Feedback for Stabilization &
Control of a Two-Link Arm

Andrew Stein
Dave Ferguson

11/7/02

Stabilization via Feedback

e Given an autonomous system

(no external control), we have T = Ax
learned how to determine
Instability: Imag.

— Poles lie in the right half plane,
or, equivalently:

— Eigenvalues of A lie in the right
half plane 7 Real
e If Alis unstable, we can try to
stabilize this system via
feedback
— State feedback Unstable
region
— Output feedback

State Feedback Design

« If states are directly measurable, can create the following
system:

» © = Ax + Bu C r———

K |«

e Substituting u=KYx, this system is equivalent to:

i‘:éA—l—BKL:c
N
M

 If we choose K such that the real parts of the eigenvalues
of M are negative, we have stabilized the system. (This is
not always possible.)

State Feedback Example

. This A is unstable (just trust us!
© = Az + Bu (— 0 1 (§J 0 | 0
u=— Kz o o 1 o0 o
A = B =
0o 0 0 1 0
ﬂ 9 —1 4 3 1
Tt = (A+ BK)u = Mx K = [k ko ks ki
0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0
M = — ki ko ke k
0 0 0 1 o | K1 2 ko kil 0 0 0 1
2 —1 4 3 1 29—k, —1—ky 4—ky 3—k

We use the characteristic polynomial to find the eigenvalues of M:
detOA\[— M) =M — 3=k)N — (4 —k)N —(—1—k)A— (2 — k) =0

One possible stable M would have all eigenvalues = -1. That would yield:
A+ =AM+ 4X +6A7 +40+1 =0
Matching coefficients of ? and solving for the k;:
K=[3 3 10 7]

Output Feedback Design

Usually direct state measurements are not available. Then we must use the
output as feedback.

This involves using a closed-loop observer, which simulates the actual
system to generate the control, u:

U

i = Az + Bu = C i

A\ 4

vV Vv

YL 2 =A% + Bu+ H(j —y) C

=
NS

A\ 4

K <
The resulting system has the following state dynamics:

T \—HO A—I—BK—i—HC/ x
y
M

We need to choose K and H such that M will be stable. (Not always possible.)

There is a separation principle that allows us to find K and H separately for
the matrices A+BK and A+HC. (It decouples the problem.)

Control Example:
Two-link Robot Arm

« Kinetic Energy:

_ [az] B [—zisin(qi)q'i]
V; = . = .
Yi l;cos(q;)q;

K = gmy [[i]|* + gmova |

* Potential Energy: Notation:

P(q) = magl sin(q1) + mag(lasin(qr) + lasin(¢1 +¢2)) ¢ ;= Joint Angles
« ¢, = Joint [angular] velocities

e Lagrangian: « p =end effector coordinates
L=K-P * L, =Linklengths
d (or\ _ oL _ ’ . mi_: Lllnk masses
7 \ 90 57 e U, = Joint torques (controls)

e (g =gravity

Deriving Arm Dynamics

* D(q) is the mass matrix defined (via ugly trigonometry) such that:

K =2"D(q)q

» Using the Lagrangian, we can obtain the dynamics equation:

d (or\ oL _
m(a—q) 5 U

. —— \8L_8K_3P

%(%):D(q)qﬂLD(Q)Q 3¢ 9¢ O
A

oL

a—q:D(Q)q

D(q)q+ D(9)qg — %+ 5 = u
— ey

» Final form: ||D(q)q ~+ V(q, Q) + G(Q) — u”

Control Strategies

Joint Space Control

+
Pa | Inverse Y4 Controller || ROPOL LN
Kinematics _ Dynamics
T q

Non-unique!

Task Space Control

+ u
pd—> Controller > Robot p_»

Dynamics

q

Pest | Forward
Kinematics

In general, forward kinematics are “easier,” but possible singularities
can occur in the Task Space Controller box. So there is an inherent
tradeoff between the two approaches.

Classical [Linear] Joint Control

+ u
Py Inverse dq Controller ,| Robot _ | P
Kinematics _ Dynamics
q

« What's in the Controller box?
u=—K,(q—q1) — Ki(q— 4a) + q

* Problem: The nonlinearities of the system have not been
modeled in the controller. We therefore have no guarantee
of asymptotic tracking of desired trajectories.

 Answer: Use Nonlinear control methods (a bit nasty)

— Computed Torque Control
— Passivity Based Control

— Adaptive Passivity Based Control - here, we separate out the
parameters (e.g. masses, lengths) from the robot dynamics and “learn”

them as we go with an additional controller.

Demo — Linear Joint Control:

Tip position trajectory and final arm position (t==4)

\\\\\'l'l""" Ju L,
W

Seems good, but a closer look reveals non-decreasing error:

Joint angle a, absolute error |q - qu

0.08

0.06 ”\
0.04

- qdll

la,
L
r/_/_,_,_/_,_,—/—"

DS YA B VSV AY;
0 ﬂ
0 0.5 1 1.5 2 2.5 3 3.5 4
Joint angle a, abdolute error |q - qd|
0.05
0.04 f/
~90.03
(@p L T 4
20,02 //ﬁ/
0.01 —
0 —
0 0.5 1 1.5 2 2.5 3 3.5 4

t
Note that the arm was even started in exactly the right state!

Demo — Adaptive Nonlinear Joint
Control:

Tip position trajectory and final arm position

This is the kind of performance we want:

0.1

Joint angle g, absolute error |q - g |

~\/

0.08

Ve

AV
_0.02 /

|

\

TN

0
0 0.5 1.5 2 2.5 3 35
Joint angle absolute error |q -
15 gleq, lg-q_l
— 1
o
O
lC\I
2 0.5
0 \r\h e]
0 0.5 1.5

2 2.5 3 3.5
t

“Learning” via Adaptive Control

We see the correct mass for each link is “learned” over time:

(they were initialized at the incorrect values of 2 and 4, but converge to
the true masses 1 and 1.)

Mass estimates m_ (blue) and m, (red)

1

3 AN~ N~

x 5

N TP
3_5 R

0.5 1 1.5 2 2.5 3 3.5 4

o

