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Stabilization via Feedback

• Given an autonomous system 
(no external control), we have 
learned how to determine 
instability:
– Poles lie in the right half plane, 

or, equivalently:
– Eigenvalues of A lie in the right 

half plane 

• If A is unstable, we can try to 
stabilize this system via 
feedback
– State feedback
– Output feedback
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State Feedback Design

• If states are directly measurable, can create the following 
system:

• Substituting u=Kx, this system is equivalent to:

• If we choose K such that the real parts of the eigenvalues
of M are negative, we have stabilized the system. (This is 
not always possible.)
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State Feedback Example

xç = (A +BK)u = Mx
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K = k1 k2 k3 k4[ ]

det(õI àM) = õ4 à (3 à k4)õ3 à (4 à k3)õ2 à (à 1 à k2)õ à (2 à k1) = 0
We use the characteristic polynomial to find the eigenvalues of M:

One possible stable M would have all eigenvalues = -1.  That would yield:

This A is unstable (just trust us!)

(õ + 1)4 = õ4 + 4õ3 + 6õ2 + 4õ + 1 = 0

Matching coefficients of ? and solving for the ki:

K = 3 3 10 7[ ]



Output Feedback Design
• Usually direct state measurements are not available.  Then we must use the 

output as feedback.
• This involves using a closed-loop observer, which simulates the actual 

system to generate the control, u:

• The resulting system has the following state dynamics:

• We need to choose K and H such that M will be stable. (Not always possible.)
• There is a separation principle that allows us to find K and H separately for 

the matrices A+BK and A+HC. (It decouples the problem.)
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Control Example: 
Two-link Robot Arm

• Kinetic Energy:

• Potential Energy:

• Lagrangian:

L1

L2

q1

q2

u1

u2

Notation:
• qi = Joint Angles
• qi = Joint [angular] velocities
• p = end effector coordinates
• Li = Link lengths
• mi = Link masses
• ui = Joint torques (controls)
• g = gravity

à li sin(qi)qiç
li cos(qi)qiç

ô õ
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xiç
yiç

ô õ
=

K = 2
1m1 v1k k2 + 2

1m2kv2k2

P(q) = m1gl1 sin(q1) +m2g(l2 sin(q1) + l2 sin(q1 + q2))
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Deriving Arm Dynamics

dt
d

@qç
@L
ð ñ

à @q
@L = u

K = 2
1qçTD(q)qç

• D(q) is the mass matrix defined (via ugly trigonometry) such that:

@q
@L = @q

@K à
@q
@P

@qç
@L = D(q)qç

dt
d

@qç
@L
ð ñ

= D(q)q•+Dç (q)qç

D(q)q•+Dç (q)qç à @q
@K + @q

@P = u

D(q)q•+ V(q; qç ) +G(q) = u• Final form:

• Using the Lagrangian, we can obtain the dynamics equation:



Control Strategies

• In general, forward kinematics are “easier,” but possible singularities 
can occur in the Task Space Controller box.  So there is an inherent 
tradeoff between the two approaches.

• Joint Space Control

• Task Space Control

Inverse 
Kinematics Controller

Robot 
Dynamics

pd qd u p

q

+
-

Forward 
Kinematics

Controller
Robot 
Dynamics

pd u p

q

+
-

pest

Non-unique!



Classical [Linear] Joint Control

• What’s in the Controller box?

• Problem: The nonlinearities of the system have not been 
modeled in the controller.   We therefore have no guarantee 
of asymptotic tracking of desired trajectories.

• Answer: Use Nonlinear control methods (a bit nasty)
– Computed Torque Control
– Passivity Based Control
– Adaptive Passivity Based Control  - here, we separate out the 

parameters (e.g. masses, lengths) from the robot dynamics and “learn” 
them as we go with an additional controller.

Inverse 
Kinematics Controller

Robot 
Dynamics

pd qd u p

q

+
-

u = àKp(q à qd)àKd(qç à qçd) + q•d



Demo – Linear Joint Control:
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Tip position trajectory and final arm position (t==4)



Seems good, but a closer look reveals non-decreasing error:
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Note that the arm was even started in exactly the right state!
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Tip position trajectory and final arm position

Demo – Adaptive Nonlinear Joint 
Control:
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This is the kind of performance we want:



We see the correct mass for each link is “learned” over time:
(they were initialized at the incorrect values of 2 and 4, but converge to 

the true masses 1 and 1.)

“Learning” via Adaptive Control 
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