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ABSTRACT

In this paper we present a new method of signal processing for
robust speech recognition using multiple microphones. The
method, based on human binaural hearing, consists of passing the
speech signals detected by multiple microphones through band-
pass filtering and nonlinear rectification operations, and then
cross-correlating the outputs from each channel within each fre-
guency band. These operations provide an estimate of the energy
contained in the speech signal in each frequency band, and pro-
vides regjection of off-axis jamming noise sources. We demonstrate
that this method increases recognition accuracy for a multi-chan-
nel signal compared to equivalent processing of amonaural signal,
and compared to processing using simple delay-and-sum beam-
forming.

1. INTRODUCTION

The need for speech recognition systems and spoken language sys-
tems to be robust with respect to their acoustical environment has
become more widely appreciated in recent years. Results of sev-
era studies have demonstrated that even automatic speech recog-
nition systems that are designed to be speaker independent can
perform very poorly when they are tested using a different type of
microphone or acoustical environment from the one with which
they were trained, even in arelatively quiet office environment
(e.g. [1]). Applications such as speech recognition over telephones,
in automobiles, on afactory floor, or outdoors demand an even
greater degree of environmental robustness.

In recent years there has been increased interest in the application
of knowledge about signal processing in the human auditory sys-
tem to improve the performance of automatic speech recognition
systems (e.g. [2, 3, 4]). With some exceptions (e.g. [5, 6]), these
algorithms have been primarily concerned with signal processing
in the auditory periphery, typically at the level of individual fibers
of the auditory nerve. While the human binaural system is prima-
rily known for its ability to identify the locations of sound sources,
it can also significantly improve the intelligibility of sound, partic-
ularly in reverberant environments [7]. In this paper we describe
an agorithm that combines the outputs of multiple microphonesto
improve speech recognition accuracy. The form of this algorithm
is motivated by knowledge of the more central processing that
takes place in the human binaural system.

Since our algorithm processes the outputs of multiple micro-
phones, it should be evaluated in comparison with other micro-
phone-array approaches. Several types of array processing
strategies have been applied to speech recognition systems. The
simplest such system is the delay-and-sum beamformer (e.g. [8]).
In delay-and-sum systems, steering delays are applied at the out-
puts of the microphones to compensate for arrival time differences
between microphones to a desired signal, reinforcing the desired
signal over other signals present. This approach works reasonably
well, but arelatively large number of microphones is needed for
large processing gains. A second approach is to use an adaptive
algorithm based on minimizing mean square energy, such as the
Frost or the Griffiths-Jim algorithm [9]. These agorithms can pro-
vide nulls in the direction of undesired noise sources, as well as
greater sensitivity in the direction of the desired signal, but they
assume that the desired signal is statistically independent of all
sources of degradation. Consequently, they do not perform well in
environments when the distortion is at least in part a delayed ver-
sion of the desired speech signal as is the case in many typical
reverberant rooms (e.g. [10]). (This problem can be avoided by
only adapting during non-speech segments [11].)

The algorithm described in this paper is based on a third type of
processing, the cross-correlation-based processing in the human
binaural system. The human auditory system is a remarkably
robust recognition system for speech in a wide range of environ-
mental conditions, and other signal processing schemes have been
proposed that are based on human binaural hearing (e.g. [12]).
Nevertheless, most previous studies have used cross-correlation-
based processing to identify the direction of a desired sound
source, rather than to improve the quality of input for speech rec-
ognition (e.g. [14, 16]).

In Sec. 2 we briefly review some aspects of human binaural pro-
cessing, and we describe the new cross-correlation-based algo-
rithm in Sec. 3. In Sec. 4 we describe typical results from pilot
evaluations of the cross-correlation-based agorithm that demon-
strate the algorithm’s ability to preserve spectral contours. Finally,
we describe in Sec. 5 the results of a small number of experiments
that compare the speech recognition accuracy obtained with the
new cross-correlation-based algorithm on conventional delay-and-
sum beamforming.
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Figure 1. Upper panel: Block diagram of the transduction pro-
cess in the auditory periphery. The output represents the
response of a single fiber of the auditory nerve. Lower panel:
Schematic representation of the Jeffress place mechanism. The
blocks labelled AT indicate fixed timed delays in the signals.

2. CROSS-CORRELATION AND HUMAN
BINAURAL PROCESSING

As a crude approximation, the peripheral auditory system can be
characterized as abank of bandpass filters, followed by some non-
linear post-processing. To the extent that such an offhand charac-
terization is valid, we may further suggest that binaural interaction
can be characterized as the cross-correlation from ear to ear of the
outputs of peripheral channels with matching center frequencies
[13].

Figure 1 is a schematic diagram of a popular mechanism that can
accomplish the interaural cross-correlation operation in a physio-
logically-plausible fashion. This approach was originally proposed
by Jeffress [14] and later quantified by Colburn [15] and others.
The upper panel of Fig. 1 describes a functional model of audi-
tory-nerve activity. This auditory-nerve model consists of (1) a
bandpass filter to represent the frequency analysis performed by
the auditory periphery, (2) arectifier that represents nonlinearities
in the transduction process, (3) a lowpass filter that represents the
loss of synchrony of the auditory-nerve response to stimulus fine
structure above about 1500 Hz, and (4) a mechanism that gener-
ates sample functions of a non-homogeneous Poisson process with
an instantaneous rate that is proportional to the output of the recti-
fier.

The lower panel describes a network that performs temporal com-
parisons of the Poisson pulses arriving from peripheral auditory
nerve fibers of the same characteristic frequency (CF), one from
each ear, with successive delays of AT introduced along the path,
as shown. The blocks labelled CC record coincidences of neural
activity from the two ears (after the net delay incurred by the sig-
nals from the peripheral channels by the AT blocks). The response
of anumber of such units, plotted as a function of the net internal
interaural delay can be thought of as an approximation to theinter-
aural cross-correlation function of the sound impinging on the ear
after the bandpass filtering, rectification, and lowpass filtering is
performed by the auditory periphery. Figure 2 displays the relative
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Figure 2. The response of an ensemble of binaural fiber pairs to
a500-Hz pure tone (upper panel) and to bandpass noise centered
at 500 Hz (lower panel), each presented with a0.5-ms I TD.

amount of activity produced by an ensemble of coincidence-count-
ing units in response to two simple stimuli: a 500-Hz pure tone,
and bandpass noise centered at 500 Hz, each presented with a 0.5-
ms interaural time delay (ITD). The expected total number of
coincidences is plotted as a function of internal delay (along the
horizontal axis) and characteristic frequency (which is represented
by the oblique axis). The diminished response for net internal
delays greater than 1 ms in magnitude reflects the fact that only a
small number of coincidence-counting units are believed to exist
with those delays. In traditional binaural models, the location of
the ridge along the internal-delay axis is used to estimate the lat-
eral position or azimuth of a sound source. In this work we con-
sider the spectral profile along the ridge (for more complex speech
stimuli), and we specifically seek to determine the extent to which
the cross-correlation processing of the binaural system serves to
preserve the spectral contour along that ridge in difficult environ-
ments.

3. CROSS-CORRELATION-BASED
MULTI-MICROPHONE PROCESSING

The goal of our multi-microphone processing is to provide a sim-
plified computational realization of elements of the auditory sys-
tem and of binaural analysis, but with potentially more than two
sensors. In other words, we speculate what auditory processing
might be like if we had 4, 8, or more ears. Figure 3 is a ssimplified
block diagram of our multi-microphone correl ation-based process-
ing system. The input signals X, [n] arefirst delayed in order to

compensate for differences in the acoustical path length of the
desired speech signal to each microphone. (This is the same pro-
cessing performed by the conventional delay-and-sum beam-
former.) The signals from each microphone are passed through a
bank of bandpass filters with different center frequencies, passed
through nonlinear rectifiers, and the outputs of the rectifiers at
each frequency are correlated. (The correlator outputs correspond
to outputs of the coincidence counters at the internal delays of the
“ridges’ in Fig. 2.) Currently we use the 40-channél filterbank pro-
posed by Seneff [2], which was designed to approximate the fre-
quency selectivity of the auditory system. The shape of the
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Figure 3. Block diagram of multi-microphone cross-correlation-
based processing system.
rectifier has a significant effect on the results. We have examined
the response of two types of nonlinear rectifiers: the rectifier origi-
nally described by Seneff, which saturates in its response to high-
level stimuli, and afamily of rectifiers called half-wave power-law
rectifiers which produce zero output for negative signals and raise
positive signals to an integer power.

For two microphones, these operations correspond to the familiar
short-time cross-correlation operation for an arbitrary bandpass
channel with center frequency :

N—-1
EC = z yl[ns (oc]yZ[na (DC]
n=0

where Yi[n, o] isthe signal from the Kh microphone after

delay, bandpass filtering, and rectification, n isthe timeindex, and
N is the number of samples per analysis frame. For the general
case of K microphones, these operations produce

~ N—-1 K /K
Ec = { )y yiln o] IT yi[n, (DC]}Z
n=0 k=2

The factor of 2/K in the exponent enables the result to retain the
dimension of energy, regardless of the number of microphones.

The 40 “energy” values are then converted into 12 cepstral coeffi-
cients using the cosine transform. The 12 cepstral parameters and
an additional coefficient representing the power of the signal dur-
ing the analysis frame are used as phonetic features for the original
CMU SPHINX-I recognition system [17].
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Figure 4. Comparisons of output energies of a 2-channel cross-
correlation processor with delay-and-sum beamforming, using
artificial additive noise. The actual power ratio of the two tones
(without the noise) is 40 dB.

4. CROSS-CORRELATION PROCESSING
AND ROBUST SPECTRAL PROFILES

Comparisons using pairs of tones. We first evaluated the cross-
correlation algorithm by implementing a series of pilot experi-
ments with artificial stimuli. In the first experiment we examined
the spectral profile developed by two sine tones, one at 1 kHz and



one at 500 Hz, with an amplitude ratio of 40 dB. The two tones
were summed and corrupted by additive white Gaussian noise.
The summed tones were presented identically to each “sensor” of
the system (thus representing an “on-axis” signal), but the noise
was added with atime delay from sensor to sensor that simulates
the delay that is produced when the noise arrives at an oblique
angle to alinear microphone array. Each sensor output was then
passed through a pair of bandpass filters, one centered at 500 Hz
and one a 1 kHz. The signals at the outputs of the bandpass filters
were half-wave rectified, and the outputs from filters at corre-
sponding frequency bands from each sensor were cross-correlated
to extract an energy value for that frequency band. The ratio of
these outputs was calculated and plotted for peak-signal -to-addi-
tive-noise ratios (SNR) ranging from 0 dB to 30 dB.

The results of this experiment are depicted in the four panels of
Fig. 4, which display the power ratio of the outputs of the 500-Hz
and 1000-Hz processing bands, as a function of SNR. In all cases,
the ideal result would be the input power ratio of 40 dB, which is
indicated by the horizontal dotted lines. Data were obtained for
five values of sensor-to-sensor time delay (denoted “1TD”): 0.0,
0.25, 0.5, 0.75, and 1.0 ms. We compare results obtained using the
cross-correlation array post processing as described above with
processing in which the channels are summed prior to bandpass
filtering. This case is representative of delay-and-sum beamform-
ing, where the on-axis sine tone signal is reinforced relative to the
off-axis uncorrelated noise signal. It can be seen in Fig. 4 that 8
sensors provides a better approximation than 2 sensorsto the orig-
inal 40-dB ratio of energies in the two frequency channels. For a
given number of sensors, the cross-correlation algorithm performs
better than delay-and-sum beamforming. Finally, with the desired
signals presented simultaneously to the sensors, performance
improves (unsurprisingly) as the sensor-to-sensor ITD of the noise
isincreased.

Comparisons using a synthetic vowel sound. We subsequently
confirmed the validity of the algorithm by an analysis of adigi-
tized vowel segment /a/ corrupted by artificially-added white
Gaussian noise at global SNRs of 0 to +21 dB. The speech seg-
ment was presented to all microphone channels identically (to
simulate a desired signal arriving on axis) and the noise was pre-
sented with linearly increasing delays to the channels (again, to
simulate an off-axis corrupting signal impinging on alinear micro-
phone array). We simulated the processing of such a system using
2 and 8 microphone channels, and time delays for the masking
noise of 0 and 0. 125 ms to successive channels.

Figure 5 describes the effect of SNR, the number of processing
channels, and the delay of the noise on the spectral profiles of the
vowel segment. The frequency representation for the vowel seg-
ment is shown along the horizontal axis. (These responses are
warped in frequency according to the nonlinear spacing of the
auditory filters.) The SNR was varied from 0 to +21 dB in 3-dB
steps, as indicated. The upper panel summarizes the results that
are obtained using 2 channels with the noise presented with zero
delay from channel to channel (which would be the case if the
speech and noise signals arrive from the same direction). Note that
the shape of the vowel, which is clearly defined at high SNRs,
becomes almost indistinct at the lower SNRs. The center and
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lower panels show the results of processing with 2 and 8 micro-
phones, respectively, when the noise is presented with a delay of
125 us from channel to channel (which corresponds to a moder-
ately off-axis source location for typical microphone spacing). We
note that as the number of channels increases from 2 to 8, the
shape of the vowel segment in Figure 2 becomes much more
invariant to the amount of noise present. In general, we found in
our pilot experiments that the benefit to be expected from process-
ing increases sharply as the number of microphone channelsis
increased. We also observed (unsurprisingly) that the degree of
improvement increases as the simulated directional disparity
between the desired speech signal and the masker increases. We
conclude from these pilot experiments that the cross-correlation
method described can provide very good robustness to off-axis
additive noise. As the number of microphone channels increases,
the system isrobust to noise at smaller time delays between micro-
phones, so even undesired signals that are slightly off-axis can be
rejected.



5. EFFECTS OF CROSS-CORRELATION
PROCESSING ON SPEECH
RECOGNITION ACCURACY

Encouraged by the appearance of these spectral profiles with sim-
ulated input, we evaluated 1-, 2-, 4-, and 8-channel implementa-
tions of the algorithm in the context of an actual speech
recognition system. The CMU SPHINX-I speech recognizer [17]
was trained using speech recorded in an office environment using
the speaker-independent alphanumeric census database [1] with
the omnidirectional desktop Crown PZM6FS microphone. Identi-
cal samples of 1018 training utterances from this database from 74
speakers were presented to the inputs of the multi-microphone
system described in Figure 2. All speech was sampled at 16 kHz.
The frame size for analysis was 20 ms (320 samples) and frames
were analyzed every 10 ms.

5.1. Nonlinear Rectification

The goal of the first series of experiments using actual speech
input to the system was to determine the effect of rectifier shape
on speech recognition accuracy. A test database was collected
using a stereo pair of PZM6FS microphones placed under the
monitor of a NeXT workstation. The database consisted of 10
mal e speakers each uttering 14 al phanumeric census utterances
that were similar to those in the training data.

We compared the word errors obtained (tabulated according to the
standard ARPA metric) using a 2-channel implementation of the
cross-correlation algorithm and a “mono” implementation of the
same algorithm in which the same signal is input to the two chan-
nels. (The “mono” implementation enables us to assess the extent
to which the system can exploit differences between the signals
arriving at the two microphones.) We tested with half-wave power-
law rectifiers with various exponents, and with the rectifier pro-
posed by Seneff [9]. Figure 4 summarizes the results of these com-
parisons. Using the half-wave power-law rectifier with the positive

signal raised to the 2nd power (the “half-square” rectifier) provided
the lowest word error rate of the various half-wave power-law rec-
tifiers. The 2-channel cross-correlation algorithm provides a
slightly better error rate than conventional LPC signal processing,
and the recognition accuracy using this algorithm depends on the
shape of therectifier.

We hypothesize that the half-square rectifier provides the best
error rate becauseit is dightly expansive. The Seneff rectifier actu-
ally compresses the positive signals and limits dynamic range.
Using a power-law rectifier of too great a power starts to diminish
in performance as the dynamic range is expanded too greatly.
Using no rectifier at all provides poor performance because nega-
tive correlation values are produced. The half-wave square-law
rectifier was used for all subsequent experiments.
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Figure 6. Comparison of word error rates achieved with 2-micro-
phone processing using various half-wave rectifiers, and three
types of signal processing.

5.2. Number of Processing Channels

We describe in this section results obtained using a new set of
multiple-channel speech data. This testing database consisted of
utterances from the CMU alphanumeric censustask [1], and it was
collected in a much more difficult environment with significant
reverberation and additive noise sources. The ambient noise level
was approximately 60 dB SPL with linear frequency weighting.
Simultaneous speech samples from a single male speaker were
collected using an 8-element linear array of inexpensive noise-
cancelling pressure gradient electret condenser microphones,
spaced 7 cm from one another. For comparison purposes, each
utterance was also simultaneously recorded by a pair of omnidi-
rectional desktop Crown PZM6FS microphones, also spaced 7 cm
from one another, and the ARPA-standard Sennheiser HMD-414
close-talking microphone. The subject wore the closetalking
microphone and sat at a 1-meter distance from the other micro-
phones. The signals from the electret microphones were passed
through afilter with a response of —6 dB/octave between 125 Hz
and 2 kHz, and a gain of 24 dB, to compensate for the frequency
response of these microphones. By selecting a single element, the
middle two elements, or the middle four elements from the 8-ele-
ment array, arrays of 1, 2, 4, and 8 elements could easily be
obtained.

The training database for these experiments was from the original
census data, obtained with a PZM6FS microphone with very dif-
ferent acoustical ambience. In order to compensate partially for
differences between the training and environments, we normalized
each cepstral coefficient (except for the zeroth) on an utterance-
by-utterance basis by subtracting the mean of the values of that
coefficient across all frames of the utterance.

Figure 7 shows the word error rates obtained using cross-correla-
tion processing with 1, 2, 4, and 8 channels (microphones). The
performance of three different algorithms is compared: (1) the
original algorithm with auditory processing and the cross-correla-
tion analysis (asin Fig. 3), (2) auditory processing used in con-
junction with theinitial delay-and-sum beamforming only, and (3)
conventional LPC analysisin conjunction with simple delay-and-



sum beamforming. It is seen in each case that as more micro-
phones are used, the word error rate decreases. The cross-correla-
tion processing provides lower error rates for the 2- and 4-
microphone cases, but all 3 methods give roughly the same perfor-
mance for the 8-microphone case.
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Figure 7. Comparison of word error ratesfor 1, 2, 4, and 8-chan-
nel array processors using the electret microphones of the Flana-
gan array. The system was trained on speech using the PZM6FS
microphone. Three types of processing are compared: auditory-
based pre-processing using delay-and-sum beamforming and the
cross-correlation-based enhancement (boxes), auditory-based
pre-processing using delay-and-sum beamforming alone (trian-
gles), and LPC processing using delay-and-sum beamforming
aone.

6. SUMMARY

The new multi-channel cross-correlation-based processing algo-
rithm was found to preserve vowel spectrain the presence of addi-
tive noise and to provide greater recognition accuracy for the
SPHINX-1 speech recognition system compared to comparable
processing of single-channel signals, and compared to comparable
processing using delay-and-sum beamforming in the cases exam-
ined. We expect to observe further increases in recognition accu-
racy as further design refinements are introduced to the algorithm.
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