
Feedback for Stabilization &
Control of a Two-Link Arm

Andrew Stein
Dave Ferguson

11/7/02

Stabilization via Feedback

• Given an autonomous system
(no external control), we have
learned how to determine
instability:
– Poles lie in the right half plane,

or, equivalently:
– Eigenvalues of A lie in the right

half plane

• If A is unstable, we can try to
stabilize this system via
feedback
– State feedback
– Output feedback

xç = Ax

Imag.

Real

Unstable
region

State Feedback Design

• If states are directly measurable, can create the following
system:

• Substituting u=Kx, this system is equivalent to:

• If we choose K such that the real parts of the eigenvalues
of M are negative, we have stabilized the system. (This is
not always possible.)

K

xç = Ax +Buu yx

xç = (A + B K)x

M

C

State Feedback Example

xç = (A +BK)u = Mx

M =

0 1 0 0
0 0 1 0
0 0 0 1
2 à 1 4 3

2
64

3
75 à

0
0
0
1

2
64

3
75 k1 k2 k3 k4[] =

0 1 0 0
0 0 1 0
0 0 0 1

2 à k1 à 1 à k2 4 à k3 3 à k4

2
64

3
75

xç = Ax +Bu
u = àKx

A =

0 1 0 0
0 0 1 0
0 0 0 1
2 à 1 4 3

2
64

3
75 B =

0
0
0
1

2
64

3
75

K = k1 k2 k3 k4[]

det(õI àM) = õ4 à (3 à k4)õ3 à (4 à k3)õ2 à (à 1 à k2)õ à (2 à k1) = 0
We use the characteristic polynomial to find the eigenvalues of M:

One possible stable M would have all eigenvalues = -1. That would yield:

This A is unstable (just trust us!)

(õ + 1)4 = õ4 + 4õ3 + 6õ2 + 4õ + 1 = 0

Matching coefficients of ? and solving for the ki:

K = 3 3 10 7[]

Output Feedback Design
• Usually direct state measurements are not available. Then we must use the

output as feedback.
• This involves using a closed-loop observer, which simulates the actual

system to generate the control, u:

• The resulting system has the following state dynamics:

• We need to choose K and H such that M will be stable. (Not always possible.)
• There is a separation principle that allows us to find K and H separately for

the matrices A+BK and A+HC. (It decouples the problem.)

K

xêç = Axê +Bu +H(yê à y)

xç = Ax +Bu

xê
C

C

yê

y

u

xu

xç
xêç

ô õ
= A BK

à HC A + BK + HC

ô õ
x
xê

ô õ

M

Control Example:
Two-link Robot Arm

• Kinetic Energy:

• Potential Energy:

• Lagrangian:

L1

L2

q1

q2

u1

u2

Notation:
• qi = Joint Angles
• qi = Joint [angular] velocities
• p = end effector coordinates
• Li = Link lengths
• mi = Link masses
• ui = Joint torques (controls)
• g = gravity

à li sin(qi)qiç
li cos(qi)qiç

ô õ
vi =

xiç
yiç

ô õ
=

K = 2
1m1 v1k k2 + 2

1m2kv2k2

P(q) = m1gl1 sin(q1) +m2g(l2 sin(q1) + l2 sin(q1 + q2))

L = Kà P

dt
d

@qç
@L à

@q
@L = u

p

Deriving Arm Dynamics

dt
d

@qç
@L
ð ñ

à @q
@L = u

K = 2
1qçTD(q)qç

• D(q) is the mass matrix defined (via ugly trigonometry) such that:

@q
@L = @q

@K à
@q
@P

@qç
@L = D(q)qç

dt
d

@qç
@L
ð ñ

= D(q)q•+Dç (q)qç

D(q)q•+Dç (q)qç à @q
@K + @q

@P = u

D(q)q•+ V(q; qç) +G(q) = u• Final form:

• Using the Lagrangian, we can obtain the dynamics equation:

Control Strategies

• In general, forward kinematics are “easier,” but possible singularities
can occur in the Task Space Controller box. So there is an inherent
tradeoff between the two approaches.

• Joint Space Control

• Task Space Control

Inverse
Kinematics Controller

Robot
Dynamics

pd qd u p

q

+
-

Forward
Kinematics

Controller
Robot
Dynamics

pd u p

q

+
-

pest

Non-unique!

Classical [Linear] Joint Control

• What’s in the Controller box?

• Problem: The nonlinearities of the system have not been
modeled in the controller. We therefore have no guarantee
of asymptotic tracking of desired trajectories.

• Answer: Use Nonlinear control methods (a bit nasty)
– Computed Torque Control
– Passivity Based Control
– Adaptive Passivity Based Control - here, we separate out the

parameters (e.g. masses, lengths) from the robot dynamics and “learn”
them as we go with an additional controller.

Inverse
Kinematics Controller

Robot
Dynamics

pd qd u p

q

+
-

u = àKp(q à qd)àKd(qç à qçd) + q•d

Demo – Linear Joint Control:

-5 0 5
-2

-1

0

1

2

3

4

5
Tip position trajectory and final arm position (t==4)

Seems good, but a closer look reveals non-decreasing error:

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.02

0.04

0.06

0.08

Joint angle q
1
 absolute error |q - q

d
|

t

|q
1 -

q d1
|

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.01

0.02

0.03

0.04

0.05

Joint angle q
2
 absolute error |q - q

d
|

t

|q
2 -

q d2
|

Note that the arm was even started in exactly the right state!

-5 0 5
-2

-1

0

1

2

3

4

5
Tip position trajectory and final arm position

Demo – Adaptive Nonlinear Joint
Control:

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.02

0.04

0.06

0.08

0.1
Joint angle q

1
 absolute error |q - q

d
|

|q
1 -

 q
d1

|

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5
Joint angle q

2
 absolute error |q - q

d
|

t

|q
2 -

 q
d2

|

This is the kind of performance we want:

We see the correct mass for each link is “learned” over time:
(they were initialized at the incorrect values of 2 and 4, but converge to

the true masses 1 and 1.)

“Learning” via Adaptive Control

0 0.5 1 1.5 2 2.5 3 3.5 4

0 0.5 1 1.5 2 2.5 3 3.5 4

-5

0

5

Mass estimates m
1
 (blue) and m

2
 (red)

t

E
st

. M
as

s
(k

g
)

