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1. The optimal control problem: Modeling dynamic Systems

2. Introduction to Laplace Transforms for systems of differential equations

3. Solving linear systems of first order ODE’s

4. Stability criteria



Modeling Dynamic Systems: Schematic

parameters, P

controls, u

disturbances, w

Dynamic Process Observation Process

noise, n

observations, z

dynamic states, x

process outputs, y



Modeling Dynamic Systems: Equations

Dynamics Equation:

ẋ t f x t u t w t p t t

Output Equation:

y t h x t u t w t p t t

Observation Equation:

z t j y t n t t



Sanity Check: Roadmap for Generating a Trajector y

This is a straightforward framework, but we do have 10 different vector quantities
floating around!

To Generate a Trajector y in State Space:

1. Fix a control function u t , a disturbance function w t , and a parameter
function p t .

2. Fix initial conditions x t0 .

3. Plug these functions into the differential equation for ẋ t and solve
(somehow) for x t .

Note that while we write u t as a function of time, it might actually be a function
of the current state.



Higher Order ODEs Systems of First Order ODEs

An example will be the easiest way to demonstrate this. Consider the differential
equation

...
x c1ẍ c2ẋ bu

and perform the variables substitution

x x1 x2 x3
T x ẋ ẍ

and now we can write the differential equation as a system of first order
equations:
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ẋ
ẍ
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c3x3 c2x2 c1x1 bu
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ẋ
0 1 0
0 0 1
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0
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Or

ẋ Fx Gu



The Laplace Transf orm

Given a function f : in the time domain, the Laplace transform
produces a function F : in the frequency domain:

f t f s F s
∞

0
f t e stdt

We will be able to use this to reduce the solution of certain differential equations
to algebraic manipulations by first transforming the problem into the frequency
domain, manipulating the problem, and then applying the inverse Laplace
transform to get a time-domain solution.



It’s Like Multiplication with Logs

To find a b we can convert to logarithms:

t lna lnb ln a b

and now “solve” in the log domain by performing the addition, and then convert
back to a solution by performing the inverse operation:

a b et elna
�

lnb



Laplace Transf orm on Deriv atives

Using integration by parts with u e st and dv f t dt, we see that

f t
∞

0
f t e stdt

e st f t
∞
0

∞

0
f t se st dt

f 0 s
∞

0
f t e st dt

f 0 s f t

We are assuming for some s, e st f t 0 as t ∞.



More about the Laplace Transf orm

We can express the Laplace transform of a f t as a simple function of f t .
This is the main point.

Another important fact: the Laplace transform is a linear operator

a f x bg x a f x b g x

a f s bg s



Impor tant Laplace Transf orm

1 1
s L eat 1

s a

t 1
s2 L sin at a

s2 a2

f n t sn f t
n

∑
i 1

sn 1 f n i 0



Laplace Transf orm of Vector Equations

Note that when we apply the Laplace transform to a vector or matrix, we are just
applying it element-wise. For example, let

A
a b
c d

and x t
x1 t
x2 t

Then,

Ax t
ax1 t bx2 t
cx1 t dx2 t

a x1 t b x2 t
c x1 t d x2 t

A x t

where we have used the fact that is a linear operator.



Laplace Transf orm of Linear Dynamics

If we have linear dynamics, we have the system of differential equations:

ẋ t Fx t Gu t Lw t

Taking the Laplace transform of both sides gives:

sx s x 0 Fx s Gu s Lw s

and we can solve for x s as

x s sIn F 1 x 0 Gu s Lw s



The Inverse Laplace Transf orm

We have now found x s , but we want a time-domain solution. This requires
applying the inverse Laplace operator,

1 f s
1

2π j

σ �
j∞

σ j∞
x s estds

where we assume s σ jω (In control literature, j 1).

Rather than doing this integration directly, usually one can expand x s
via partial fractions and then use lookup-tables for the necessary inverse
transforms.



Definition: Static Equilibrium and Quasistatic Equilibrium

For fixed controls u and disturbances w , a point x is a static equilibrium if

0 f x u w

that is, if the state is not changing.

The point is a quasistatic equilibrium point if some state variables are fixed
at zero, and other variables are not.



System Dynamics

Recall that we had determined that

x s sIn F 1 x 0 Gu s Lw s

and so if the initial-conditions response (no disturbances and no controls) is
given by

x s sIn F 1x 0 Ax 0

The inverse Laplace transform, 1 , will be applied element-wise to the vector
Ax 0 to determine our time-domain initial-conditions response x t . What form
will this function take?



Modes of Motion

sIn F 1 Adj sIn F
sIn F

Thus, the entries

ai j
k s β1 s β2 s βn

s λ1 s λ2 s λn

and so

x j s a j1x1 0 a jn s xn 0

will be a ratio of two polynomials.



What does this give us?

1. We can apply partial fractions and express x j s as the sum of ratios of low
degree polynomials. These polynomials have inverse Laplace transforms
that are either exponentials, sine or cosine. These define the “modes of
motion” of the system.

2. If we examine the role the λi’s play in the resulting equation, it becomes clear
that if all λi 0 the system will be stable.

3. But the λi’s are really just the Eigenvalues of F



What’s Next?

1. Bode diagrams

2. Transfer Functions

3. Root Locus techniques


