Gradient Ascent on POMDP Policy Graphs

Douglas Aberdeen Research School of Information Science and Engineering Australian National University

Jonathan Baxter

WhizBang! Labs

September 6, 2001

CMU-RL Talk, September 6, 2001

- Motivation
- Gradient ascent of stochastic finite state controllers
- Simulation based policy gradient
- Related Work
- Pitfalls of gradient ascent on FSCs
- The Heaven-Hell problem
- A better approach: expectations over I-state trajectories
- Model based policy gradient
- Experiments

A POMDP

Historical perspective I

Bellman's Equation Richard Bellman (1957)

$$\mathbf{J}^* = \mathbf{r} + \beta \mathbf{P} \mathbf{J}^*.$$

- Computes the value of each state J(s).
- Describes n_s equations with n_s unknowns (n_s = states).
- Model must be known.
- This formulation is for MDPs only.
- Intractable for more than a few tens of states.

Historical perspective II

Policy Iteration

Bellman (1957) and Howard (1960)

- Finds a solution to the Bellman equation via dynamic programming.
- Practical for much larger state spaces.
- Related method: value iteration.
- Function approximation for RL in use by 1965 (Waltz and Fu 1965).

Historical perspective III

Simulated Methods

- Do not require the environment model. They learn from experience.
- Q-learning (Watkin's 1989).
- Eligibility traces: $TD(\lambda)$ (Sutton 1988).

Historical perspective IV

Exact POMDP methods

Aström (1965), Sondik (1971)

- Re-introduces the environment model.
- Modified Bellman equation computes the value of *belief* states.
- At least PSpace-complete so approximate methods are needed.

Controlling POMDPs sans model, with infinite state and action spaces, is about as general as it gets.

Failings of current methods

The drawbacks of current approximate POMDP methods include:

- Assumption of a model of the environment.
- Only recalling events finitely far into the past.
- Use of an independent internal state model that does not aim to maximise the long term reward.
- Do not easily generalize to continuous observations and actions.
- Applications to toy problems only.

- Motivation
- Gradient ascent of stochastic finite state controllers
- Simulation based policy gradient
- Related Work
- Pitfalls of gradient ascent on FSCs
- The Heaven-Hell problem
- A better approach: expectations over I-state trajectories
- Model based policy gradient
- Experiments

Why we need internal state for POMDPs

Memoryless controllers are not optimal in partially observable environments:

(Peshkin, Meuleau, Kaebling 1999)

I-state updates

Figure 1: Stochastic I-state transition function.

Policy gradient methods

- Algorithms for of estimating the gradient of $\eta = \lim_{T \to \infty} \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^{T} r_t \right]$ with respect to the parameters of the policy.
- True gradient is $\nabla \eta = \pi' \nabla P[I P + e\pi']^{-1}r$, where P is the MDP state transition matrix for the current policy.
- Learns the policy directly, i.e. no value functions.
- Works for POMDP environments if observations are belief states or if I-state is used.
- Variance in the gradient estimates is a problem.
- REINFORCE (Williams 1992). GPOMDP (Baxter & Bartlett 1999).
 Hybrids: VAPS (Baird & Moore 1999).

- Motivation
- Gradient ascent of stochastic finite state controllers
- Simulation based policy gradient
- Related Work
- Pitfalls of gradient ascent on FSCs
- The Heaven-Hell problem
- A better approach: expectations over I-state trajectories
- Model based policy gradient
- Experiments

Simulation based policy gradient: GPOMDP

Baxter & Bartlett (1999)

- If P and ν are not available we can approximate the gradient by introducing a discount factor β .
- GPOMDP estimates the gradient from a single sampled environment trajectory, generating gradient contributions at each step.
- Provided $\frac{1}{1-\beta} > \tau$, and T is sufficiently large, then the GOMDP estimate $\widehat{\nabla_T \eta}$ is good.
- Unlike REINFORCE, GPOMDP does not require the identification of recurrent states.
- Computes the gradients for $\omega(b|\alpha,a,y)$ and $\mu(u|\theta,b,y)$ independently.

Policy graph learnt for the Load/Unload problem.

- Motivation
- Gradient ascent of stochastic finite state controllers
- Simulation based policy gradient
- Related Work
- Pitfalls of gradient ascent on FSCs
- The Heaven-Hell problem
- A better approach: expectations over I-state trajectories
- Model based policy gradient
- Experiments

Related work

- Use HMMs to learn a model (Chrisman 1992).
- Recurrent Neural Networks (Lin & Mitchell 1992).
- Differentiable approx. to piecewise function (Parr & Russell 1995).
- U-Tree's: Dynamic finite history windows (McCallum 1996).
- External memory setting actions (Peshkin, Meuleau, Kaebling 1999).
- Grad ascent on IOHMMs used as stochastic FSCs (Shelton 2001).
- Evolutionary approaches (Kwee 2001), (Glickman 2001).

- Motivation
- Gradient ascent of stochastic finite state controllers
- Simulation based policy gradient
- Related Work
- Pitfalls of gradient ascent on FSCs
- The Heaven-Hell problem
- A better approach: expectations over I-state trajectories
- Model based policy gradient
- Experiments

Failings of policy gradient with I-state

- 1. GPOMDP has a large variance as $\beta \to 1$.
- 2. I-states increase the mixing time of the overall system.
 - Importance Sampling (Glynn 1996), (Shelton 2001);
 - replace μ with an MDP alg. that works on the I-states;
 - eligibility trace filtering to incorporate prior knowledge;
 - deterministic $\mu(u_t|b_{t+1},y_t,a_t)$.
- 3. Sensible initial FSC transition probabilities result in very small gradients!

Zero gradient regions for FSCs

Theorem 1. If we choose θ and α such that $\omega(b|\alpha, a, y) = \omega(b|\alpha, y) \, \forall a$ and $\mu(u|\theta, b, y) = \mu(u|\theta, y) \, \forall b$ then $\nabla^{\alpha} \eta = [0]$.

- Applies to all FSC policy gradient approaches.
- The gradient degrades smoothly as the conditions are approached.

Avoiding zero gradient regions

0— Key idea: *sparse finite state controllers*.

Figure 2: Sparse stochastic I-state transition function.

Heaven-Hell problem description

Figure 3: Discrete Heaven-Hell problem. Agent must visit lower state to determine which way to move at the top of the T (Thrun 2000), (Geffner & Bonet 1998).

Outline

- Motivation
- Gradient ascent of stochastic finite state controllers
- Simulation based policy gradient
- Related Work
- Pitfalls of gradient ascent on FSCs
- The Heaven-Hell problem
- A better approach: expectations over I-state trajectories
- Model based policy gradient
- Experiments

A better approach to FSCs using GPOMDP

- We currently sample environment trajectories and I-states.
- We know ω , the stochastic I-state transition function.
- Maintains a *belief* over I-states and computes expected action probabilities over the I-states.
- Computes the gradient estimate by taking the expectation over *all* possible *I-state trajectories up to time T*.
- Resembles IOHMM training (Bengio 1995).
- Works for continuous tasks.

Outline

- Motivation
- Gradient ascent of stochastic finite state controllers
- Simulation based policy gradient
- Related Work
- Pitfalls of gradient ascent on FSCs
- The Heaven-Hell problem
- A better approach: expectations over I-state trajectories
- Model based policy gradient
- Experiments

The true gradient

Recall the equation for the true gradient:

$$\nabla \eta = \pi' \nabla P [I - P + e\pi']^{-1} r.$$

Model-based $\widehat{ abla_N\eta}$

$$abla \eta = \lim_{N \to \infty} \pi' \left[\sum_{n=0}^{N} \nabla P P^n \right] r$$

$$\simeq \pi' \nabla P \left[\sum_{n=0}^{N} P^n \right] r = \widehat{\nabla_N \eta}.$$

- Worst case complexity $O(n_s^2 n_p n_o n_a)$.
- Load/Unload

$$-N=6 \implies \angle(\widehat{\nabla_N \eta} - \nabla \eta) < 5^\circ;$$

$$-N = 13 \implies \angle(\widehat{\nabla_N \eta} - \nabla \eta) < 1^{\circ}.$$

• Robot nav $n_s = 208 \times 4$, $n_p = 896$, $n_o = 28$, $n_a = 4$: $P, \nabla \mu, \nabla \omega < 1s$, $\pi = 127s$, $P^{100} = 220s$, $\nabla P = 138s$.

Outline

- Motivation
- Gradient ascent of stochastic finite state controllers
- Simulation based policy gradient
- Related Work
- Pitfalls of gradient ascent on FSCs
- The Heaven-Hell problem
- A better approach: expectations over I-state trajectories
- Model based policy gradient
- Experiments

Load/Unload time to convergence

Algorithm	time (secs)
known model	2.5
GPOMDP	28
GPOMDP sparse	13
GPOMDP sparse-exp	12

Robot navigation

Cassandra (1998)

• Noisy observations and actions.

Robot navigation results

Algorithm	$\eta \times 10^{-2}$	comment
sans I-state	1.37	model based gradient
GPOMDP sparse	2.32	20 I-states, connectivity=2
GPOMDP sparse-exp	2.20	>>
belief GPOMDP	3.19	3 layer ANN, $y =$ belief state
MDP	5.23	fully observable
Noiseless MDP	5.88	theoretical

Key Conclusions

- 1 It is possible to perform a search for the optimal policy graph directly.
- O TRL algorithms can be extended with I-states to perform this search.
- O III A tough problem has been solved, using the sparse initialization trick to avoid the problem of low initial gradients.
- **O** TV We can take expectations over I-state trajectories instead of sampling them.

Future Work

- Larger problems from the literature.
- Speech processing.
- Bounds on policy error introduced by too few I-states.
- Automatic selection of n_b .

Acknowledgments

- Drew Bagnell, Malcolm Strens
- Sebastian Thrun

Questions?

http://csl.anu.edu.au/~daa/research.html

mailto:douglas.aberdeen@anu.edu.au

So long and thanks for all the pizza!