We used CMU’s SPHINX-III speech recognition system.
Cepstral-like coefficients were obtained for the auditory
model by computing the DCT of the outputs of the estimator
of discharge rate in each frequency band, as in the lower panel
of Fig. 1. Seven such coefficients were obtained for each
frame in the auditory model, compared to thirteen cepstral
coefficients for traditional MFCC processing. Cepstral mean
normalization (CMN) was applied in both cases. A compari-
son of speech recognition accuracy obtained with the auditory
model (defined as 100% minus the word error rate (WER))
with the accuracy obtained using traditional MFCC process-
ing is shown in Fig. 4.

As can be seen from Fig. 4, speech recognition accuracy in
the presence of background noise is greater when the auditory
model is used than the accuracy obtained using traditional
MEFCC processing, especially around the 10-dB noise level
(around a 7 dB improvement over MFCC). While we have
previously obtained much better results using the
Zhang/Carney auditory model [8] [13], we use the Seneff
model at present because its structural simplicity facilitates
stage-by-stage analysis. Next, we consider feature extraction
at different stages of the auditory model output to determine
which component has the greatest impact on recognition accu-
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Figure 4 Comparison of the percentage recognition accuracy
(100% minus the word error rate) using features based on auditory
processing (diamonds) and MFCC processing (short lines) for the
DARPA Resource Management (RM) database.
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Figure 5 Features extracted from each stage of the auditory model.
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3.2. Significance of each stage of the auditory model

To understand why using auditory processing could give us
such improvement in the presence of noise, it is helpful to
evaluate the contribution of each of its stages. Since the audi-
tory model is fine tuned to the physiological data and each
stage depends on appropriate input from the previous stage,
taking out any stage is likely to cause the system to malfunc-
tion and its effect will be unable to be analyzed appropriately.
To analyze the effect of each stage while maintaining the
functionality of the auditory model, we compared the per-
formance of each of stage after the filter bank by integrating
its output over 20 ms as in Fig. 5. The sole exception is the
filter bank output which was obtained by calculating the
short-term energy of each bandpass filter output, taking the
log, and computing the DCT, in a fashion similar to that of
traditional MFCC processing. These results evaluated on the
RM database using the SPHINX-III speech recognition sys-
tem are shown in Fig. 6 and discussed in the following para-
graphs.

3.2.1. Effect of the rectification and nonlinearities

To evaluate the effect of the rate level function, we first com-
pare the recognition performance with features extracted be-
fore and after the half-wave rectification/saturating nonlinear-
ity stage. As can be seen from Fig. 6, extracting features di-
rectly from the outputs of the filter bank (circles) provides
performance that is quite similar to the result of MFCC proc-
essing (short lines). This result is somewhat expected as both
are based on similar concepts (the filter bank simulates the
frequency resolution of human ear while the log operation
simulates the loudness curve). On the other hand, if we com-
pare the result of features extracted from the outputs of the
rectification/saturating nonlinearity stage (crosses) with the
result of the filter bank outputs, the performance is much
improved under noisy condition while somewhat degraded
under clean speech.

As shown in Fig. 7, the rate level function functions as a
soft clipping mechanism, which limits both small and large
amplitudes of sound. Because small-amplitude sounds are
more easily affected by noise, this mechanism could help
reduce the noise degradation. For example, as shown in the
lower panel, which depicts the amplitude histogram of clean
speech in the training data, under certain noise levels, such as
—60 dB, speech signals with large amplitude such as —40 dB
will only be slightly affected by additive noise after compres-
sion. In contrast, speech signals with small amplitudes such as
—80 dB (close to the silence region), additive noise of —60 dB
is 10 times larger than clean speech and causes huge amount
of degradation after compression. Attenuating the waveform
during small-amplitude segments of sound can help reduce
the degradation caused by noise, but the resultant deliberate
signal distortion can degrade recognition accuracy for clean
speech.
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3.2.2. Effect of short term adaptation

As in the previous stages, we can assess the effect of short
term adaptation by comparing results obtained from features
derived from the outputs of the half wave rectifiers (crosses)
and the outputs of short term adaptation (triangles). These are
the inputs and outputs of the short-term adaptation stage of
the auditory model. The transient enhancement produced by
the short-term adaptation improves recognition accuracy only
slightly, as seen in Fig. 6. This finding is somewhat different
from the conclusions in [6] and [9]. Our implementation in-
cludes both integration (which is lowpass in nature with a
cutoff frequency around 50 Hz) and CMN (which is highpass,
removing the DC component). The net effect of these mod-
ules is that of a bandpass filter which emphasizes the low
frequencies that are most significant in modulation-spectrum
analyses. This may limit the potential benefit of short-term
adaptation, which is believed by at least some researchers
(e.g. [6], [9]) to have a similar effect on the incoming signal.

3.2.3. Effect of the lowpass filter

For the third step, we compare features directly from the
short-term adaptation stage output with features from the
outputs of the lowpass filters to examine the effect of the
lowpass filter stage in auditory model. As shown in Fig. 6
(triangles versus squares), the presence of the lowpass filter
has little effect on the results obtained. This is somewhat as
one would expect, as the feature extraction includes integra-
tion over the output, which could also be seen as a kind of
lowpass filtering. Since the cutoff frequency of the lowpass
filter stage (around 4 kHz) is much greater than the cutoff
frequency of integration (around 50 Hz for a 20-ms period),
the removal of the lowpass filter here will not have much
effect on performance.
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Figure 6 Comparison of recognition accuracy for the RM database
using features extracted from outputs of each stage of auditory model.
(See legend for details.)
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Figure 7 Upper panel: Rate level function (line) in the half wave
rectification stage compared with traditional log compression (dots).
Lower panel: magnitude (rms) histogram for clean speech.
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Figure 8 Comparison of recognition accuracy for the RM database obtained by applying the auditory rate-level nonlinearity directly to log Mel
spectral values (squares), with traditional MFCC processing (short line) and with whole auditory processing (diamonds).

3.2.4. Effect of AGC

Because the effect of the AGC is similar to that of short-term
adaptation (as can be seen in Fig. 3), recognition accuracy is
slightly improved for clean speech due to transient en-
hancement, compared to the results obtained directly from
the lowpass filter output before the final AGC stage (squares
and diamonds in Fig. 6).

4. Application of auditory nonlinearity
to log Mel spectral coefficients

We argued in Sec. 3.2.1 that the most important aspect of the
auditory model was the nonlinearity associated with the hair
cell model. To the extent that this is true, we should be able
to obtain a similar benefit by applying such nonlinearity to
conventional MFCC-like feature extraction. Toward this end
we interposed the logit function in the upper panel of Fig. 7
between the log of the triangularly-weighted frequency re-
sponse and the subsequent DCT operation in traditional
MEFCC processing. Results in Fig. 8 for speech in the pres-
ence of white noise, pink noise, and “buccaneer” noise from
the NOISEX-92 database show a similar improvement in
recognition accuracy seen in Fig. 6, corresponding to about
7-dB improvement around the 10-dB white noise level. In
other words, the benefit of the auditory nonlinearity can be
obtained without incurring the computational complexity
associated with other aspects of auditory modeling, at least
to some extent.

5. Conclusions

We have examined the relative effectiveness of the various
stages of the model of the auditory periphery proposed by
Seneff for improving the recognition accuracy of speech in
the presence of broadband noise. Detailed robustness contri-
butions from each stage of auditory model are also described
and discussed. Results obtained using the DARPA Resource
Management database with CMU’s SPHINX-III recognition
system indicate an improvement of about 7 dB for the Seneff
model for these maskers. We also found that the saturating
nonlinearity contributes the most to robustness at lower
SNRs while transient enhancement in the rapid AGC and
short term adaptation, on the other hand, enhance recogni-
tion accuracy only for clean speech. By applying the same
nonlinearity to the log Mel spectrum, one can achieve simi-
lar results with conventional MFCC processing.
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