USING COMPUTATIONAL MODELS OF BINAURAL HEARING TO IMPROVE AUTOMATIC SPEECH RECOGNITION: Promise, Progress, and Problems

Richard Stern

Department of Electrical and Computer Engineering
and School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

Telephone: (412) 268-2535; FAX: (412) 268-3890
Email: rms@cs.cmu.edu; http://www.ece.cmu.edu/~rms

AFOSR Workshop on Computational Audition
August 9, 2002
Introduction - using binaural processing to improve speech recognition accuracy

- We’re doing better than I expected but there is still a lot to be done

- Talk outline
 - Briefly review some relevant binaural phenomena
 - Talk briefly about “classical” modeling approaches
 - Discuss some specific implementations of binaural processors that are particularly relevant to automatic speech recognition (ASR)
 - Comment a bit on results and future prospects
I’ll focus on …

- **Studies that**
 - are based on the binaural temporal representation and are
 - applied in a meaningful fashion to automatic speech recognition

- **Will not consider …**
 - Other types of multiple microphone processing
 - Fixed and adaptive beamforming
 - Noise cancellation using adaptive arrays
 - Applications to source localization and separation
 - Applications to hearing impaired
 - Other ASR application using other approaches (like sub-band coherence-based enhancement)
How can two (or more) ears help us?

- The binaural system can focus attention on a single speaker in a complex acoustic scene.
Another big binaural advantage …

- The binaural system can *suppress reflected components* of sound in a reverberant environment
Primary binaural phenomena

- Interaural time delays (ITDs)
- Interaural intensity differences (IIDs)
The classical model of binaural processing (Colburn and Durlach, 1978)
Jeffress’s model of ITD extraction (1948)
Response to a 500-Hz tone with –1500–s ITD
Response to 500-Hz noise with −1500-\(\mu\)s ITD
Other important binaural phenomena

- **Binaural “sluggishness”**
 - Temporal integration “blurs” effects of running time

- **Information from head-related transfer functions (HRTFs)**
 - Impetus for significant work in externalization and virtual environments
 - Also enables analysis of relationships between ITDs and IID

- **The precedence effect**
 - First-arriving wavefront has greatest impact on localization

- **Secondary “slipped-cycle” effects and “straightness weighting”**
 - Localization mechanisms also responsive to consistency over frequency
Some of the groups involved

- **Pittsburgh** - Stern, Sullivan, Palm, Raj, Seltzer et al.
- **Bochum** - Blauert, Lindemann, Gaik, Bodden et al.
- **Oldenburg** - Kollmeier, Peissig, Kleinschmidt, Schortz et al.
- **Dayton** - Anderson, DeSimio, Francis
- **Sheffield** - Green, Cooke, Brown, (and Ellis, Wang, Roman) et al.
Typical elements of binaural models for ASR

- **Peripheral processing**
 - HRTFs or explicit extraction of ITDs and IIDvs. frequency band

- **Model of auditory transduction**
 - Prosaic (BPF, rectification, nonlinear compression) or AIM

- **Interaural timing comparison**
 - Direct (cross-correlation, stereoausis, etc.) or enhanced for precedence (a la Lindemann)

- **Time-intensity interaction**
 - Use of interaural intensity information to reinforce/vitiate temporal information (e.g. Gaik, Peissig)

- **Possible restoration of “missing” features**

- **Feature extraction of enhanced display**

- **Decision making (Bayesian or using neural networks)**
Some (old) work from CMU: correlation-based ASR motivated by binaural hearing
The good news: vowel representations improved by correlation processing

- Reconstructed features of vowel /a/

Two inputs, zero delay
Two inputs, 120-μs delay
Eight inputs, 120-μs delay

But the bad news is that error rates in real environments go down only a small amount, with a lot more processing.
The Lindemann model to accomplish the precedence effect

Blauert cross-correlation

Lindemann inhibition
Sharpening effect of Lindemann inhibition

Comment: Also observe precedence phenomena (as expected) and a natural time-intensity trade.
Other techniques use by the Bochum group

- **Gaik**
 - Collected statistics of ITDs and IID of signals through HFTF filters
 - Used statistics to estimate joint pdf of ITD and IID, conditioned on source location

- **Bodden**
 - Detected source location and implemented source separation algorithm by differentially weighting different frequency bands

Comment: Oldenburg group has developed a similar model (that differs in many details), but without the Lindemann inhibition
Missing-feature recognition

- **General approach:**
 - Determine which cells of a spectrogram-like display are unreliable (or “missing”)
 - Ignore missing features or make best guess about their values based on data that are present
Original speech spectrogram
Spectrogram corrupted by white noise at SNR 15 dB

■ Some regions are affected far more than others
Ignoring regions in the spectrogram that are corrupted by noise

- All regions with SNR less than 0 dB deemed missing (dark blue)
- Recognition performed based on colored regions alone
Recognition accuracy using compensated cepstra, speech corrupted by white noise.

- Large improvements in recognition accuracy can be obtained by reconstruction of corrupted regions of noisy speech spectrograms.
- Knowledge of locations of “missing” features needed.

Graph showing accuracy (%) vs. SNR (dB) for different methods: Cluster Based Recon., Temporal Correlations, Spectral Subtraction, and Baseline.
Recognition accuracy using compensated cepstra, speech corrupted by music

- Recognition accuracy goes up from 7% to 69% at 0 dB with cluster based reconstruction.
Latest system from the Oldenburg group

- ** Peripheral processing:**
 - Gammatone filters
 - Envelope extraction, lowpass filtering
 - Nonlinear temporal adaptation
 - Lowpass filtering

- **Binaural processing:**
 - Direct running cross-correlation (no inhibition)
 - Learning of corresponding ITD, IID using a neural network
 - Feature extraction from representation in “look direction”
Sample results from the Oldenburg group (Kleinschmidt et al. 2001)

- **Anechoic environment:**

- **“Moderate” reverberation:**

- **Comment:** System performs worse in reverberation
Some systems developed by the Dayton group

- **Binaural Auditory Image Model (BAIM):**
 - HRTFs
 - Auditory image model (AIM)
 - Cross-correlation with and without Lindemann inhibition
 - ITD/IID comparison using Kohonen self-organizing feature map

- **Cocktail-party Processor (1995):**
 - HRTFs
 - Conventional peripheral processing with Kates model
 - Cross-correlation with Lindemann inhibition

[BAIM worked somewhat better for most conditions]
Some comments, kudos, and concerns …

- Be very skeptical with results obtained using artificially added signals and noise! Nevertheless some progress has definitely been made.
 - Digitally adding noise almost invariably inflates performance
 - Use of room image models to simulate reverberant room acoustics may be more reasonable

- Lots of information is being ignored in many current models
 - Synchrony info a la Seneff, Ghitza;
 - Complex timbre information as suggested by Lyon, Slaney?

- The Lindemann model may not be the best way to capture precedence

- Missing feature approaches should be very promising

- Too much computational modeling and not enough insight into fundamental processes
Summary

- Binaural processing has the ability (in principle) to improve speech recognition accuracy by providing spatial filtering and by combating the effects of room reverberation.

- Current systems are realizing some gains but are just now beginning to realize that promise.

- Faster and more efficient computation will be a real spur for research in this area over the next five years.