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‘ Historical perspective | I

Bellman’s Equation
Richard Bellman (1957)

J*=r+ (PJ".
Computes the value of each state J(s).
Describes ng equations with ns unknowns (ns = states).
Model must be known.

This formulation is for MDPs only.

Intractable for more than a few tens of states.



Historical perspective |l I

Policy Iteration
Bellman (1957) and Howard (1960)

Finds a solution to the Bellman equation via dynamic programming.
Practical for much larger state spaces.
Related method: value iteration.

Function approximation for RL in use by 1965 (Waltz and Fu 1965).



‘ Historical perspective |l I

Simulated Methods
e Do not require the environment model. They learn from experience.
e Q| ear ni ng (Watkin's 1989).

e Eligibility traces: TD( \) (Sutton 1988).



Historical perspective IVI

Exact POM DP methods
Astrom (1965), Sondik (1971)

e Re-introduces the environment model.
e Modified Bellman equation computes the value of belief states.
e At least PSpace-complete so approximate methods are needed.

Controlling POMDPs sans model, with infinite state and action spaces, is
about as general as it gets.



Failings of current methods I

The drawbacks of current approximate POMDP methods include:
e Assumption of a model of the environment.
e Only recalling events finitely far into the past.

e Use of an independent internal state model that does not aim to
maximise the long term reward.

e Do not easily generalize to continuous observations and actions.

e Applications to toy problems only:.
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‘Why we need internal state for POMDPs I

Memoryless controllers are not optimal in partially observable

environments:
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(Peshkin, Meuleau, Kaebling 1999)
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|-state updates I

w(b=0|a,a,y=0) =0.6

b=

w(b=2la,a,y=0) =0.3

Figure 1: Stochastic I-state transition function.
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Policy gradient methods I

Algorithms for of estimating the gradient of n = lim E

T— o0

1 T
O
] ] L t=1 ]
with respect to the parameters of the policy.

True gradient is Vy = 7' VP[I — P + en']~r, where P is the MDP
state transition matrix for the current policy.

Learns the policy directly, i.e. no value functions.

Works for POMDP environments if observations are belief states or if
|-state 1S used.

Variance in the gradient estimates is a problem.

REI NFORCE (Williams 1992). GPOVDP (Baxter & Bartlett 1999).
Hybrids: VAPS (Baird & Moore 1999).
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‘Simulation based policy gradient: GPC]VDPI

Baxter & Bartlett (1999)

If P and v are not available we can approximate the gradient by
Introducing a discount factor .

GPOVDP estimates the gradient from a single sampled environment
trajectory, generating gradient contributions at each step.

Provided =5 > 7, and T is sufficiently large, then the GOVDP
estimate V/;n IS good.

Unlike REI NFORCE, GPOVDP does not require the identification of
recurrent states.

Computes the gradients for w(b|a, a,y) and u(u|6,b, y)
Independently.
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Policy graph learnt for the Load/Unload problem.
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Related work I

Use HMMs to learn a model (Chrisman 1992).

Recurrent Neural Networks (Lin & Mitchell 1992).

Differentiable approx. to piecewise function (Parr & Russell 1995).
U- Tr ee’s: Dynamic finite history windows (McCallum 1996).
External memory setting actions (Peshkin, Meuleau, Kaebling 1999).
Grad ascent on | OHMM\b used as stochastic FSCs (Shelton 2001).

Evolutionary approaches (Kwee 2001), (Glickman 2001).
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Failings of policy gradient with |-state I

1. GPOVDP has a large variance as 3 — 1.

2. |-states increase the mixing time of the overall system.
e Importance Sampling (Glynn 1996), (Shelton 2001);
e replace p with an MDP alg. that works on the I-states;
e eligibility trace filtering to incorporate prior knowledge;
o deterministic u(wu¢|bii1, ys, ar).

3. Sensible initial FSC transition probabilities result in very small
gradients!
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Zero gradient regions for FSCs I

Theorem 1. If we choose 6 and « such that w(b|a, a,y) = w(b|a, y) Va
and u(u|0,b,y) = p(uld,y) Vb then Ven = [0].

e Applies to all FSC policy gradient approaches.

e The gradient degrades smoothly as the conditions are approached.
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Avoiding zero gradient regions'

00— Key idea: sparse finite state controllers.

wb=1a,a,y=1) = 0.5@

w(b=2la,a,y=0) =0.3

<,u(b:2|oz,a,,y:1):020*~~

Figure 2: Sparse stochastic I-state transition function.
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Heaven-Hell problem description I

X r=-1 r=1 \/ \/ r=1 r=—1 X

= =

Figure 3: Discrete Heaven-Hell problem. Agent must visit lower state to
determine which way to move at the top of the T (Thrun 2000), (Geffner &
Bonet 1998).
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A better approach to FSCs using GPOMDP I

We currently sample environment trajectories and I-states.
We know w, the stochastic I-state transition function.

Maintains a belief over I-states and computes expected action
probabilities over the I-states.

Computes the gradient estimate by taking the expectation over all
possible I-state trajectories up to time 7.

Resembles | OHVMtraining (Bengio 1995).

Works for continuous tasks.
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‘The true gradient'

Recall the equation for the true gradient:

Vn=n'VP[I — P+ en']"r.
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Model-based ﬁv\n I

N
T / n
Vn—]\}gnoow Z%VPP r
N —
~ 7'V P ZP" r = Vnn.
n=0

e Worst case complexity O(n2n,n,ng).
e Load/Unload
-~ N=6 = £(VNn—Vn)<5°
- N=13 = A(Vyn—Vn) < 1°.

e Robot nav ns = 208 x 4, n, = 896, n, = 28, n, = 4:
P,Vu,Vw < 1s, m = 127s, P19 = 220s, VP = 138s.
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‘ Load/Unload time to convergence I

Algorithm time (secs)
known model 2.5
GPOMDP 28
GPOMDP sparse 13
GPOMDP sparse-exp 12
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Robot navigation I

Cassandra (1998)

e Noisy observations and actions.

[l =l [~
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‘ Robot navigation results I

Algorithm n x 1072 comment

sans |-state 1.37 model based gradient
GPOMDP sparse 2.32 20 |-states, connectivity=2
GPOMDP sparse-exp 2.20 7

belief GPOMDP 3.19 | 3 layer ANN, y = belief state
MDP 5.23 fully observable
Noiseless MDP 5.88 theoretical
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Key Conclusions I

00— 1tis possible to perform a search for the optimal policy graph
directly.

O— RL algorithms can be extended with I-states to perform this
search.

O—m A tough problem has been solved, using the sparse
Initialization trick to avoid the problem of low initial gradients.

0—v We can take expectations over |-state trajectories instead of
sampling them.
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Future Work.

Larger problems from the literature.
Speech processing.
Bounds on policy error introduced by too few I-states.

Automatic selection of ny.
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