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ABSTRACT

This paper describes ways of speeding up the optimization pro-
cess for learning physiologically-motivated components of a feature
computation module directly from data. During training, word lat-
tices generated by the speech decoder and conjugate gradient descent
were included to train the parameters of logistic functions in a fash-
ion that maximizes the a posteriori probability of the correct class in
the training data. These functions represent the rate-level nonlinear-
ities found in most mammalian auditory systems. Experiments con-
ducted using the CMU SPHINX-III system on the DARPA Resource
Management and Wall Street Journal tasks show that the use of dis-
criminative training to estimate the shape of the rate-level nonlin-
earity provides better recognition accuracy in the presence of back-
ground noise than traditional procedures which do not employ learn-
ing. More importantly, the inclusion of conjugate gradient descent
optimization and a word lattice to reduce the number of hypotheses
considered greatly increases the training speed, which makes train-
ing with much more complicated models possible.

Index Terms— automatic speech recognition, discriminative
training, auditory models, data analysis

1. INTRODUCTION

Our auditory system serves a wide range of tasks in our daily life.
One particular function of the auditory system which is of the most
importance is to encode and recognize the diversity of environmental
sounds – human speech, birds singing and even market noises. To
be able to accomplish this task, an essential property is the forma-
tion of loudness perception among different frequencies that form a
particular instance of sound input. While the mechanisms by which
the auditory system encodes the loudness of sound remain open to
debate (e.g. [1, 2]), one can argue that it has been tuned, at some
level, for better recognition of sounds, including human speech.

It is often hypothesized that the various features of human sound
perception, such as the frequency resolution of the cochlea [3], non-
linear compressive effects of the middle ear [4], simultaneous and
temporal masking effects [5] etc. aid or enhance human ability to
recognize speech, particularly in the presence of noise. Researchers
have therefore attempted to model many of these features in auto-
matic speech recognition systems as well, with varying degrees of
detail (e.g. [6, 7]).

In our previous work, we proposed a top-down process for robust
speech recognition [8] that optimizes a physiologically-motivated
feature computation procedure for recognition. But rather than us-
ing a continuous speech recognition system for the optimization, we
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built a simple phoneme/state classifier to avoid computational com-
plexity. While even this simple procedure was observed to result
in significant improvement in speech recognition accuracy obtained
with the optimized feature computation, it also raises the question
of the optimality of the representation. We were specifically con-
cerned with the extent to which our optimization procedure would
continue to produce improvements in recognition accuracy as the
speech recognition system became more complex as more and more
training data became available.

To address this problem, the tied states from an LVCSR system
are used for optimizing the parameters of the rate-level nonlinear-
ity using discriminative gradient descent procedures. The models in
turn are optimized for the features obtained using maximum likeli-
hood training. The two steps – model optimization for the features,
and feature optimization for the models continue iteratively. The
whole process, however, can become very computationally expen-
sive as the model complexity scales up with more and more training
data available. In order to overcome the computational complexity
problem, we investigate conjugate gradient descent and the use of a
reduced recognition lattice obtained from a decoder such that only
the derivatives over possible candidate states are considered for the
discriminative feature optimization.

The rest of this paper is organized as follows. In Sec. 2 we
describe the feature computation scheme we employ. In Sec. 3 we
describe the algorithm that learns the relevant parameters of the fea-
ture computation. In Sec. 4 we describe experiments conducted on
the DARPA Resource Management (RM) and Wall Street Journal
(WSJ) databases. Finally, we summarize our conclusions in Sec. 5.

2. FEATURE COMPUTATION WITH LOUDNESS
EQUALIZATION AND RATE-LEVEL NONLINEARITY

We parameterize speech signals using the feature computation
scheme proposed by Chiu and Stern [8, 9, 10]. The overall scheme is
shown in Fig.1. Each analysis frame of the incoming speech signal
is analyzed by a fast Fourier transform. Each frequency component
is then weighted by the frequency-dependent gain function derived
from an equal-loudness curve that characterizes a psychophysical
estimate of the loudness response of the auditory system [11]. The
resulting spectrum is reduced to a smaller number of Mel-spectral
values using conventional Mel-frequency weighting [6]. Each Mel-
spectral value is compressed logarithmically, and these compressed
Mel-spectral values are passed through a subsequent sigmoidal
nonlinearity that represents the physiologically-observed rate-level
nonlinearity. This nonlinearity is given by

xi[t] =
α[i]

1 + exp(w1[i]·yi[t] + w0[i])
(1)
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where yi[t] is the ith log Mel-spectral value and xi[t] is the cor-
responding sigmoid-compressed value of frame t. In [10] a set of
parameters of the nonlinearity were obtained by fitting to physio-
logical measurements followed by some subsequent manual refine-
ment. These estimated values were α[i] = 0.05; w0[i] = 0.613;
w1[i] = −0.521 for ∀i. The compressed values are then projected
down to a 13-dimensional cepstral vector by a conventional discrete
cosine transform (DCT).
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Fig. 1. Summary of feature computation scheme.

3. LEARNING THE NONLINEARITY

To combine the acoustic model training and feature extraction more
effectively, we make use of the Gaussian models from the speech
recognizer (SPHINX-III) to train the system. More specifically, the
acoustic models obtained from a traditional Baum-Welch training
procedure are used for estimating the nonlinearity parameters by us-
ing a gradient descent algorithm with a maximum-mutual informa-
tion (MMI) criterion. This is illustrated in Fig. 2.

The procedure for optimizing the nonlinearity is as follows. Let
µmC be the mean vector and σmC be the covariance matrix for
the mth Gaussian with weight wmC in the Gaussian mixture den-
sity of any sound class C. For our purposes, individual tied states
in the recognizer are considered to be sound classes. The likeli-
hood of any vector s as computed by the distribution for a par-
ticular sound class is assumed to be given by the density function

m wmCN(s|µmC , σmC).
The posterior probability of any sound class C given a specific

observation s is given by

P (C|s) =
P (s|C)P (C)

C′ P (s|C′)P (C′)
=

P (s|C)

C′ P (s|C′)

= m wmCN(s|µmC , σmC)

C′ m wmC′N(s|µmC′ , σmC′)
(2)

with the priors for each sound class P (C) assumed to be equal.
We assume that we have a collection of training data, and that for

each analysis frame of this data we know the identity of the correct
sound class. The parameters of the feature computation are initial-
ized with the values from [10]. Each recording from the training
data is parameterized using these initial values. Cepstral mean sub-
traction(CMS) is performed on every training recording in order to
remain consistent with the processing that is performed in a com-
plete speech recognition system.

Let su,t be the feature vector obtained for the tth analysis frame
of the utterance u, and let Cu,t be the sound class that the corre-
sponding segment of speech belongs to. The overall accumulated
posterior probability of the entire training data is given by

P =
u,t

m wmCu,tN(su,t|µmCu,t , σmCu,t)

C m wmCN(su,t|µmC , σmC)
(3)

The parameters of the of the sigmoidal nonlinearity in the feature
computation are now iteratively optimized to maximize log(P ).
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Fig. 2. The integrated system that refines the extracted features.

3.1. Estimating the sound-class distribution parameters

The model parameters {wC , µC , σC} for each sound class are ob-
tained using the same maximum likelihood criterion employed by
the speech recognizer after each gradient descent step.

3.2. Estimating the sigmoidal parameters

The parameters for the logistic function F= {α, w0, w1} are es-
timated to maximize log(P ) using the conjugate gradient descent
approach [12]. Taking the derivative of the objective function with
respect to F, the nonlinear parameters are updated as follows:

αnew = αold + 0.001step
∂logP
∂α

,

wnew
0 = wold

0 + step
∂logP
∂w0

,

wnew
1 = wold

1 + 0.2step
∂logP
∂w1

(4)

Note that the inverse of the Hessian matrix is approximated by the
weighting shown above such that the convergence rate for each indi-
vidual set of parameters is roughly the same. After each step, which
is performed on both the clean training data and noisy test data, the
model parameters are updated on a clean training set only. After
the objective function has converged only the nonlinear parameters
F={α, w0, w1} are retained for the feature extraction process, and
the model parameters are retrained using the Baum Welch algorithm,
using the clean training data.

The entire learning algorithm is summarized in Algorithm 1.
Here yu,t represents the log Mel-spectral vector corresponding to
the tth analysis window of the uth utterance, su,t is the feature vec-
tor computed from it, and Cu,t is the corresponding sound class.

3.3. Reducing computational complexity by using a word lattice

As mentioned earlier, a complete MMI solution, that compares each
“true” class label for all competing classes can become extremely
computationally expensive. More specifically, the amount of com-
putation for calculating derivatives for each set of parameters at each
iteration will be on the order of Θ(KLMN), where K is the number
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Input: F,{(yu,t, Cu,t), u = 1..U, t = 1..TU}
Output: F
r ← ∂logP

∂F1
s ← Mr where M is the weighting shown in Eq.42
d ← s3

δnew ← rT d4
while not converged do5

j ← 06
γ ← σ07
while j < jmax do8

Compute feature vector {s1,1, ..., sU,TU } using9
Eq.(1) and DCT with CMS
Estimate {wC , µC , σC} ∀C on clean training set10
Compute log(P ) using Eq.(3) on both clean and11
noisy training set
η ← [ ∂logP

∂F ]T d12
if j $= 0 then13

γ ← γ 0.5η
η′−η14

end
Fnew ← Fold + γd15
η′ ← η16
j ← j + 117

end
r ← ∂logP

∂F18
δold ← δnew19

δmid ← rT s20
s ← Mr where M is the weighting shown in Eq.421

δnew ← rT s22

β ← δnew−δmid
δold

23
if β ≤ 0 then24

d ← s25
else

d ← s + βd26
end

end
Algorithm 1: Algorithm for learning the parameters of the sig-
moidal nonlinearity where σ0 = 0.05 and jmax = 5.

of cepstral dimensions, L is the number of channels, M is the num-
ber of Gaussian mixtures, and N is the number of sound classes. As
the number of sound classes and Gaussian mixtures increases with
the complexity of the speech recognizer, the amount of computation
becomes too large for machines to handle. To overcome this prob-
lem, rather than using all sound classes as the denominator for the
MMI updates, we use word lattice as shown in Fig. 3 to include
only the sound classes that are determined to be “competitors” by
the decoder as the competing classes. The word lattices used in our
experiments were generated by running the SPHINX decoder on the
training data using the same initial acoustic model that had been used
for generating the forced alignment. Once obtained, these lattices re-
mained fixed throughout the optimization process.

4. EXPERIMENTAL RESULTS

Experiments were run on the RM and WSJ databases to evaluate the
proposed method. The SPHINX-III continuous-density HMM-based
system was used for all experiments. HMMs with 1000 tied states,
each modeled by a mixture of 8 Gaussians were trained for baseline
recognition experiments. The feature extraction employed a 40-filter

Fig. 3. Example of a word lattice to reduce the computational com-
plexity by including only decoder-identified candidates as the com-
peting classes.

Mel filter bank covering the frequency range 130 Hz – 6800 Hz.
Our rate-level sigmoidal nonlinearity was trained on both clean

and noise-corrupted speech, with the noisy data obtained by adding
pink noise from the NOISEX-92 database to clean training data at an
SNR of 10 dB. To evaluate the dependence of accuracy on model
complexity, 1000 and 2000 tied states for the RM database and 4000
tied states for the WSJ database were generated by forced-aligning
clean training data using previously-trained models as class labels.
The noisy testing sets were created by artificially adding babble
noise from NOISEX-92 and noises recorded live in market, theater,
and restaurant environments.

To avoid local optima, the optimization of the nonlinearity pa-
rameters with larger numbers of tied states was initialized using the
trained results from the 1000 tied-state case. Once the parameters of
the feature computation module were learned, the feature computa-
tion module was employed to derive features from a clean version of
the RM training set, from which the HMM model parameters were
retrained.

Recognition experiments were run on speech corrupted to var-
ious SNRs by a variety of noises. Results for the WSJ database
were obtained by training SPHINX-III with 4000 tied states, each
modeled by a mixture of 16 Gaussians, with the nonlinearity param-
eters learned from training using the RM database. Figures 4 and
5 describe the dependence of recognition accuracy on analysis type
and model complexity for the RM and WSJ corpora, respectively.
Recognition accuracy is defined (as usual) as 100% minus the con-
ventional word error rate including insertion, deletion, and substitu-
tion errors. These plots also include baseline accuracy using MFCC
coefficients (triangles), and the accuracy obtained using the fixed RL
nonlinearity derived as in [10] (squares). The latter processing also
employed equal-loudness weighting. We note that none of the noises
used in these experiments were used to train the rate-level nonlinear-
ity.

It can be seen by comparing the square to triangular symbols of
Figs. 4 and 5 that the use of the physiologically- and perceptually-
motivated equal-loudness weighting and baseline rate-level nonlin-
earity (without learning) greatly improve noise robustness. The use
of automatically-learned parameters (diamond and circular sym-
bols), however, provides further improvements in performance,
especially when the complexity of the model increases with the
increase of the number of tied states. While the results obtained
using multiple Gaussian mixtures are very close to the performance
obtained with single Gaussians, training with much more data or
with more complicated models is only possible with the lattice im-
plementation. The use of the hypothesis lattice as in Fig. 3 speeds
up the entire training process by a factor of about 2.5.

We also compared the convergence speed of the original gradient
descent approach with the conjugate gradient descent that we deploy
in the present paper. As shown in Fig. 6, conjugate gradient descent
provides a speed of convergence that is is much faster than before.
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Fig. 4. Comparison of recognition accuracy in the presence of four
types of background noise using the RM corpus. WER under clean:
MFCC: 9.45%, RL nonlinearity: 11.88%, RL nonlinearity from
learning with 1000 tied states and 1 Gaussian: 12.03%, 2 Gaussian:
11.97%, with 2000 tied states: 10.53%
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Fig. 5. Comparison of recognition accuracy in the presence of two
types of background noise on the WSJ corpus. WER under clean:
MFCC: 6.91%, RL nonlinearity: 7.66%, RL nonlinearity learned
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The major improvement in the speed of convergence seen in Fig.
6 comes from the use of conjugate gradient descent which reduces
the number of total iterations. This is enabled by two factors: first,
with conjugate gradient descent each search direction is linearly in-
dependent from its previous one [12]. In addition, with conjugate
gradient descent the step size of the search (η) is automatically de-
termined at each step to optimize the conversion speed while keeping
the optimization process stable. In this way, we not only approach
the maximum point (or at least a local maximum) more directly with-
out wasting effort, but we can also achieve convergence using larger
step sizes while maintaining a stable optimization process.

Another important component of the speedup is the use of the
lattice structure as described in Sec. 3.3 which reduces the process-
ing time per iteration by reducing the number of competing candi-
date hypotheses that need to be considered. In empirical compar-
isons of the processing time with and without the lattice represen-
tation we observed that the use of the word lattice reduces the pro-
cessing time for the gradient descent step of each iteration of the
optimization by a factor of approximately 2.5.

5. CONCLUSIONS

We have presented an algorithm for learning physiologically-
motivated components of feature extraction for optimal speech
recognition. In general we observe (as before) that the use of learn-
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Fig. 6. Comparison of convergence speed for original gradient de-
scent and conjugate gradient descent.

ing in feature extraction results in consistently improved speech
recognition over conventional feature computation without learning.
In the present paper we describe further improvements in processing
speed obtained through the use of conjugate gradient descent (which
reduces the number of iterations needed to achieve convergence)
and the use of a word lattice (which reduces the processing time per
iteration by reducing the number of candidate hypotheses). These
improvements enable training and evaluation on larger corpora with
more detailed acoustic models.
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