Explainable Recommendations
Rose Catherine Kanjirathinkal

November 2017

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:

Prof. William W. Cohen, Chair, Carnegie Mellon University
Prof. Maxine Eskenazi, Carnegie Mellon University
Prof. Ruslan Salakhutdinov, Carnegie Mellon University
Prof. Jure Leskovec, Stanford University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2017 Rose Catherine Kanjirathinkal

Thesis Proposal

Abstract

We believe that Personalized Recommender Systems should not only produce good
recommendations that suit the taste of each user but also provide an explanation that
shows why each recommendation would be interesting or useful to the user, to be more
effective. Explanations may serve many different purposes. They can show how the sys-
tem works (transparency) or help users make an informed choice (effectiveness). They
may be evaluated on whether they convince the user to make a purchase (persuasiveness)
or whether they help the user make a decision quickly (efficiency). In general, providing
an explanation has been shown to build user’s trust in the recommender system [51].

Most often, the type of explanation that can be generated is constrained by the type
of the model. In this thesis, we focus on generating recommendations and explanations
using knowledge graphs as well as neural networks.

Knowledge graphs (KG) show how the content associated with users and items are
interlinked to each other. Using KGs have been shown to improve recommender accu-
racies in the past. In the first part of this thesis, we show how recommendation accuracy
can be improved using a logic programming approach on KGs. Additionally, we propose
how explanations could be produced in such a setting by jointly ranking KG entities and
items.

KGs however operate in the domain of discrete entities, and are therefore limited in
their ability to deal with natural language content. Free form text such as reviews are a
good source of information about both the user as well as the item. In the second part
of this thesis, we shift our focus to neural models that are more amenable to natural
language inputs, and we show how a teacher-student like architecture could be used
to transform latent representations of user and item into that of their joint review to
improve recommendation performance. We also show how such a framework could be
used to select / predict a candidate review that would be most similar to the joint review.
Such a review could possibly serve as an explanation of why the user would potentially
like the item.

Different users are interested in different aspects of the same item. Therefore, most
times, it is impossible to find a single review that would reflect all the interests of a
user. A succinct explanation shown to a user for an item is ideally a personalized sum-
mary of all relevant reviews for that item. In the final part of this thesis, we propose a
neural model that can generate a personalized abstractive summary as explanation and
describe how such a model could be evaluated.

Thesis Proposal

iv

Contents

(1__Introduction|
2 Completed Work: Rating Prediction using Knowledge Graphs|
[2.1 Background and Concepts: Knowledge Graphs|
[2.2 Related Work: Knowledge Graphs for Recommendation|
22.1 HeteRec_p|
R3 _Method . - . - o oo
[2.3.1 Recommendation as Personalized PageRank|
[2.3.2 Learning to Recommend using ProPPR|
[2.3.3 Approach 2: TypeSim|.
[2.3.4 Approach 3: GraphLF
(24 Experimentsand Results| o oL
AT Datasets
[2.42 Experimental Setup|.
[2.4.3 Performance Comparisonon Yelp|
[2.4.4 Performance Comparison on IMI0OK|
[2.4.5 Effect of Dataset Density on Performance|.
2.5 Contributions|
[3 Ongoing Work: Entity based Explanations using Knowledge Graphs|
[3.1 Related Work: Knowledge Graphs for Explanation|
(3.2 Explanation Method|.
(3.3 Real World Deployment and Evaluation|
3.4 Contributions|
[4 Completed Work: Rating Prediction from Reviews using TransNets|
[4.1 Related Work: Recommendation using Reviews|
4.1.1 Non-Neural Modelsl
412 Neural NetModels|
[4.1.3 Comparison to Related Architectures and Tasks|
42 TheTransNet Methodl
[4.2.1 CNNstoprocesstext|.
[4.2.2 The DeepCoNNmodell.
[4.2.3 Limitations of DeepCoNN|.

O 0 0 N O\ U

@3

@32

Evaluation Procedure and Settings|

4323

Competitive Baselines| 0 L.

434

[5 Preliminary Work: User Review Prediction using TransNets|

[6 Proposed Work: User Review Generation|

6.1

Related Work: Explanation using Reviews|

6.1.2

Extractive / Non-Neural Models for personalized explanations|

6.1.3

Abstractive / Neural Models for personalized explanations|

6.1.4

Comparison to Related Tasks|

6.2

Paradigms and Models for Improving Review Generation|

6.2.4

GAN styletraining]

6.3

Proposed Work]

631

Models to be compared|.

6.3.4

vi

35

39
40
40

41
41
42
42
42
43
43
43
43
45
46
47
47

49

Chapter 1

Introduction

Personalized Recommendation Systems are an important aspect of e-commerce and are becoming
increasingly prevalent in all aspects of our daily lives. They have become ubiquitous in a number of
domains. Personalized services enable users to quickly find anything, be it a shopping item, movie,
news or restaurants, that best suits their tastes, from the countless choices.

Personalized Recommendation Systems have garnered much attention over the past two decades
and continue to be an important topic of research. Although predicting a user’s rating for an item
has been one of the main research goals, past research on recommender systems have also focused
on a variety of other aspects of the system. For example, recommendations for a user in a particular
context like geo-location, time or day, persons accompanying them, and mood, is very different those
made outside of that context. Similarly, in certain applications, recommendation for a session is a
research sub-area in itself because a session usually corresponds to a particular user intent. Interac-
tive recommender systems that modify their recommendations in an online fashion as they consume
user’s feedback may use considerably different algorithms from mainstream systems. In addition to
these, the domain of the application also calls for specialized algorithms. For example, video and
music recommendations make use of features extracted from the data which are unavailable in other
domains to improve their performance.

Although producing good recommendations is the primary goal, it is also desirable that such
systems provide an explanation accompanying the recommendation. Explanations may serve one or
more purposes [115]. Below are some of the important ones:

1. Transparency: Explanations that describe how a recommendation was chosen makes the sys-
tem transparent to the user. Although many users may not care about the internal workings
of a reccommender system, transparency is a desirable property when the system shows non
obvious recommendations.

2. Trust: Explanations that aim to increase users’ confidence in the system fall into this category.
An example is when the system reveals that it is not very confident that the user would like the
recommendation, showing that the system is open and honest.

3. Persuasiveness: This is different from the other categories because the goal is to persuade the
user to act on the recommendation for the benefit of the system. For example, the recommen-
dations provided by an online shopping website may be optimized to increase their revenues
and need not necessarily provide the best choices for the user.

4. Effectiveness: The goal of such explanations is to enable users to make good decisions by help-
ing them understand why they would like or dislike a particular recommendation.

5. Efficiency: Such explanations help users make a decision quicker. Many of such explanations
are usually structured as a comparison between competing items.

6. Satisfaction: Studies have shown that explanations could also increase the perceived satisfac-

tion of the users with the recommender system.

If employed wisely, an explanation could contribute substantially to the acceptance and success
of a recommender system [38] [115]. Therefore, there is a renewed interest in research concerning
the generation of good explanations.

The focus of this thesis is on generating explanations together with high quality recommenda-
tions that are personalized to each user, and which will enable them to make an informed decision
about the item. The approaches for explanation discussed in this proposal are most in line with ‘Ef-
fectiveness’ in the above list of purposes of providing explanations. Therefore, our approaches strive
to also explain why a user may ‘dislike’ an item. i.e. they are not limited to finding only positives.
Unless stated otherwise, both the recommendations as well as the explanations are personalized.

Our underlying hypothesis is that to be able to generate good recommendations and to effectively
explain them, we need to model users’ personal interests and show how these interests are reflected
in the recommended product or item. Most often, the type of explanation that can be generated
is constrained by the type of the underlying recommendation model. In this thesis, we focus on
generating recommendations and explanations using knowledge graphs as well as neural networks.

Knowledge graphs (KG) show how the content associated with users and items are interlinked
to each other. Using KGs have been shown to improve recommender accuracies in the past. In the
first approach discussed in this proposal, we model the interests as entities that are interlinked via a
knowledge graph. Items to be recommended are ranked using a random walk based approach in a
logic programming framework (Chapter[2). The system generates explanations by jointly ranking the
entities with the items (Chapter . This work was published in the 10** and 11** ACM Conferences
on Recommender Systems (RecSys ‘16 & ‘17).

KG based methods have many limitations. For example, links between different entities are not
always known. This is usually the case when deploying the system in a new domain. i.e. a KG is
not always available. Also, since KGs are constructed using discrete entities, they are limited in their
ability in dealing with natural language content such as user reviews. In many applications, user
reviews are available. These free form text describe the user’s experience with the item and are a
good source of information about both the user as well as the item. However, KG based approaches
make use only of the entities, and the context and sentiment in the surrounding text is overlooked.

In the second approach discussed in this proposal, we use neural models to leverage reviews writ-
ten by users. The set of reviews written by a user represents his or her interests, as a latent vector
space. Similarly, reviews written for an item are used to learn its overall representation. Items to
be recommended are scored using a neural regression model (Chapter [4). This model generates a
latent representation not of the entities, but of the user’s predicted review. Therefore, the explana-
tion provided is via the most similar review written for the item (Chapter [5) where the similarity is
judged as the proximity in the latent space. This work was published in the 11* ACM Conference
on Recommender Systems (RecSys “17).

The main difficulty in evaluating explanations is the absence of gold standard data. While there

exists many datasets containing the user feedback on the actual recommendation itself, the same is
not true when it comes to the explanations. In the last part of this proposal, we hypothesize that the
ideal explanation given to a user for a particular item is their own review that they would have written
after experiencing the item. Proposed work discussed in this proposal are approaches for generating
the text corresponding to the latent representation obtained by the neural model of Chapters|4{and
Ideas toward this end are proposed in Chapter|[6] In that chapter, we also propose various quanti-
tative and qualitative measurements to judge the effectiveness of the generated text along different
dimensions.

This thesis proposal is organized as follows: Chapters[2|and 3| detail techniques to improve rec-
ommendation accuracy and generate explanations using Knowledge Graphs. This is followed by
Chapters 4| and |5 that discuss techniques for the same goals, but using neural networks. In Chap-
ter[6} we propose the remaining work and a timeline for its completion. Prior work relevant to the
research reported in this proposal is presented in the corresponding chapters.

Thesis Proposal

Chapter 2

Completed Work: Rating Prediction using
Knowledge Graphs

In this chapter, we show how Knowledge Graphs can be leveraged to improve personalized recom-
mendations, using a general-purpose probabilistic logic system called ProPPR[126]. We formulate
the problem as a probabilistic inference and learning task, and present three approaches for making
recommendations. Our formulations build on a path-ranking approach called Heterec_p proposed
in [142]. We show that a number of engineering choices, such as the choice of specific metapaths and
length of metapaths, can be eliminated in our formalism, and that the formalism allows one to easily
explore variants of the metapath approach. This work was published in the 10" ACM Conference
on Recommender Systems (RecSys ‘16) [19].

2.1 Background and Concepts: Knowledge Graphs

In this thesis proposal, we use the term entity as a generic term to denote a word or a phrase that
can be mapped onto a knowledge base or an ontology. Since the knowledge bases used in this pro-
posal are based on structured data, the mapping is straightforward. However, when using a generic
knowledge base like Wikipedieﬂ Yago [109] or NELL [85], one might require a wikifier or an entity
linker [68]. Entities are typically generated from the content associated with the users and items.
For users, these are typically their demographics. For items like movies, these may include the ac-
tors, genre, directors, country of release, etc. and for items like restaurants, these may include the
location, cuisine, formal vs. casual, etc.

A Knowledge Graph (KG) is a graph constructed by representing each item, entity and user as
nodes, and linking those nodes that interact with each other via edges. A related terminology used in
literature is the Heterogenous Information Network (HIN), which is essentially a KG but with typed
entities and links, and where there is more than one type of entity (heterogenous). Otherwise, the
network becomes homogenous. A HIN is in contrast to prior works that use graphs or networks of
only one type of nodes, like say, a friend network. A KG, as referred to in this proposal, is therefore a
relaxed version of a HIN where the types of entities and links may or may not be known. We assume
that the nodes are typically heterogenous even if their type information is missing. If the types are

thttps://enwikipedia.org

unknown, then only some methods are applicable. However, if the knowledge graph is indeed an
HIN, then all three methods apply.

Users Bob Alice Kumar
) ?
Movies Bridge of
- z Spies
sielilidl & The Terminal 7
List 7
LN RAE) X
P Saving Private | .~/ i o .
' e : ! .1 Good Will
i yan . i 7 .
! < N b Hunting
R P s Z]
v ‘" i TR e’ T~y
actor director __,/ actor actor
Liam Steven * Tom Matt
Neeson Spielberg Hanks Damon

Knowledge Base

Figure 2.1: Example of Movie Recommendation with a Knowledge Graph

A typical movie recommendation example is depicted in Figure 2.1| where users watch and/or
rate movies, and content about the movies are available in a database. For example, consider tracking
three users Bob, Alice and Kumar. From usage records, we know that Alice has watched Saving
Private Ryanand The Terminal, both of which have Steven SpielbergastheDirector and
Tom Hanks as an Actor, as specified by the knowledge base. The knowledge base may also provide
additional content like plot keywords, language and country of release, awards won etc. Similarly, we
also know the movies that were watched in the past by Bob and Kumar. In addition to watching, we
could also include user’s actions such as “reviewing” or “liking”, if available. Given the past viewing
history of users, we may want to know the likelihood of them watching a new movie, say Bridge of
Spies. This scenario is graphically represented in Figure Although in this particular case, the
movie-entity graph is bipartite, it is also common to have links between movies themselves like say,
Finding Nemo and Finding Dory where the latter is a sequel to the former, or between entities
themselves like for example, Tom Hanks and Best Actor Academy Award.

2.2 Related Work: Knowledge Graphs for Recommendation

Recommendation systems have been popular for a long time now and are a well researched topic.
However, there has not been much effort directed at using external KGs for improving recommen-
dations.

A recent method [142], HeteRec_p, proposed the use of KGs for improving recommender per-
formance. This method was the state-of-the-art at the time the work in this chapter was performed.
We detail it in Section since our approaches were compared against it. Another link-based
method [141] proposed by the same authors precedes [142], and learns a global model of recom-
mendation based on the KG, but does not attempt to personalize the recommendations. A similar
method was proposed in [92], which used paths to find the top-N recommendations in a learning-
to-rank framework. Since their method uses only the types of the nodes, they do not track the actual

entities that appear in the path. A few methods such as [85}/87] rank items using Personalized PageR-
ank. In these methods, the entities present in the text of an item (e.g. a news article) are first mapped
to entities in a knowledge graph.

A recent work [124] studies the problem of medicine recommendation using a Medical Knowl-
edge Graph. This heterogeneous graph connects medicines, diseases and patients, and the edges en-
code relationships such as drug-drug interactions. Their method first embeds the entities and rela-
tionships of the graph into a low dimensional space using TransR [69] and LINE [112] . The rec-
ommendations are scored using their similarity in the embedded space. In [93], the authors enhance
an existing graph embedding method called node2vec, to account for the different kinds of prop-
erties/relations. [132] is a recent work that uses Reinforcement Learning over KGs to reason over
relations. Their method trains a policy-based agent that learns to choose a relation at every step to
extend its current path on the graph. They apply their model to link and fact prediction tasks. An-
other method for the same task was proposed in [131] , where their model learned a manifold-based
embedding of the graph.

A recent effort at using multiple sources of information is the HyPER system [57], where the
authors show how to recommend using a Probabilistic Soft Logic framework [8]. They formu-
late rules to simulate collaborative filtering (CF) style recommendation. For instance, in the case
of user-based CF, the rule is of the form, SimilarUsers(uy, us) A Rating(uy, 1) = Rating(uz, 1),
where SimilarU sers indicate if the users u; and uy are similar using a k-nearest neighbor algo-
rithm, computed offline using different similarity measures like Cosine, Pearson etc. If the friend-
network of users is available, then they leverage it using the rule F'riends(uy, us) ARating(uy, 1) =
Rating(us,). If other rating prediction algorithms like Matrix Factorization (MF) are available,
then they induce an ensemble recommender using the rules Ratingy p(u,i) = Rating(u,i) and
—Ratingy r(u, 1) = —Rating(u,). Eventually, during the training phase, they learn a weight per
rule using the PSL framework, which is later used for predicting the ratings in the test set. Similar
to HyPER is the approach proposed in [49] that uses Markov Logic Networks, and that proposed in
[30] that uses Bayesian networks to create a hybrid recommender. Like these methods, we also base
our methods on a general-purpose probabilistic reasoning system. However, we differ from these
methods in our focus on using external knowledge in recommendations.

Prior research has previously proposed using various kinds of special purpose or domain-specific
knowledge-graphs. In [51], the authors proposed to use a trust-network connecting the users espe-
cially for making recommendations to the cold-start users. The latter is matched up against the
network to locate their most trusted neighbors, whose ratings are then used to generate the predic-
tions. Another popularly used network is the social network of the users. Prior work like [41}55}75]
among various other similar approaches use the social connection information of the users to find
similar users or “friends” in this case, and use their ratings to generate recommendations for the for-
mer. In [13], the authors use a graph representation of song playlists and impose a regularization
constraint on NMF such that their similarity in the low dimensional space obtained by NMF reflects
their distance in the graph.

2.2.1 HeteRec_p

HeteRec_p [142] aims to find user’s affinity to items that they have not rated using metapaths. Meta-
paths describe paths in a graph through which two items may be connected. In the example of Figure

an example metapath would be User — Movie — Actor — Movie. Given a graph/network
schema G = (A, R) of a graph G where A is the set of node types and R is the set of relations

between the node types A, then, metapaths are described in the form of P = Ao A —=

Ag. .. LN Ay and represent a path in G, which can be interpreted as a new composite rela-
tion Ry Ry ... Ry between node-type Ay and Ay, where A; € Aand R; € Rfori = 0,...k,
Ay = dom(Ry) = dom(P), Ay = range(Ry) = range(P) and A; = range(R;) = dom(R;11)
fori = 1,...,k — 1. For the specific purpose of recommending on user-item graphs, HeteRec_p
uses metapaths of the form user — item — x — item. Given a metapath P, they use a variant
of PathSim [110] to measure the similarity between user ¢ and item j along paths of the type P, a
method the authors refer to as User Preference Diffusion. For each P, they use the user preference dif-
fusion to construct the diffused user-item matrix R p. Let RM R ...R™) be the d1ffused matrices
corresponding to L different metapaths. Each such R s then approx1mated as U@ . V(@ using
a low-rank matrix approximation technique. Then, the global recommendation model is expressed

as: 7(Ui, ;) = X _ger Ug Ui(q) : Vj(q) where, 0, is a learned weight for the path g. To personalize rec-

ommendations, they first cluster the users according to their interests. Then, the recommendation
function is defined as: 7 (u;, vj) = e SIM(Cry i) Do s o U, @ V Where C represents
the user clusters and sim(C}, u;) gives a similarity score between the k' cluster center and user 1.
Note that the ¢, is now learned for each of the clusters. This formulation of the rating prediction
function is similar to [29]. Although HeteRec_p performed well on the recommendation tasks, the
algorithm needs several hyper-parameters that need to be determined or tuned, like choosing the
specific L metapaths from a potentially infinite number of metapaths, and the number of clusters. It
also requires a rich KB with types for entities and links.

2.3 Method

2.3.1 Recommendation as Personalized PageRank

Consider the example in Figure Similar to the Topic Sensitive PageRank proposed in [43] and
the weighted association graph walks proposed in [16], imagine a random walker starting at the node
Alice in the graph of Figure|2.1|(ignore the direction of the edges). At every step, the walker either
moves to one of the neighbors of the current node with probability 1 — « or jumps back to the
start node (Alice) with probability « (the reset parameter). If repeated for a sufficient number of
times, this process will eventually give an approximation of the steady-state probability of the walker
being in each of the nodes. However, since we need only the ranking of the movies and not the
other entities like actors and directors, we consider only those nodes corresponding to the movie
nodes being tested, and sort them according to their probability to produce a ranked list of movie
recommendations.

In the above method, there is no control over the walk. The final outcome of the walk is de-
termined by the link structure and the start node alone. However, recent research has proposed
methods to learn how to walk. Backstrom et. al in [9] showed how a random walker could be trained
to walk on a graph. This is done by learning a weight vector w, which given a feature vector ¢y,
for an edge in the graph u — v, computes the edge strength as f(w, ¢,), a function of the weight

and the feature vectors, that is used in the walk. During the training phase, learning w is posed as
an optimization problem with the constraint that the PageRank computed for the positive example
nodes is greater than that of the negative examples. In our case, the positive examples would be those
movies that the user watched, and negative examples would be those that the user did not watch or
give an explicit negative feedback.

2.3.2 Learning to Recommend using ProPPR

ProPPR [126], which stands for Programming with Personalized PageRank, is a first-order proba-
bilistic logic system which accepts a program similar in structure and semantics to a logic program
[73] and a set of facts, and outputs a ranked list of entities that answers the program with respect to
the facts. ProPPR scores possible answers to a query based on a Personalized PageRank process in
the proof graph (explained below) for the query. Below, we show how it can be used for the task of
learning to recommend.

For the recommendation task, the first step is to find a set of entities that each user is interested
in, from their past behaviors. We call this set the seedset of the user because it will later seed the
random walk for that user. For this, we use the ProPPR program of Figure The first rule states
that the entity E belongs to the seedset of user U if U has reviewed M which is linked to entity X and
Xisrelated to E. Further, two entities are defined to be related if they are the same (Rule 2), or if there
is a link between X and another entity Z which is related to E (Rule 3). This last rule is recursive. The
link and the type (isEntity, isItemand isUser) information forms the knowledge graph in our
case. Sample entries from the knowledge graph in the ProPPR format are shown in Figure To
find the seed set for Alice, we would issue the query () = seedset(Alice, E) to ProPPR.

seedset(U,E) <—reviewed(U,M), 1link(M, X), related(X,E),isEntity(E). (2.1)
related(X, X) < true. (2.2)
related(X,E) <-1ink(X, Z), related(Z,E). (2.3)

Figure 2.2: Seed Set generation

link(Bridge of Spies, Tom Hanks) isEntity(Tom Hanks)
link(Tom Hanks, Saving Private Ryan) isEntity(Matt Damon)
link(Saving Private Ryan,Matt Damon) isItem(Bridge of Spies)

Figure 2.3: Example entries from the knowledge graph

ProPPR performs inference as a graph search. Given a program LP like that of Figure
and a query (), ProPPR starts constructing a graph G, called the proof graph. This procedure is
called “grounding”. Each node in G represents a list of conditions that are yet to be proved. The
root vertex vy represents (). Then, it recursively adds nodes and edges to G as follows: let u
be a node of the form [Ry, Ry, ..., Ry| where R, are its predicates. If ProPPR can find a fact

9

in the database that matches [?;, then the corresponding variables become bound and R; is re-
moved from the list. Otherwise, ProPPR looks for a rule in LP of the form S «+ Si,95,..., 5,
where S matches R;. If it finds such a rule, it creates a new node with R; replaced with the
body of S as, v = [S1,Sq,..., 5, Ry, ..., Rx], and links u and v. In the running example, vy is
seedset (Alice, E) whichisthenlinkedtothenodev; = [reviewed(Alice,M), 1link(M,X),
related(X,E), isEntity(E)] obtained using Rule 1. Then, ProPPR would use the training (his-
torical) data for reviewed to substitute Saving Private Ryanand The Terminal for Mcreating
two nodes vy and v3 as [1ink(Saving Private Ryan,X), related(X,E), isEntity(E)]
and [1ink(The Terminal,X), related(X,E), isEntity(E)] respectively. ProPPR would
proceed by substituting for X from the knowledge graph and related (X,E) using the rules and so
on until it reaches a node whose predicates have all been substituted. These nodes are the answer
nodes because they represent a complete proof of the original query. The variable bindings used to
arrive at these nodes can be used to answer the query. Examples would be:

seedSet(Alice, E = TomHanks)
seedSet(Alice,E = StevenSpielberg)

Note that such a graph construction could be potentially infinite. Therefore, ProPPR uses an ap-
proximate grounding mechanism to construct an approximate graph in time O(i), where € is the
approximation error and « is the reset parameter. Once such a graph has been constructed, ProPPR
runs a Personalized PageRank algorithm with the start node as vy and ranks the answer nodes ac-
cording to their PageRank scores.

The output of the program of Figure2.2]is a ranked list of entities for the user U and the first /& of
these will be stored as U’s seed set. Note that the Personalized PageRank scoring will rank high those
entities that are reachable from the movies that the user reviewed through multiple short paths, and

rank low the entities that are either far and/or do not have multiple paths leading to them.

reviewed(U,M) <—seedset(U,E), likesEntity(U,E),
related(E, X), 1ink(X, M), isApplicable(U,M). (2.4)
likesEntity(U,E) «{1(U,E)}. (2.5)

Figure 2.4: EntitySim: ProPPR program for finding movies that a user may like using similarity
measured using the graph links

After generating the seed set for each user, the next step in recommendation is to train a model
and then use it to make predictions. As one method, we use the ProPPR program of Figure It
states that the user U may like a movie M if there is an entity E belonging to U’s seed set, and U likes E,
and E is related to another entity X, which appears in the movie M (Rule 4). The predicate related
is defined recursively as before. For the definition of the predicate 1ikesEntity, note the term
{1(U,E)}. This corresponds to a feature that is used to annotate the edge in which that rule is used.
For example, if the rule is invoked with U = Alice and E = Tom Hanks, then the feature would
be 1(Alice, Tom Hanks). In the training phase, ProPPR learns the weight of that feature from

10

the training data. During the prediction phase, ProPPR uses the learned weight of the feature as
the weight of the edge. Note that these learned weights for each user-entity pair are not related to
the ranking obtained from the seed set generation program of Figure because these weights are
specific to the prediction function.

[reviewed(Alice, M)

seedset(Alice, E),
likesEntity(Alice, E),
related(E, X), link(X, M),
isApplicable(Alice, M)

E = TomHanks E = SSpielberg
seedset(Alice, TomHanks), seedset(Alice, SSpielberg),
likesEntity(Alice, TomHanks), likesEntity(Alice, SSpielberg),
related(TomHanks, X), link(X, M), | |related(SSpielberg, X), link(X, M),
isApplicable(Alice, M) isApplicable(Alice, M)
wt = I(Alice, TomHanks) wt = I(Alice,SSpielberg),
X = TomHanks X = SSpielberg
v \ 4
link(TomHanks, M), link(SSpielberg, M),
isApplicable(Alice, M) isApplicable(Alice, M)
M= Captainmﬁdgemsmes
CaptainPhillips BridgeOfSpies

Figure 2.5: Sample grounding of the EntitySim ProPPR program

During the training phase, ProPPR grounds the program, similar to the process for the seed set
generation discussed earlier. A sample grounding for EntitySim is depicted in Figure where
Bridge 0f Spies and Captain Phillips are in the set of test examples for Alice. We may
have other test examples for Alice, but if they are not provable using the rules (beyond a certain
approximation error), they will not be present in the grounding. ProPPR then follows a procedure
similar to that proposed by Backstrom et. al in [9], to train the random walker. This is done by
learning a weight vector w, which given a feature vector ®,, for an edge in the graph u — v,
computes the edge strength as f(w, ®,,,), a function of the weight and the feature vectors. i.e. the
probability of traversing the edge P(v|u) o< f(w, ®,,). Our method uses f(w, ®,,) = % Pu.

During the training phase, learning of w is posed as an optimization problem as given below:

— Z (Zlogp[ufﬂ + Zlog(l — p[uf‘])) + pllwll3 (2.6)

where, p is the PageRank vector computed with the edge weights obtained with w. The optimization
function of Equation[2.6lused by ProPPR is the standard positive-negative log loss function instead
of the pairwise loss function used in [9]. To learn w, we use AdaGrad [34] instead of the quasi-
Newton method used in [9] and SGD used in [126]. The initial learning rate used by AdaGrad and
the regularization parameter y are set to 1. For a thorough description of ProPPR, we refer the reader
to [126] and [125].

11

2.3.3 Approach 2: TypeSim

The EntitySimmethod uses only the knowledge graph links to learn about user’s preferences. How-
ever, recall that we are in fact using a heterogenous information network where in addition to the
link information, we also know the “type” of the entities. For example, we know that New York
Cityisof type City and Tom Hanks is of type Actor. To leverage this additional type information,
we extend the EntitySim method to TypeSim method as shown in Figure

reviewed(U,R) <—seedset(U,E), likesEntity(U,E), popularEntity(E),

related(E, X),link(X,R), isApplicable(U,R). (2.7)

likesEntity(U,E) «{1(U,E)}. (2.8)
popularEntity(E) <—entity0fType(E, T), popularType(T){p(E)}. (2.9)
popularType(T) <—{p(T)}. (2.10)
typeAssoc(X,Z) <—entity0fType(X,S), entity0fType(Z,T),typeSim(S,T). (2.11)
typeSim(S,T) «+{t(S,T)}. (2.12)

Figure 2.6: TypeSim method for recommendations

TypeSim models the general popularity of each of the node types in Rule 10 by learning the over-
all predictability offered by the type of the entity using p(T). For example, nodes of the type Actor
may offer more insight into users’ preferences than those of type Country. Note that, the learned
weight is not specific to the user and hence its weight is shared by all the users. Similar to Rule 10,
in Rule 9, the model learns the overall predictability offered by the entity itself, independent of the
user using p(E). For example, it could be that the movies directed by Steven Spielbergare more
popular than those by other lesser known directors. TypeSim also models a general traversal prob-
ability between two types using Rules 11 and 12. For example, Actor — Movie is generally a more
predictive traversal on the graph compared to Country — Movie. These weights are incorporated
into the prediction rule of EntitySim as shown in Rule 7.

2.3.4 Approach 3: GraphLF

One of the most successful types of Collaborative Filtering (CF) are Latent Factor (LF) models [56].
They try to uncover hidden dimensions that characterize each of the objects thus mapping users
and items onto the same feature space for an improved recommendation performance. Koren et al.
note in [56] that for movies, latent factors might measure obvious dimensions such as comedy versus
drama, amount of action, or orientation to children, as well as less well-defined dimensions such
as depth of character development, or quirkiness, or even uninterpretable dimensions. For users,
each factor measures how much the user likes movies that score high on the corresponding factor.
Singular Value Decomposition (SVD) is one of the more popular methods of generating LF models
for recommendation. An SVD method assigns users and items with values along each of the hidden
dimensions while minimizing a loss function over the predicted and actual rating matrix.

12

The main attraction of Collaborative Filtering methods is that they do not require any knowledge
about the users or items and predict solely based on the rating matrix. Similarly, the main attraction
of Latent Factor based CF models is that they develop a general representation of users and items
based on the ratings data that are more generalizable and often indiscernible in the raw data.

reviewed(U,R) «<—related(U,E), related(E,X),link(X,R), isApplicable(U,R). (2.13)
related(U,E) <—seedset(U,E), simLF (U, E). (2.14)
related(X,X) <. (2.15)
related(X,Y) «1ink(X,Z), simLF(X, Z), related(Z,Y). (2.16)

simLF(X,Y) <-isDim(D), val(X,D), val(Y,D). (2.17)
val(X,D) +{v(X,D)}. (2.18)

Figure 2.7: GraphLF method for recommendations

Given that we have access to a KG that connects the items via different entities, the third ap-
proach that we present in this chapter, GraphLF, integrates latent factorization and graph-based
recommendation. The overall ruleset is defined in Figure Its principal rule is the definition of
Latent Factor Similarity simLF in Rules (17) and (18). Essentially, simLF of two input entities X and
Y is measured by first picking a dimension D, and then measuring the values of X and Y along D. If
there are many dimensions D along which the values of both X and Y are high, then probabilistically,
their similarity scores will also be high. The value of an entity X along dimension D, val(X,D) is
learned from the data during the training phase, as defined in Rule (18).

Note how the recursive definition of the relatedness of two entities related (X,Y) in Rule (16)
has now changed to account for their latent factor similarity in addition to the presence of a link
between them. Also, the original prediction rule has changed in Rule (13) to use a new relatedness
score between the user and the entity. Essentially, the definition of related (U,E) in Rule (14)
replaces the earlier predicate 1ikesEntity(U,E) with the latent factor similarity simLF (U,E),
between the user and an entity belonging to their seedset. Therefore, the model no longer learns a
weight for each user-entity pair, and instead learns weights for the users and entities separately along
each of the dimensions.

It is also important to note that GraphLF is type-agnostic unlike TypeSim and HeteRec_p.
Types are not always available, especially for general-purpose graphs like the Wikipedia. There-
fore, being type-agnostic is a desirable property and increases its applicability to a wide range of
data domains.

2.4 Experiments and Results

2.4.1 Datasets

To test our methods, we use two well known large datasets:

13

* Yelp2013: This is the 2013 version of the Yelp Dataset Challengef|released by Yelpf} available
now at Kaggleﬂ We use this earlier version instead of the latest version from the Yelp Dataset
Challenge for the purposes of comparing with the published results of the HeteRec_p algo-
rithm. Similar to [T42], we discard users with only 1 review entry.

+ IM100K: This dataset is built from the MovieLens-100K datasetf] unified with the content
— director, actor, studio, country, genre, tag — parsed out from their corresponding IMDb
pageﬂ We could not obtain the dataset used in [142], which we will refer to as IM100K-UTUC.
Our dataset IM100K* is a close approximation to it, created from the same MovieLens-100K
dataset, but we have recovered the content of 1566 movies of the total 1682 movies compared

to 1360 in [142], and have 4.8% more reviews than [142].
For all the datasets, similar to [142], we sort the reviews in the order of their timestamps, and use the
older 80% of the reviews as training examples and the newer 20% of the reviews as the test examples.

The overall statistics of these datasets, viz. the number of users, the number of items and the total
number of reviews/ratings, are listed in Table

Dataset #Users #[tems #Ratings
Yelp 43,873 11,537 229,907
IM100K-UIUC 943 1360 89,626
IM100K* 940 1566 93,948

Table 2.1: Dataset Statistics

2.4.2 Experimental Setup

We evaluate the performance using the standard metrics, Mean Reciprocal Rank (MRR), and Preci-
sionat 1,5 and 10 (P@1, P@5 and P@10) [76].

In our experiments, we found that any reasonable choice for the seed set size worked well enough.
A fixed size serves to constrain the number of parameters learned and hence, the complexity of the
model.

In the following sections, we compare our methods to the state-of-the-art method HeteRec_p
proposed in [142] on the two datasets. We also compare the performance to a Naive Bayes (NB)
baseline, which represents a recommender system that uses only the content of the item without
the knowledge graph and link information, to make predictions. Naive Bayes classifiers have been
previously shown to be as effective as certain computationally intensive algorithms [95]. For each
user, the NB system uses the entities of the items in that user’s training set as the features to train the
model. These are the same entities used by our methods. We use the probabilities output by the clas-
sifier to rank the pages. The implementation used is from the Mallet [83] package. Since HeteRec_p
was shown to be better than Popularity (which shows the globally popular items to users), Co-Click

2https://www.yelp.com/dataset_challenge
3http://www.yelp.com/
“https://www.kaggle.com/c/yelp-recsys-2013/data
>http://grouplens.org/datasets/movielens/
Shttp://www.imdb.com/

14

(which uses the co-click probabilities to find similar items), Non-Negative Matrix Factorization[33]
and Hybrid-SVM (which uses a Ranking SVM[52] on metapaths) in [142], we refrain from repeating
those comparisons again.

2.4.3 Performance Comparison on Yelp

Method Pa1 P@5 P@10 MRR Settings
HeteRec_p 0.0213 0.0171 0.0150 0.0513 published results
EntitySim 0.0221 0.0145 0.0216 0.0641 n = 20
TypeSim 0.0444 0.0188 0.0415 0.0973 n = 20

[T 10%] [T 176%] [T 89%]
GraphLF 0.0482 0.0186 0.0407 0.0966 n = 20, dim = 10

[T 126%]

NB 0 0.0012 0.0013 0.0087

Table 2.2: Performance comparison on Yelp: The best score for each metric is highlighted in blue
and the lowest score in red. [T x%] gives the percent increase compared to the corresponding
HeteRec_p score

The performance of the algorithms presented in this chapter as well as the baselines on the
Yelp data are tabulated in Table It can be seen from the results that our methods outperform
HeteRec_p by a large margin. For example, GraphLF is 126% better on P@1 and TypeSim is 89%
better on MRR.

Also, we can note that using the type information (TypeSim) improves the performance drasti-
cally compared to EntitySim. For example, P@1 improves by 118% and MRR by 51%. Similarly,
we can note that discovering the latent factors in the data (GraphLF) also improves the performance
tremendously compared to its simpler counterpart (EntitySim). For example, P@1 improves by
115% and MRR by 37%.

However, there is no clear winner when comparing TypeSim and GraphLF: while the former
scores better on MRR, the latter is better on P@1.

The NB baseline’s performance is poor, but that was expected since the dataset is extremely sparse.

2.44 Performance Comparison on IM100K

The performance of HeteRec_p on the IM100K-UIUC dataset, and that of the algorithms presented
in this chapter and the Naive Bayes baseline on the IM100K* dataset, are tabulated in Table

As noted in Section[2.4.1} the IM100K-UIUC dataset and the IM100K* dataset are slightly differ-
ent from each other. Therefore, we cannot compare the performance of the methods directly; the
most that can be said is that the methods appear to be comparable.

A more interesting and surprising result is that the simplest of the methods, NB and EntitySim,
perform as well or better than the more complex TypeSim and GraphMF. In fact, NB outperforms

15

Method Pal P@5 P@10 MRR Settings

HeteRec_p 0.2121 0.1932 0.1681 0.553 published results
(on IM100K-UIUC)
EntitySim 0.3485 0.1206 0.2124 0.501 n =10
[126.3%] [} —9.4%]

TypeSim 0.353 0.1207 0.2092 0.5053 n =10

(1 66.4%) [} —37.5%]
GraphLF 0.3248 0.1207 0.1999 0.4852 n = 10, dim = 10

[} —37.5%]

NB 0.312 0.1202 0.1342 0.4069

Table 2.3: Performance comparison on IM100K (IM100K-UIUC & IM100K*): The best score for each
metric is highlighted in blue and the lowest score in red . [T %] gives the percent increase com-
pared to the corresponding HeteRec_p score and [] x%], the percent decrease.

HeteRec_p on the P@1 metric. This leads us to speculate that when there are enough training ex-
amples per user and enough signals per item, simple methods suffice. We explore this conjecture
more fully below.

2.4.5 Effect of Dataset Density on Performance

In the previous two sections, we saw how on the Yelp dataset TypeSim and GraphLF performed
extremely well in comparison to the EntitySim method, whereas on the IM100K dataset, the latter
was as good as or better than the former two. In this section, we explore this phenomenon further.

An important difference between the two datasets is that Yelp is a complete real world dataset
with review frequencies exhibiting a power law distribution, while IM100K is a filtered version of
a real world dataset counterpart, as noted by the authors of [142]: in IM100K dataset, each user has
rated at least 20 movies.

To quantitatively compare their differences, we define the Density of a dataset as %,
which is the ratio of filled entries in the rating matrix to its size. Using this definition, the density of
Yelp was found to be only 0.00077 whereas that of IM100K* was 0.06382.

To study this further, we created 4 additional datasets from Yelp by filtering out users and busi-
nesses that have less than &k reviews, where £ =10, 25, 50 and 100. The MRR scores of our methods
and the NB baseline with varying k is plotted in Figure [2.8|(with the left y axis). These are with a
seedset of size 20. The graph densities at the different £ are also plotted in the same Figure [2.8|(in
green with the right y axis). Note that the density increases to 0.11537 at £k = 100, which is 148
times higher than the density at k = 2.

From the figure, we can see that when the dataset is the least dense (k = 2), the more complex
methods TypeSim and GraphLF perform much better than the simple EntitySim. However, as
the density increases with larger k, we can observe that EntitySim eventually equals TypeSim and
comes within 1% of that of GraphLF, at & = 100. Therefore, we can deduce that, when we have
enough training examples and a dense graph connecting them, a simple method like EntitySim

16

0.6 : : : . 0.15
—+—EntitySim

—%—TypeSim
GraphLF
—o—NB
—— Density
D0 1
o =
o 2
= a
40.05

0
0 20 40 60 80 100

Figure 2.8: Performance of different methods with varying graph densities on Yelp

that predicts based on just the links in the graph can give good results.

Another observation from Figure[2.8]is that the NB recommender, whose performance is poor at
low graph densities — 633% worse than EntitySim — slowly improves with increasing £ to eventu-
ally better all the KG based methods at £ = 100 (14% better than GraphLF). From this, we conjecture
that when there are enough training examples per user, we can produce accurate predictions using a
simple classifier based recommender like NB. However, at slightly lower densities, like at & = 50, the
knowledge graph is a valuable source of information for making recommendations, as can be seen
from the figure, where NB is 92% below EntitySimat £ = 50.

2.5 Contributions

In this chapter, we presented three methods for performing knowledge graph based recommenda-
tions using a general-purpose probabilistic logic system called ProPPR. Our methods use the link
structure of the knowledge graph as well as type information about the entities to improve predic-
tions. The more complex of the models discussed in this chapter combined the strengths of latent
factorization with graphs, and is type agnostic. By comparing our methods to the published results of
the state-of-the-art method that uses knowledge-graphs in generating recommendations, we showed
that our methods were able to achieve a large improvement in performance.

We also studied the behavior of the methods with changing dataset densities and showed that
at higher densities, just the graph link structure sufficed to make accurate recommendations and
the type information was redundant. In addition, we showed that in sparse datasets, the knowledge
graph is a valuable source of information, but its utility diminishes when there are enough training
examples per user.

17

Thesis Proposal

18

Chapter 3

Ongoing Work: Entity based Explanations
using Knowledge Graphs

The focus of this chapter is a system to generate explanations for Knowledge Graph (KG) -based
recommendation. Although a number of explanation schemes have been proposed in the past, there
has been no work which produces explanations for KG-based recommenders. In this chapter, we
present a method to jointly rank items and entities in the KG such that the entities can serve as an
explanation for the recommendation.

Our technique can be run without training, thereby allowing faster deployment in new domains.
Once enough data has been collected, it can then be trained to yield better performance. It can also
be used in a dialog setting, where a user interacts with the system to refine its suggestions. The main
difficulty in evaluating an entity-based explanation system is the unavailability of a gold standard
data. In almost all datasets available for this task, only the user-item interaction is known, This work
was published in the 11* ACM Conference on Recommender Systems (RecSys ‘17) as a Poster[21].

3.1 Related Work: Knowledge Graphs for Explanation

[46] was an early work that assessed different ways of explaining recommendations in a CF-based
recommender system. They reported that using a histogram of ratings by the user’s neighbors as well
as specifying if any of their favorite actors appear in the movie were perceived well by the users. A
recent work [2] proposed to constrain MF such that it favors recommendations that are explainable.
In their work, a recommendation is explainable if it there are enough known examples to reason the
recommendation as “x other people like you have liked this item in the past” (user-based neighbor
style) or “you have liked y other items like this in the past” (item-based neighbor style). A similar
method was proposed by the same authors in [I] for a CF method that uses Restricted Boltzmann
Machines (RBM).

In content-based recommenders, the explanations revolve around the profile or content associ-
ated with the user and the item. The system of [14] simply displayed keyword matches between the
user’s profile and the books being recommended. Similarly, [117] proposed a method called “Tags-
planations), which showed the degree to which a tag is relevant to the item, and the sentiment of the
user towards the tag.

19

With the advent of social networks, explanations that leverage social connections have also gained
attention. For example, [105] produced explanations that showed whether a good friend of the user
has liked something, where friendship strength was computed from their interactions on Facebook.

More recent research has focused on providing explanations that are extracted from user written
reviews for the items. [144] extracted phrases and sentiments expressed in the reviews and used them
to generate explanations. [77] uses topics learned from the reviews as aspects of the item, and uses
the topic distribution in the reviews to find useful or representative reviews.

Knowledge Graphs have been shown to improve the performance of recommender systems in
the past. [140] proposed a meta-path based method that learned paths consisting of node types in a
graph. Similarly, [92] used paths to find the top-N recommendations in a learning-to-rank frame-
work. A few methods such as [85}[87] rank items using Personalized PageRank. In these methods,
the entities present in the text of an item are first mapped to entities in a knowledge graph. [19] pro-
posed probabilistic logic programming models for recommendation on knowledge graphs. A recent
work [124] studies the problem of medicine recommendation using a Medical Knowledge Graph
by embedding the graph into a low dimensional space. [132] and [131] use KGs for reasoning over
relations. None of the above KG-based recommenders attempted to generate explanations.

[116] is a related work on graphs that proposed an algorithm to find a node in the graph that is
connected directly or indirectly to a given input of () nodes. Although they have similar elements to
our approach, their method is not intended for recommendations.

A recent work [58] evaluated different ways of showing explanations for recommendations pro-
duced using HyPER [57], a reccommender system that uses Probabilistic Soft Logic (PSL) [8]. PSL is
similar to ProPPR since both use probabilistic logic but unlike PSL, ProPPR uses a “local” grounding
procedure, which leads to small inference problems, even for large databases [126]. The user study
in [58] showed that visualizing explanations using Venn diagrams was preferred by the users over
other visualizations like pathways between nodes. Their system generates explanations that only
show why a user would like the item, and not why they may not like it. Also, the graph used in their
method is a friend network and not a Knowledge Graph that connects users and items using the
content associated with them.

3.2 Explanation Method

The method presented in this Chapter builds on the work described in Chapter [2by using ProPPR
[126] for learning to recommend. Our technique proceeds in two main steps. First, it uses ProPPR to
jointly rank items and entities for a user. Second, it consolidates the results into recommendations
and explanations.

To use ProPPR to rank items and entities, we reuse the notion of similarity between graph nodes
defined in Equations[2.2]and [2.3} from Chapter[2] The model has two sets of rules for ranking: one
set for joint ranking of movies that the user would like, together with the most likely reason (Figure
3.1), and a similar set for movies that the user would not like. In Figure Rule 3 states that a user
U will like an entity E and a movie M if the user likes the entity, and the entity is related (sim) to
the movie. The clause isMovie ensures that the variable M is bound to a movie, since sim admits
all types of entities. Rule 3 invokes the predicate 1ikes (U,E), which holds for an entity E if the
user has explicitly stated that they like it (Rule 4), or if they have provided positive feedback (e.g.

20

clicked, thumbs up, high star rating) for a movie M containing (via 1ink (M, E)) the entity (Rule 5).
The method for finding movies and entities that the user will dislike is similar to the above, except
‘like’ is replaced with ‘dislike’

willLike(U,E,M) <—1likes(U,E), sim(E, M), isMovie(M). (3.1)
likes(U,E) «-1likesEntity(U,E). (3.2)
likes(U,E) <—1likesMovie(U,M), 1ink(M, E). (3.3)

Figure 3.1: Predicting likes

To jointly rank the items and entities, we use ProPPR to query the willLike (U,E,M) predicate
with the user specified and the other two variables free. Then, the ProPPR engine will ground the
query into a proof graph by replacing each variable recursively with literals that satisfy the rules from
the KG [19,[126]. A sample grounding when queried for a user alice who likes tom_hanks and the
movie da_vinci_code is shown in Figure

| willLike(alice,E,M) Rule 3

likes(alice, E),
sim(E, M), isMovie(M)

likesEntity(alice, E), IikesMovie(aIicE, M,), link(M,, E),
sim(E, M), isMovie(M) sim(E,M), isMovie(M)
E = tom_hanks * M, = da_vinci_code *
sim(’gom_h_anks, M), link(da_vinci_code, E),
isMovie(M) sim(E,M), isMovie(M)
Rule 2 + E = drama_thriller
‘Iink(tom_hanks,Z),sim(Z,M), isMovie(M)‘ ‘ sim(drama_thriller,M), isMovie(M) ‘

Rule2 y

Z=M= bridge_of Z=M=infero | jink(drama_thriller,Z), sim(Z,M), isMovie(M) |
& Rule 1 & Rule 1 - :
Z=M= bridge_of S Z=M= snowden
& Rule 1 Rule 1
tom_hanks, tom_hanks, drama_thriller, drama_thriller,
bridge_of spies inferno bridge_of_spies snowden

Figure 3.2: Sample grounding for predicting likes

After constructing the proof graph, ProPPR runs a Personalized PageRank algorithm withwillLike (alice,
E, M) asthestartnode. In this simple example, we will let the scores for (tom_hanks, bridge_of_spies),
(tom_hanks, inferno), (drama_thriller, bridge_of_spies), and (drama_thriller,
snowden), be 0.4, 0.4, 0.3 and 0.3 respectively.
Now, let us suppose that alice has also specified that she dislikes crime movies. If we follow the
grounding procedure for dislikes and rank the answers, we may obtain (crime, inferno) with
score 0.2. Our system then proceeds to consolidate the recommendations and the explanations by
grouping by movie names, adding together their ‘like’ scores and deducting their ‘dislike’ scores. For
each movie, the entities can be ranked according to their joint score. The end result is a list of reasons
which can be shown to the user:

21

1. bridge_of_spies, score = 0.4+ 0.3 = 0.7, reasons =
{ tom_hanks, drama_thriller }

2. snowden, score = 0.3, reasons = { drama_thriller }

3. inferno, score = 0.4 - 0.2 = 0.2, reasons = { tom_hanks, (-ve) crime }

3.3 Real World Deployment and Evaluation

The technique presented in this Chapter is currently being used as the backend of a personal agent
running on mobile devices for recommending movies [6] undergoing Beta testing. The knowledge
graph for recommendations is constructed from the weekly dump files released by imdb. com. The
personal agent uses a dialog model of interaction with the user. In this setting, users are actively
involved in refining the recommendations depending on what their mood might be. For example,
for a fun night out with friends, a user may want to watch an action movie, whereas when spending
time with her significant other, the same user may be in the mood for a romantic comedy.

Qualitative feedback is being collected from the users of the Beta testing, where they are re-
quested to answer the following questions on a Likert-type scale:

1. Did you like that the app explained why a recommendation was made?

2. Did you think that the explanation was reasonable?

However, the users are not requested to give a feedback about the explanations after every inter-
action due to concerns that it might reduce the usability of the app.

3.4 Contributions

Knowledge graphs have been shown to improve recommender system accuracy in the past. However,
generating explanations to help users make an informed choice in KG-based systems has not been
attempted before. In this chapter, we presented a method to produce a ranked list of entities as
explanations by jointly ranking them with the corresponding movies.

22

imdb.com

Chapter 4

Completed Work: Rating Prediction from
Reviews using TransNets

Using review text for predicting ratings has been shown to greatly improve the performance of rec-
ommender systems [11} 70} [78], compared to Collaborative Filtering (CF) techniques that use only
past ratings [56|101]. Recent advances in Deep Learning research have made it possible to use Neu-
ral Networks in a multitude of domains including recommender systems, with impressive results.
Most neural recommender models [10}[35} 53} 65, [122] have focussed on the content associated with
the user and the item, which are used to construct their latent representations.

Review text, unlike content, is not a property of only the user or only the item; it is a property
associated with their joint interaction. In that sense, it is a context [3] feature. Only a few neural
net models [5}[103} [146] have been proposed to date that use review text for predicting the rating.
Of these, one recent model, Deep Cooperative Neural Networks (DeepCoNN) [146] uses neural nets
to learn a latent representation for the user from the text of all reviews written by her and a sec-
ond latent representation for the item from the text of all reviews that were written for it, and then
combines these two representations in a regression layer to obtain state-of-the-art performance on
rating prediction. However, as we will show, much of the predictive value of review text comes from
reviews of the target user for the target item, which is not available at test time. We introduce a way
in which this information can be used in training the recommender system, such that when the tar-
get user’s review for the target item is not available at the time of prediction, an approximation for it
is generated, which is then used for predicting the rating. Our model, called Transformational Neu-
ral Networks (TransNets), extends the DeepCoNN model by introducing an additional latent layer
representing an approximation of the review corresponding to the target user-target item pair. We
then regularize this layer, at training time, to be similar to the latent representation of the actual re-
view written by the target user for the target item. Our experiments illustrate that TransNets and its
extensions give substantial improvements in rating prediction.

This work was published in the 11 ACM Conference on Recommender Systems (RecSys ‘17)
[20].

23

4.1 Related Work: Recommendation using Reviews

4.1.1 Non-Neural Models

The Hidden Factors as Topics (HFT) model [78] aims to find topics in the review text that are correlated
with the latent parameters of users. They propose a transformation function which converts user’s
latent factors to the topic distribution of the review, and since the former exactly defines the latter,
only one of them is learned. A modified version of HFT is the TopicMF model [11], where the goal is
to match the latent factors learned for the users and items using MF with the topics learned on their
joint reviews using a Non-Negative Matrix Factorization, which is then jointly optimized with the
rating prediction. In their transformation function, the proportion of a particular topic in the review
is a linear combination of its proportion in the latent factors of the user and the item, which is then
converted into a probability distribution over all topics in that review. Unlike these two models,
TransNet computes each factor in the transformed review from a non-linear combination of any
number of factors from the latent representations of either the user or the item or both. Another
extension to HFT is the Rating Meets Reviews (RMR) model [70] where the rating is sampled from a
Gaussian mixture.

The Collaborative Topic Regression (CTR) model proposed in [121] is a content based approach,
as opposed to a context / review based approach. It uses LDA [15] to model the text of documents
(scientific articles), and a combination of MF and content based model for recommendation. The
Rating-boosted Latent Topics (RBLT) model of [111] uses a simple technique of repeating a review
r times in the corpus if it was rated r, so that features in higher rated reviews will dominate the
topics. Explicit Factor Models (EFM) proposed in [145] aims to generate explainable recommendations
by extracting explicit product features (aspects) and users’ sentiments towards these aspects using
phrase-level sentiment analysis.

4.1.2 Neural Net Models

One recent model to successfully employ neural networks at scale for rating prediction is the Deep
Cooperative Neural Networks (DeepCoNN) [146], which will be discussed in detail in Section Prior
to that work, [5] proposed two models: Bag-of-Words regularized Latent Factor model (BoWLF) and
Language Model regularized Latent Factor model (LMLF), where MF was used to learn the latent factors
of users and items, and likelihood of the review text, represented either as a bag-of-words or an
LSTM embedding [48], was computed using the item factors. [103] proposed a CNN based model
identical to DeepCoNN, but with attention mechanism to construct the latent representations, the
inner product of which gave the predicted ratings.

Some of the other past research uses neural networks in a CF setting with content, but not re-
views. The Collaborative Deep Learning (CDL) model [122] uses a Stacked De-noising Auto Encoder
(SDAE) [T18] to learn robust latent representations of items from their content, which is then fed into
a CTR model [121] for predicting the ratings. A very similar approach to CDL is the Deep Collabo-
rative Filtering (DCF) method [65] which uses Marginalized De-noising Auto-Encoder (mDA) [22]
instead. The Convolutional Matrix Factorization (ConvMF) model [53] uses a CNN to process the de-
scription associated with the item and feed the resulting latent vectors into a PMF model for rating
prediction. The Multi-View Deep Neural Net (MV-DNN) model [35] uses a deep neural net to map

24

user’s and item’s content into a shared latent space such that their similarity in that space is maxi-
mized. [91] proposed to generate the latent factors of items — music in this case— from the content,
audio signals. The predicted latent factors of the item were then used in a CF style with the latent
factors of the user. [10] also proposed a similar technique but adapted to recommending scientific-
articles. [27] used a deep neural net to learn a latent representation from video content which is then
fed into a deep ranking network. [45] is a simple extension to MF with additional non-linear layers
instead of the the dot product.

Prior research has also used deep neural nets for learning latent factors from ratings alone, i.e.,
without using any content or review. The Collaborative De-noising Auto-Encoder model (CDAE) [130]
learns to reconstruct user’s feedback from a corrupted version of the same. In [114], the authors
propose a TransE like framework for the user-item (non-graph) data, where the goal is to learn to
generate a relation 7 that would translate the user embedding w to that of the item embedding ¢ by
minimizing ||u + r — i||~ 0.

4.1.3 Comparison to Related Architectures and Tasks
Student-Teacher Models

The model proposed in this Chapter is a type of Student-Teacher model, albeit not in their conven-
tional setting. Student-Teacher models [17,/47] also have two networks: a Teacher Network (similar
to Target Network in our model), which is large and complex, and typically an ensemble of different
models, is first trained to make predictions, and a much simpler Student Network (similar to Source
Network), which learns to emulate the output of the Teacher Network, is trained later.

There are substantial differences between Student-Teacher models and TransNets in how they
are structured. Firstly, in Student-Teacher models, the input to both the student and the teacher mod-
els are the same. For example, in the case of digit recognition, both networks input the same image
of the digit. However, in TransNets, the inputs to the two networks are different. In the Target, there
is only one input - the review by user 4 for an itemp designated as rev 4 g. But, in the Source, there
are two inputs: all the reviews written by user 4 sans rev4p and all the reviews written for itempg
sans rev . Secondly, in Student-Teacher models, the Teacher is considerably complex in terms of
width and depth, and the Student is more light-weight, trying to mimic the Teacher. In TransNets,
the complexities are reversed. The Target is lean while the Source is heavy-weight, often processing
large pieces of text using twice the number of parameters as the Target. Thirdly, in Student-Teacher
models, the Teacher is pre-trained whereas in TransNets the Target is trained simultaneously with
the Source. A recently proposed Student-Teacher model in [50] does train both the Student and the
Teacher simultaneously. Also, in Student-Teacher models, the emphasis is on learning a simpler and
easier model that can achieve similar results as a very complex model. But in TransNets, the objective
is to learn how to transform a source representation to a target representation. Recently, Student-
Teacher models where shown to work on sequence-level tasks as well[54].

Sentiment Analysis

Part of the model proposed in this Chapter, referred to as Target Network later, resembles a sentiment
analyzer because it inputs a user’s review for an item and predict that user’s rating for that item. In
[106], the authors proposed a Recursive Neural Tensor Network that could achieve high accuracy

25

=]

o

g2 Factorization

S~ Machines

a4

5.

28 || s I s e |:||

3

a7 L) >
C T T T 7T 7T 11 [T T T T 7T T

l—‘A l—‘B

|Reviews by user, | |Reviews for itemy |

Figure 4.1: DeepCoNN model for predicting rating

levels for sentence and phrase level sentiment prediction. [59] proposed a tree-structured deep NN
for predicting sentiment from the discourse structure. [128] uses a character-level CNN for Twitter
sentiment analysis whereas [96] uses an LSTM on utterances in a video to compute its sentiment. In
[143], the authors also consider other inputs such as a user’s facial expressions or tone of voice along
with the sentences to predict the sentiment. [7] computes an aspect-level sentiment using an aspect
graph and a rhetorical structure tree.

4.2 The TransNet Method

4.2.1 CNNs to process text

We process text using the same approach as the current state-of-the-art method for rating prediction,
DeepCoNN [146]. The basic building block, referred to as a CNN Text Processor in the rest of this
chapter, is a Convolutional Neural Network (CNN) [62] that inputs a sequence of words and outputs
a n-dimensional vector representation for the input, i.e., the CNN Text Processor is a function I :
[wy, wa, ..., wp] — R™. For more details, please refer to [20].

4.2.2 The DeepCoNN model

To compute the rating r 45 that user 4 would assign to 1tem g, the DeepCoNN model of [146] uses
two CNN Text Processors side by side as shown in Figure[4.1] The first one processes the text labeled
text 4, which consists of a concatenation of all the reviews that user 4 has written and produces a
representation, x 4. Similarly, the second processes the text called textp, which consists of a con-
catenation of all the reviews that have been written about item g and produces a representation, y 3.
Both outputs are passed through a dropout layer [108]. Dropout is a function § : R” — R", that
suppresses the output of some of the neurons randomly and is a popular technique for regularizing
a network. We let T4 = d(z4) and yp = d(yp) denote the output of the dropout layer applied on

26

T4 and ypg.

The model then concatenates the two representations as z = [T 4, §p| and passes it through a
regression layer consisting of a Factorization Machine (FM) [99]. The FM computes the second order
interactions between the elements of the input vector as:

|=| zl ||
A = Wy + E w;z + E E (Vi, V)22
=1

i=1 j=i+1

where wy € R is the global bias, w € R?" weights each dimension of the input, and V & R?"x¥
assigns a k dimensional vector to each dimension of the input so that the pair-wise interaction be-
tween two dimensions ¢ and j can be weighted using the inner product of the corresponding vectors
v; and v ;. Note that the FM factorizes the pair-wise interaction, and therefore requires only O(nk)
parameters instead of O(n?) parameters which would have been required otherwise, where k is usu-
ally chosen such that £ < n. This has been shown to give better parameter estimates under sparsity
[99] (sparsity means that in the user-item rating matrix, most cells are empty or unknown). FMs have
been used successfully in large scale recommendation services like online news[139].

FMs can be trained using different kinds of loss functions including least squared error (L),
least absolute deviation (L), hinge loss and logit loss. In our experiments, L; loss gave a slightly
better performance than Ly. DeepCoNN [146] also uses L loss. Therefore, in this work, all FMs are
trained using L, loss, defined as:

loss = Z 748 — Tag|

(vasiB,maB)ED

4.2.3 Limitations of DeepCoNN

DeepCoNN model has achieved impressive performance surpassing that of the previous state-of-
the-art models that use review texts, like the Hidden Factors as Topics (HFT) model [78], Collabora-
tive Topic Regression (CTR) [121] and Collaborative Deep Learning (CDL) [122], as well as Collabo-
rative Filtering techniques that use only the rating information like Matrix Factorization (MF) [56]
and Probabilistic Matrix Factorization (PMF) [101].

However, it was observed in our experiments that DeepCoNN achieves its best performance
only when the text of the review written by the target user for the target item is available at test
time. In real world recommendation settings, an item is always recommended to a user before they
have experienced it. Therefore, it would be unreasonable to assume that the target review would be
available at the time of testing.

Let rev,p denote the review written by user 4 for an itemp. At training time, the text corre-
sponding to user 4, denoted as text 4, consists of a concatenation of all reviews written by her in the
training set. Similarly, the text for item g, denoted by text 3, is a concatenation of all reviews written
for that item in the training set. Both text 4 and textp includes rev,p for all (user 4, itemp) pairs
in the training set. At test time, there are two options for constructing the test inputs. For a test pair
(userp, itemQ), their pairwise review, revpq in the test set, could be included in the texts corre-
sponding to the user, textp, and the item, textg, or could be omitted. In one of our datasets, the

27

Target Network

Source Network

Reviews by user, Reviews for itemy
sans rev, sans rev,

Figure 4.2: The TransNet architecture

MSE obtained by DeepCoNN if revpg is included in the test inputs is only 1.21. However, if revpg
is omitted, then the performance degrades severely to 1.89. This is lower than Matrix Factorization
applied to the same dataset, which has an MSE of 1.86. If we train DeepCoNN in the setting that
mimics the test setup, by omitting 7ev 4 g in the texts of all (user 4, item g) pairs in the training set,
the performance is better at 1.70, but still much higher than when rev 45 is available in both training
and testing.

In the setting used in this work, reviews in the validation and the test set are never accessed at any
time, i.e., assumed to be unavailable — both during training and testing — simulating a real world
situation.

4.2.4 TransNets

As we saw in the case of DeepCoNN, learning using the target review rev 4p at train time inadver-
tently makes the model dependent on the presence of such reviews at test time, which is unrealistic.
However, as shown by the experiment above, rev 4 g gives an insight into what user 4 thought about
their experience with itemp, and can be an important predictor of the rating r 45. Although un-
available at test time, 7ev 4 g is available during training.

TransNet consists of two networks as shown in the architecture diagram of Figure a Target
Network that processes the target review rev p and a Source Network that processes the texts of the
(usera,itemp) pair that does not include the joint review, revp. Given a review text rev 4, the
Target Network uses a CNN Text Processor, ['7, and a Factorization Machine, /"My, to predict the

28

rating as:

xr = Dp(revap)
tr = d(zr)
72T — FMT<.TT)

&
~
|

Since the Target Network uses the actual review, its task is similar to sentiment analysis [60}[106].

The Source Network is like the DeepCoNN model with two CNN Text Processors, I' 4 for user
text, text 4 — revap, and I' g for item text, text g — revap, and a Factorization Machine, F'Mg, but
with an additional Transform layer. The goal of the Transform layer is to transform the user and
the item texts into an approximation of rev 4, denoted by rév 4 5, which is then used for predicting
the rating. The Source Network predicts the rating as given below:

First, it converts the input texts into their latent form as:

xa = Da(texts —revap)
xp = [Dp(texty —revap)
2 = [ravp]

The last step above is a concatenation of the two latent representations. This is then input to the
Transform sub-network, which is a L-layer deep non-linear transformational network. Each layer [
in Transform has a weight matrix GG; € R™*"™ and bias g; € R", and transforms its input z;_ as:

2 = o(z.1Gi+ i)

where o is a non-linear activation function. Since the input to the first layer, 2y, is a concatenation
of two vectors each of n dimensions, the first layer of Transform uses a weight matrix GG; € R?"*™,

The output of the L" layer of Transform, z;, is the approximation constructed by the TransNet
for rev,p, denoted by rév 5. Note that we do not have to generate the surface form of rev,p;
It suffices to approximate ['r(revsp), the latent representation of the target review. The Source
Network then uses this representation to predict the rating as:

Z, = 5(2’L)
rs = FMg(zr)

During training, we will force the Source Network’s representation z;, to be similar to the encoding
of rev s p produced by the Target Network, as we discuss below.

4.2.5 Training TransNets

TransNet is trained using 3 sub-steps as shown in Algorithm([1] In the first sub-step, for each training
example (or a batch of such examples), the parameters of the Target Network, denoted by 67, which
includes those of ['y and "My, are updated to minimize a L loss computed between the actual
rating r o and the rating 7 predicted from the actual review text rev,p.

To teach the Source Network how to generate an approximation of the latent representation of
the original review 7ev 4 p generated by the Target Network, in the second sub-step, its parameters,

29

denoted by 6;,.4,,5, are updated to minimize a Lo loss computed between the transformed represen-
tation, Zy, of the texts of the user and the item, and the representation x of the actual review. 6,5
includes the parameters of [' 4 and I'g, as well as the weights W, and biases g; in each of the trans-
formation layers. 0;,.4,s does not include the parameters of F'Msg.

In the final sub-step, the remaining parameters of the Source Network, flg, which consists of
the parameters of the F'Mg are updated to minimize a L; loss computed between the actual rating
rap and the rating 7°g predicted from the transformed representation, z;. Note that each sub-step
is repeated for each training example (or a batch of such examples), and not trained to convergence
independently. The training method is detailed in Algorithm |1}

Algorithm 1 Training TransNet

1: procedure Train(D;,4;,)

2 while not converged do

3 for (texta,textp,revap,7ap) € Dirain do

4 #Step 1: Train Target Network on the actual review
5; xp = Dp(revap)

6 T :FMT((S(xT))

7 lossp = |rag — 7|

8 update 67 to minimize [ossy

9 #Step 2: Learn to Transform

10: TA = FA(textA)

11: rB :FB(tGLUtB>

12: 20 = [xazB]

13: zr, = Transform(zg)

14: Zr = (S(ZL)

15: 108Strans = ||ZL — z7||2

16: update 4,4y, to minimize [0SSsyans
17: #Step 3: Train a predictor on the transformed input
18: Tg :FMS(EL)

19: losss = |rap — Ts|

20: update fg to minimize [0ossg

21: return 0,4, 05

Algorithm 2 Transform the input

1: procedure Transform(z)
2: for layer [€ L do
3: 2] = O'(Zl_lGl + gl)

4: return 2,

At test time, TransNet uses only the Source Network to make the prediction as shown in Algo-
rithm[3]

30

Algorithm 3 Testing using TransNet

1: procedure Test(D;.)
2 for (textp,texty) € Dics do
3 #Step 1: Transform the input
4 xp = La(textp)
5: Tg = FB(tea:tQ)
6 20 = [xprg)]
7 zr, = Transform(zy)
8 Zr = 5(ZL)
9: #Step 2: Predict using the transformed input
10: pr = FMS<2L)

-

|||||||||||||||
[T T [T 1 TRANSFORM

5
[T
o o
Qy
@

Qg

o

| user, | | itemg

Figure 4.3: The Extended TransNet sub-architecture

4.2.6 Extended TransNets

TransNet uses only the text of the reviews and is user/item identity-agnostic, i.e., the user and the
item are fully represented using the review texts, and their identities are not used in the model. How-
ever, in most real world settings, the identities of the users and items are known to the recommender
system. In such a scenario, it is beneficial to learn a latent representation of the users and items, sim-
ilar to Matrix Factorization methods. The Extended TransNet (TransNet-Ext) model achieves that by
extending the architecture of TransNet as shown in Figure

The Source Network now has two embedding matrices € 4 for users and 15 for items, which are
functions of the form, {2 : ¢d — R". These map the string representing the identity of user4 and
itemp into a n-dimensional representation. These latent representations are then passed through
a dropout layer and concatenated with the output of the Transform layer before being passed to the
FM regression layer. Therefore, given user 4 and itemp, TransNet-Ext computes the rating as:

wa = Qusery)
wp = Q(itemB)
Z = [0(wa) 6(ws) ZL]

Tsg = FMggp(z)

31

Dataset ~ Category #Users #Items #Ratings & Reviews

Yelpl7 1,029,432 144,072 4,153,150

AZ-Elec Electronics 4,200,520 475,910 7,820,765 (7,824,482)
AZ-CSJ Clothing, Shoes and Jewelry 3,116,944 1,135,948 5,748,260 (5,748,920)
AZ-Mov Movies and TV 2,088,428 200,915 4,606,671 (4,607,047)

Table 4.1: Dataset Statistics

Computation of the loss in Step 3 ofAlgorithm lossgp is same as earlier: losssp = |rap—TsE|-
But the parameter 65 updated at the end now contains the embedding matrices {24 and (2.

4.3 Experiments and Results

4.3.1 Datasets

We evaluate the performance of our approach on four large datasets. The first one, Yelp17, is from
the latest Yelp dataset challengeﬂ containing about 4M reviews and ratings of businesses by about
IM users. The rest are three of the larger datasets in the latest release of Amazon reviewf] (80, [81]]
containing reviews and ratings given by users for products purchased on amazon.com, over the
period of May 1996 - July 2014. We use the aggressively de-duplicated version of the dataset and
also discard entries where the review text is empty. The statistics of the datasets are given in Table
The original size of the dataset before discarding empty reviews is given in brackets when
applicable.

4.3.2 Evaluation Procedure and Settings

Each dataset is split randomly into train, validation and test sets in the ratio 80 : 10 : 10. After
training on every 1000 batches of 500 training examples each, MSE is calculated on the validation
and the test datasets. We report the MSE obtained on the test dataset when the MSE on the valida-
tion dataset was the lowest, similar to [78]. All algorithms, including the competitive baselines, were
implemented in Python using TensorFlowﬂ an open source software library for numerical compu-
tation, and were trained/tested on NVIDIA GeForce GTX TITAN X GPUs. Training TransNet on
Yelp17 takes approximately 40 minutes for 1 epoch (~6600 batches) on 1 GPU, and gives the best
performance in about 2-3 epochs.

4.3.3 Competitive Baselines

We compare our method against the current state-of-the-art, DeepCoNN [146]. DeepCoNN was
previously evaluated against the then state-of-the-art models like Hidden Factors as Topics (HFT)

'https://www.yelp.com/dataset_challenge

Zhttp://jmcauley.ucsd.edu/data/amazon
*https://www.tensorflow.org

32

https://www.yelp.com/dataset_challenge
http://jmcauley.ucsd.edu/data/amazon
https://www.tensorflow.org

model [78], Collaborative Topic Regression (CTR) [121], Collaborative Deep Learning (CDL) [122]
and Probabilistic Matrix Factorization (PMF) [101], and shown to surpass their performance by a
wide margin. We also consider some variations of DeepCoNN.
Our competitive baselines are:
1. DeepCoNN: The model proposed in [146]. During training, text 4 and text g corresponding
to the user4-itemp pair contains their joint review rev 4, along with reviews that user 4
wrote for other items and what other users wrote for item g in the training set. During test-
ing, for a user p-itemg pair, textp and textq are constructed from only the training set and
therefore, does not contain their joint review revpg.

2. DeepCoNN-revpp: The same DeepCoNN model (1) above, but trained in a setting that mim-
ics the test setup, i.e., during training, text 4 and textp corresponding to the user4-itemp
pair does not contain their joint review rev g, but only the reviews that user 4 wrote for
other items and what other users wrote for itemp in the training set. Testing procedure is
the same as above: for a userp-itemg pair, textp and text(are constructed from only the
training set and therefore, does not contain their joint review revpg which is present in the
test set.

3. MF: A neural net implementation of Matrix Factorization with n = 50 latent dimensions.

We also provide the performance numbers of DeepCoNN in the setting where the test reviews
are available at the time of testing. i.e. the same DeepCoNN model (1) above, but with the exception
that at test time, for a user p-itemg pair, textp and text are constructed from the training set as
well as the test set, and therefore, contains their joint review revpq from the test set. This is denoted
as DeepCoNN + Test Reviews, and its performance is provided for the sole purpose of illustrating
how much better the algorithm could perform, had it been given access to the test reviews.

4.3.4 Evaluation on Rating Prediction

Like prior work, we use the Mean Square Error (MSE) metric to evaluate the performance of the
algorithms. Let NV be the total number of datapoints being tested. Then MSE is defined as:

N
=1
where, 7; is the ground truth rating and #; is the predicted rating for the i"* datapoint. Lower MSE
indicates better performance.

The MSE values of the various competitive baselines are given in Table For each dataset, the
best score is highlighted in blue .

As can be seen from the Table, it is clear that TransNet and its variant TransNet-Ext perform
better at rating prediction compared to the competitive baselines on all the datasets (p-value < 0.05).
It can also be seen that learning a user and item embedding using only the ratings in addition to the
text helps TransNet-Ext improve the performance over the vanilla TransNet (p-value < 0.1), except
in the case of one dataset (AZ-CSJ).

It is also interesting to note that training DeepCoNN mimicking the test setup (DeepCoNN-
rev o) gives a large improvement in the case of Yelp, but does not help in the case of the AZ datasets.

33

Table 4.2: Performance comparison using MSE metric

Dataset DeepCoNN MF DeepCoNN DeepCoNN-revap TransNet TransNet-Ext

+ Test Re-

views
Yelpl7 1.2106 1.8661 1.8984 1.7045 1.6387 1.5913
AZ-Elec 0.9791 1.8898 1.9704 2.0774 1.8380 1.7781
AZ-CSJ 0.7747 1.5212 1.5487 1.7044 1.4487 1.4780
AZ-Mov 0.9392 1.4324 1.3611 1.5276 1.3599 1.2691

4.4 Contributions

Using reviews for improving recommender systems is an important task and is gaining a lot of atten-
tion in the recent years. A recent neural net model, DeepCoNN, uses the text of the reviews written
by the user and for the item to learn their latent representations, which are then fed into a regression
layer for rating prediction. However, its performance is dependent on having access to the user-item
pairwise review, which is unavailable in real-world settings.

We presented a new model called TransNets which extends DeepCoNN with an additional Trans-
form layer. This additional layer learns to transform the latent representations of user and item into
that of their pair-wise review so that at test time, an approximate representation of the target review
can be generated and used for making the predictions. We also showed how TransNets can be ex-
tended to learn user and item representations from ratings only which can be used in addition to the
generated review representation. Our experiments showed that TransNets and its extended version
can improve the state-of-the-art substantially.

34

Chapter 5

Preliminary Work: User Review Prediction
using TransNets

Our evaluation of TransNets in Chapter 4 was quantitative, using MSE of predicted ratings. We
would also like to investigate whether the learned representation is qualitatively useful—i.e., does
it capture interesting high-level properties of the user’s review. One possible use of the learning
representation would be to give the user information about her predicted reaction to the item that
is more detailed than a rating. In this section, we show how TransNets could be used to find the
most similar reviews, personalized to each user. For example, the most similar review for a user
who is more concerned about the quality of service and wait times would be different from the most
similar review for another user who is sensitive to the price. For a test userp — itemg pair, we run
the Source Network with the text of their reviews from the training set to construct 2z, which is
an approximation for the representation of their actual joint review. Candidate reviews are all the
reviews revc in the training set written for itemg by other users. We pass each of them separately
through the Target Network to obtain their latent representation ¢ = I'r(reveq). If reveg had
been most similar to what userp would write for itemg, then ¢ would be most similar to 2.
Therefore, to find the most similar review, we simply choose the revcg whose x¢(is closest to 2y,
in Euclidean distance.

Some examples of such predicted most similar reviews on the Yelp17 dataset are listed in Table
Here, the column Original Review is the actual review that userp wrote for itemg, and the
column Predicted Review gives the most similar of the candidate reviews predicted by TransNet.
The examples show how the predicted reviews talk about particulars that the original reviews also
emphasize. These are highlighted in the Table (highlighting was done manually).

Our model of explanation seeks to show why a user might like an item in terms of what aspects
of that item the user would like as well as dislike. Reviews are examples of explanations of this sort
— they discuss why a particular rating was given. So, it makes sense that the latent representation
for the review would have information relevant to the explanation. One of the ways to test if the
approximate latent representation computed by TransNet contains the relevant information is by
checking if reviews with similar latent representations offer similar explanations. The evaluation of
review similarity in this chapter is purely qualitative. However, this method will serve as a baseline
for the work proposed in Chapter|[6]and will be evaluated thoroughly, as described there.

35

Original Review

Predicted Review

my laptop flat lined and i did n’t know why , just one day it
did n’t turn on . i cam here based on the yelp reviews and
happy i did . although my laptop could n’t be revived due
to the fried motherboard , they did give me a full expla-
nation about what they found and my best options . i was
grateful they did n’t charge me for looking into the prob-
lem , other places would have . i will definitely be coming
back if needed . .

my hard drive crashed and i had to buy a new computer .
the store where i bought my computer could n’t get data
off my old hard drive . neither could a tech friend of mine
. works could ! they did n’t charge for the diagnosis and
only charged $ 100 for the transfer . very happy .

this is my favorite place to eat in south charlotte . great
cajun food . my favorite is the fried oysters with cuke salad
and their awesome mac 'n’ cheese (their mac 'n’ cheese is
notout of abox). their sweet tea would make my southern
grandma proud . to avoid crowds,, for lunch i recommend
arriving before 11:30 a.m. or after 1 p.m. and for dinner
try to get there before 6 p.m. is not open on sundays .

always !! too small location so wait line can be long . been
going to for 13 years .

this place is so cool . the outdoor area is n’t as big as the
fillmore location , but they make up for it with live music
.ireally like the atmosphere and the food is pretty spot on
. the sweet potato fry dip is really something special . the
vig was highly recommended to me , and i 'm passing that
recommendation on to all who read this .

like going on monday ’s . happy hour for drinks and apps
then at 6pm their burger special . sundays are cool too,
when they have live music on their patio .

i have attempted at coming here before but i have never
been able to make it in because it ’s always so packed with
people wanting to eat . i finally came here at a good time
around 6ish ... and not packed but by the time i left, it was
packed ! the miso ramen was delicious . you can choose
from add on ’s on your soup but they charge you , i dont
think they should , they should just treat them as condi-
ments . at other ramen places that i have been too i get the
egg , bamboo shoot, fire ball add on ’s free . so i am not
sure what their deal is .

hands down top three ramen spots on the west coast, right
up there with , and the line can be just as long .

this place can be a zoo !! however , with the produce they
have , at the prices they sell it at, it is worth the hassle .
be prepared to be pushed and shoved . this is much the
same as in asia . my wife (from vietnam) says that the
markets in asia are even more crowded . i agree as i have
seen vietnam with my own eyes .

i enjoy going to this market on main street when i am
ready to can ... the prices are great esp for onions . . broc-
coli and bell peppers ... a few times they have had bananas
for $ 3.00 for a huge box like 30 Ibs ... you can freeze them
or cover in ... or make banana bread if they begin to go
dark ... and ripe . the employees will talk if you say hello
first ...

great spot for outdoor seating in the summer since it ’s
sheltered early from the sun . good service but americanos
sometimes are not made right

this is my “go to ” starbucks due to the location being close
to where i live . i normally go through the drive-thru ,
which more likely than not , has a long line . . but does n’t
every starbucks ? i have always received great customer
service at this location ! there has been a couple times that
my order was n't correct - which is frustrating when you
are short on time & depend on your morning coffee ! but
overall you should have a good experience whether you
drive-thru or dine in !

Table 5.1: Example of predicted similar reviews

36

Original Review

Predicted Review

excellent quality korean restaurant . it s a tiny place
but never too busy , and quite possibly the best korean
dumplings i *ve had to date .

for those who live near by islington station you must visit
this new korean restaurant that just opened up . the food
too good to explain . i will just say i havent had a chance to
take picture since the food was too grat .

very overpriced food , very substandard food . wait staff
is a joke . if you like being ignored in the front room of a
one story house and being charged for it , by all means .
otherwise , go to freaking mcdonald ’s .

i want this place to be good but it fails me every time . i
brought my parents here for dinner and was totally embar-
rassed with my dining choice . i tried it two more times after
that and continue to be disappointed . their menulooks great
but what is delivered is a total let down . to top it off , the ser-
vice is painfully slow . the only thing this place has going for
it is the dog friendly patio and craft beers . i hope someone
reads these reviews as the poor service piece continues to be
brought up as an issue .

ok the first time i came here, i was very disappointed in the
selection of items, especially after reading previous review
. but, thenirealized that i went at a bad time , it was the end
of the day and they sold out of everything ! i recently went
back at the store opening time and a lot happier with the
market . they sell freshly made bentos , made in house , and
they are perfect for microwaving at home or in the market
for a cheap and satisfying meal . the key is to get there early,
be they are limited and run out quick, but they have a good
variety of bentos . one draw back is that it is smaller than
expected , so if you come from a place like socal , where
japanese markets were like large grocery stores with mini
stores and restaurants located inside , you might not be too

happy .

the main reason i go here is for the bento boxes -LRB- see
example pic -RRB- . made fresh every day , and when they
're gone , they 're gone . on my way home from work it ’s
a toss up whether there will be any left when i get there at
5:30 . i would by no means call them spectacular , but they
‘re good enough that i stop in every weeks i like to pick up
some of the nori maki as well -LRB- see pic -RRB- one thing
i wish they had more often is the spam and egg onigiri -LRB-
see pic -RRB- . very cool . i’m told you can order them in
advance , so may have to do that

holey moley - these bagels are delicious ! i 'm a bit of a bagel
connoisseur . (note : the bagels at dave ’s grocery in ohio
city are currently my favs) . these bagels had me floored
. thankfully , cleveland bagel pops up at festivals and flea
markets so there are plenty of opportunities to put them in
your mouth (though rising star coffee is a regular option)
. their are also amazing ! though they are n’t the cheapest
bagels in the world , you can taste the love that goes into
them . they 're perfectly crisp , yet doughy in the middle .
the add an added flavor - honestly, it s a bagel experience .

i had heard from a colleague at work about cleveland bagel
company ’s bagels and how they were , “ better than new
york city bagels . ” naturally , i laughed at this colleague and
thought he was a for even thinking such a thing . so, a few
weeks later i happened to be up early on a saturday morn-
ing and made the trek up to their storefront -(located across
from the harp .) when i arrived was around 8:15 am ; upon
walking in i found most bagel bins to be empty and only a
few poppyseed bagels left . i do n’t like poppyseed bagels so
i asked them what was going on with the rest and when they
’d have more . to my surprise i found out that they only stay
open as long as they have bagels to sell . once they sell out,
they close up shop and get going for the next day . i ordered
a poppyseed bagel even though i do n’t like them as i was cu-
rious as to what was up with these bagels and can tell you
that they are in fact better than new york city bagels.ican’t
even believe i ‘m saying that, but it s true . you all need to do
what you can to get over there to get some of these bagels .
they 're unbelievable . i ca n’t explain with words exactly why
they ’re so amazing , but trust me, you will love yourself for
eating these bagels . coffee is n’t that great , but it does n't
matter . get these bagels ?!

Table 5.2: Example of predicted similar reviews (continued from previous page)

37

Thesis Proposal

38

Chapter 6

Proposed Work: User Review Generation

In this chapter, we look more closely into how a textual explanation could be ‘generated’. In the previ-
ous chapter, the textual explanation was selected from existing reviews written by other users. Each
user’s overall experience with the item is bound to be unique even if they share common opinions
about certain aspects of the item with other users. For example, consider the set of reviews for the
movie ‘Inferno’ by users Alice and Kumar in Figure Alice who likes the actor Tom Hanks and
good movie plots, talks about those aspects in her review. That review echoes some part of other
user’s reviews for the same movie, like that by Bob who disapproves of the plot and that by UserC
who is all praise for the Hanks’ character. But Alice’s review is not exactly the same as any one of
these other reviews, but a combination of different aspects from multiple reviews. Similar is the case
of Kumar who loves action sequences and film scores. His review has elements from UserD’s review
but also additional aspects not mentioned by UserD.

Bob UserC UserD

the best part of the
book, the glorious and
great finale that made
Dan Brown a genius
was changed to the
most common, stupid
ending of a silly
Hollywood mystery/
thriller movie.

.. review text ...

Honestly, I am not sure where all
of the criticism is coming from.
It's a thoroughly enjoyable
thriller, with constant plot twists
riddled through it. The reviews
are overly harsh, and many
people find the historical fiction
and puzzle-solving dull, which if
you do, would make the film
unbearable. If you don't hate
those aspects, then the film is the
cherry on top for this trilogy.

The largest positive for this
movie is Tom Hanks. He
was excellent again as
Robert Langdon. Aside
from Hanks, the story was
muddled but chase-movie
action and constant
changes of beautiful
scenery makes this
entertaining if forgettable.

¢

Alice Kumar

I enjoyed the Inferno film for the most
part as I'm very fond of Tom Hanks as
Robert Langdon. While it was
obviously impractical to include an
involved literary discussion of Dante's
Inferno in the film, it's a shame that it
was barely touched on at all as to me, it
was one of the most interesting aspects
of the entire story. Like many, [was
also surprised and disappointed by the
changed ending. The book's solution
was challenging but elegant; the film...
clunky and predictable.

This movie starts off strong with a chase
sequence and the explanation of the villain's
motives. Then we get to the usual Dan Brown-
esque puzzle solving. One thing i would say
though is the climax of the movie was done
even better than i expected. Also the
soundtrack, Hans Zimmer's score for this film
was a little bit weaker than the previous two
but still absolutely fantastic. Only thing i would
say is a bit sub par was the lack of puzzle
solving and Christian mythologies which i
loved in the previous movies but still, to me
this movie was a 9/10 without a doubt.

Figure 6.1: Sample Movie Reviews

39

The above example is a typical real world scenario where different users care about different
aspects of the same item. An ideal explanation of why they would like or dislike the item typically
cannot be extracted from any one review, but needs to be synthesized from multiple reviews.

6.1 Related Work: Explanation using Reviews

6.1.1 Non-Personalized Summarization

A multitude of models have been proposed in the past that can create a generic summary of reviews.
[100] is a recent method for abstractive text summarization using a neural language model with a
beam-search decoder. However, the task is limited to generating a headline from the first sentence
of a news article, compared to reviews that typically include multiple long sentences. A similar work
is the [123], which uses an attention based neural network to generate one-sentence summaries from
multiple opinions. In [40], the authors incorporate a copy mechanism to a seq2seq learning model
to improve text summarization task. [37] is an abstractive graph-based technique that constructs
summaries from highly redundant opinions.

[90] is an extractive method that selects sentences from multiple reviews using measures of in-
formativeness and readability, to construct a summary review. There has been a number of recent
work that proposed how neural models could be used for extractive summarization. For example,
[89] uses side information to construct news headlines from the text of the article. [24] is another
model for the same task, but uses a hierarchical reader and a sentence level attention extractor for se-
lecting informative sentences. [107] is a recently proposed extractive method that uses the principles
of sparse-coding and Maximal Marginal relevance (MMR) to select the sentences to be included in
the summary. The RNN-based method proposed in [88] has been shown to be comparable or bet-
ter than the state-of-the-art algorithms for extractive summarization. [138] is a graph based neural
model for the same task.

[12] learns an LSTM model that can generate spurious reviews for restaurants. This character
level model only generates review-like text and has no notion of user or item nor is it summarizing
anything. An almost identical method was also proposed in [137]. The reviews generated by both
these models were evaluated by human judges and found to be indistinguishable from authentic re-
views.

6.1.2 Extractive / Non-Neural Models for personalized explanations

[97] proposed an extractive review generation by selecting sentences that are most similar to the
user’s profile but diverse from the already selected sentences. This greedy approach is same as the
MMR criteria proposed for search engines [18]. [145] proposed an Explicit Factor Model for gen-
erating explanations using phrases extracted from reviews. They identify the sentiment that each
user has about the aspects of the item and use them to provide discrete (not in fully formed natural
language sentences) explanations. [44] is another method that ranks aspects for each user on a tripar-
tite graph consisting of the users, items and aspects. In [129], the authors proposed a joint Bayesian
model for rating and review prediction. Although they learn a generative model for the review text,
they evaluate it using only perplexity and do not explicitly generate the text. Similarly, in [32], the

40

authors proposed a user specific aspect sentiment model to predict ratings where they evaluated
the reviews using only perplexity. Although [79] models the sentiment associated with each of the
aspects of the item from the reviews, they do not provide any explanations to the user while predict-
ing ratings for new items. [86] jointly models reviews and ratings using a Hidden Markov Model
— Latent Dirichlet Allocation (HMM-LDA) to provide interpretable explanations using words from
latent word clusters that would explain important aspects of the item.

6.1.3 Abstractive / Neural Models for personalized explanations

[71] proposed a character-level model called Generative Concatenative Net (GCN), which is a regular
character-level LSTM with additional information concatenated to its input. The additional infor-
mation includes that of the user, item, overall rating and the category of the item. [26] is a minor
extension to [71], where ratings of individual aspects of the item are also concatenated to the auxil-
iary information. [113] is a similar work that produces the text of the review from the item id and
sentiment/rating as input. [127] applies Dynamic Memory Networks (DMN) to generate a personal-
ized latent representation of the joint review. First, it uses LSTMs to separately process reviews for
the product and those written by the user for other products to generate latent representations for
the product and the user. Then, the product representation is iteratively refined using a DMN with
the user representation driving the attention model, to construct a representation of the product
that is personalized to the user. That is then passed through an LSTM to generate the words of the
review. Although the experiments were conducted on very small datasets, the authors do show that
the method is capable of producing reviews with better ROUGE scores than competitive summa-
rization algorithms. [64] is another recent model that generates tips instead of explanations. Their
model jointly optimizes prediction of ratings along with the generation of a short one sentence sug-
gestion like for example “You need to reserve a table in advance”. The tip generation process is quite
similar to the source network of the model proposed in this chapter.

6.1.4 Comparison to Related Tasks

Sections of the model proposed in this Chapter bare resemblance to models that have been proposed
for different but related tasks such as text generation from structured inputs and caption generation.

Text Generation from Structured Data

In [61], the authors proposed a model for generating one-sentence biographies from data structured
in the form of tables like the Infobox of Wikipedia. The main improvement compared to earlier mod-
els was to produce an identifier corresponding to the location of the desired data in the table, which
could then be copied into the generated text. [104] proposed an improvement of this model which
also considers the order of facts in the table. [4] is another method for a similar task which combines
information from a knowledge graph of facts with a neural language model while generating text.
[42] is a simpler model which poses this as a seq2seq problem by flattening the table to a sequence
of words. The model proposed in [84], is similar, except they introduce an additional aligning step
before the decoding stage.

41

Caption Generation

In the model proposed in this Chapter, the input to the decoder that generated the natural language
text could be from a CNN, in which case, the sequence information present in the input text will not
be preserved. This setting is similar to the popular task of caption generation for images. [119}[120]
embed the image using a deep vision CNN which is input to a language RNN that produces the
caption. This was extended with attention to improve the text generation in [133]. This is further
improved by using a sentinel for non-visual words in [74]. In [72], the authors train the model to
explicitly learn attention maps from alignment information. In [136], there is an additional review
network that inputs the output of an encoder to produce multiple thought vectors using attention.
These are then passed as input to the decoder.

Autoencoder

In one of the networks of the proposed model, the input and the output are the same, making it
an Autoencoder. In [63], the authors proposed a hierarchical LSTM that could encode and decode
a long paragraph showing that the model could preserve syntactic, semantic and discourse coher-
ence. A recent work [36] proposed a similar model which encodes using a CNN and decodes using
a hierarchical LSTM. An earlier model proposed in [28] auto-encoded sentences.

6.2 Paradigms and Models for Improving Review Generation

In this section, we consider some of the existing techniques that have been used for other (similar)
tasks previously with success, and which could be used to enhance review generation.

6.2.1 Extractive vs. Abstractive Text

In Section we discussed techniques proposed in the past that extracted sentences or phrases
from different reviews and stitched together, an explanation for the target user. While such an ad-hoc
explanation may suffice for the purpose, they are known to suffer from poor readability.

With the recent advances in the field of neural networks, it has been shown that generating text
that is both grammatical and readable is now feasible. e.g. [71]. Therefore, we propose to generate
reviews in an abstractive manner.

6.2.2 Character and Word Level Models

A few attempts have been already made to generate personalized reviews that can serve as an ex-
planation. Two of the models proposed in the past used character-level models [26}[71] and a more
recent approach used word-level models [127]. Learning at character-level is helpful in scaling to
large vocabulary because at each step of the prediction, the model is only predicting which of the
characters will occur next, which is several orders of magnitude smaller than the typical vocabulary
sizes in large corpora. In contrast, word-level models are known to have trouble with increasing
vocabulary sizes. However, a character-level model will most likely need to learn more model pa-
rameters since it has to also learn how to combine characters together to form meaningful words,

42

before learning to order the words to form meaningful sentences. i.e. both models have different
strengths and weaknesses, and it is not obvious which one would perform better. In [134], the au-
thors proposed a model that could combine word and character level representations dynamically
for a reading comprehension task. An earlier model proposed in [135] concatenated the two repre-
sentations for a sequence tagging task.

6.2.3 Beam Search

In the field of text generation, summarization where the focus is not on personalizing the generated
text, performance improvements have been reported by using a beam-search style decoding mech-
anism [25}[T00]. In a beam search decoder, the system maintains a set of KX most probable output at
each step in the decoding. Such a mechanism can perform better than a greedy decoding mechanism
which selects the next most probable word at each step.

6.2.4 GAN style training

Generative Adversarial Networks (GAN) [39}98] are a recent development in deep learning for train-
ing generative models, by an adversarial process. This framework has two sub networks — a genera-
tive network that is responsible for generating the output, and an adversarial network which tries to
differentiate if a sample is an original one from the training data or a synthetic one from the genera-
tive network. The generative network is trained to maximize the chances of the adversarial network
making a mistake. Such a framework has been shown to give good performance gains in the com-
puter vision community [23}[39,[102].

A recent work, [66], used it for visual paragraph generation. To improve the quality of the gener-
ated paragraph, [66] employs two discriminators — one for measuring the plausibility of each of the
sentences, and the other for measuring the smoothness of transition of topic between the sentences.
They produce sentences that are semantically relevant and grammatically correct, even though they
do not use a beam search decoder.

6.3 Proposed Work

[propose to study different character and word-level models, with and without beam search opti-
mization and an adversarial training, for the purposes of review generation and compare their per-
formances, both automatically and using human judgements. The proposed work is detailed in the
below subsections.

6.3.1 Models to be compared

[plan to implement (or reuse existing implementations of) the following models for comparing their
relative performances:
1. TransNets for selecting the most similar review (described in Chapter 5)

2. The character level model proposed in [71]
3. The extended character level model proposed in [26]

43

Target Network

| Predicted rev,y |

D o

| Predicted rev,y | ‘ Char/Word LSTM

Source Network

Decoder & Beam Search

D

D
| Char/Word LSTM Decoder & Beam Search |

“ar
|
¢ e ﬁ ﬁ
GA;r;]z,:)I:sgé)pt I O T Pe——1loss —> T T T I T
B ﬁ} A ﬁ\
Attention/ Char, word or CNN
Transform text processor

D
D

A o p o

Char, word or CNN Char, word or CNN
text processor text processor
Reviews by user, Reviews for itemy

sans rev,y sans rev,g

Figure 6.2: Proposed architecture

The word level model proposed in [127]

Character-level models (2 & 3) with a beam-search decoder
Character-level models (2 & 3) with a GAN-style training
Word-level model (4) with a beam-search decoder

Word-level model (4) with a GAN-style training

® N ook

The proposed architecture is shown in Figure The above variants correspond to changing
one or more of the modules A, B, C or D in the figure. A corresponds to the module that converts
a piece of text into its latent representation. Following the prior work, we could use a Character or
Word level LSTM. It could also be the CNN text processor detailed in Section B is the module
that converts the two latent representations into the one that corresponds to the latent representa-
tion of their joint review. It could be modeled using an attention mechanism as shown in [127] or
using the Transform as in the TransNets. C corresponds to the training process for learning how to
generate the approximate latent representation. It could either follow the process used in TransNets
by minimizing the L; or L, distance between the two latent vectors, or it could use an adversarial
training mechanism that has been very popular for training a number of different powerful neural
models. D corresponds to the decoder module that inputs a latent representation and any side in-
formation where applicable, and produces the actual text of the review. This could be implemented
using a plain LSTM that uses either a character or a word level decoder. However, adding a beam
search could possibly improve its performance.

44

Dataset Category #Users #Items #Ratings & Reviews

Yelpl7 1,029,432 144,072 4,153,150
AZ-FElec Electronics 4,200,520 475,910 7,820,765 (7,824,482)
AZ-CSJ Clothing, Shoes and Jewelry 3,116,944 1,135,948 5,748,260 (5,748,920)
AZ-Mov Movies and TV 2,088,428 200,915 4,606,671 (4,607,047)
RateBeer Rate Beer 40,213 110,419 2,924,127
BeerAdv Beer Advocate 33,387 66,051 1,586,259

Table 6.1: Dataset Statistics

6.3.2 Datasets

We will evaluate the performance of the models on six large datasets. The first one, Yelp17, is from
the latest Yelp dataset challengeﬂ containing about 4M reviews and ratings of businesses by about
IM users. The next three are three of the larger datasets in the latest release of Amazon reviewsﬂ
[80,81] containing reviews and ratings given by users for products purchased on amazon . com. The
next two are beer rating datasets [79}[82]. The statistics of the datasets are given in Table

The reviews in BeerAdv and RateBeer are relatively well formed in the sense that the reviews
show more structure. Since the reviews focus entirely on the aspects of the beer, the chance for
variance is reduced. For example, in BeerAdv, most reviews discuss the following aspects of the
beer in order: appearance, smell, taste, mouthfeel and drinkability, although each user has their own
way of describing the beer [71]. A sample review is below:

Poured from 120z bottle into half-liter Pilsner Urquell branded pilsner glass. Appearance: Pours a cloudy
golden-orange color with a small, quickly dissipating white head that leaves a bit of lace behind. Smell: Smells
HEAVILY of citrus. By heavily, I mean that this smells like kitchen cleaner with added wheat. Taste: Tastes
heavily of citrus- lemon, lime, and orange with a hint of wheat at the end. Mouthfeel: Thin, with a bit too
much carbonation. Refreshing. Drinkability: If I wanted lemonade, then I would have bought that.

The markers “Appearance”, “Smell”, etc. are not always used. Some users abbreviate it as “A”, “S”,
etc. and others omit them entirely. In these two datasets, the users also provide separate ratings for
these aspects along with their overall rating.

Compared to the beer reviews, reviews in Yelp17 are completely free form text as users describe
their unique experience with the item. The reviews do not always focus on only the aspects of the
item, but also the circumstances leading to the user trying the item and many of them tend to ramble
on. For example, a sample review is given below:

I had heard from a colleague at work about Cleveland bagel company’s bagels and how they were, “better
than new york city bagels.” Naturally, i laughed at this colleague and thought he was a ** for even thinking
such a thing. So, a few weeks later I happened to be up early on a saturday morning and made the trek up
to their storefront -(located across from the harp.) When i arrived was around 8:15 am; upon walking in
I found most bagel bins to be empty and only a few poppyseed bagels left. i don’t like poppyseed bagels so i
asked them what was going on with the rest and when they’d have more. To my surprise I found out that they

'https://www.yelp.com/dataset_challenge
Zhttp://jmcauley.ucsd.edu/data/amazon

45

https://www.yelp.com/dataset_challenge
http://jmcauley.ucsd.edu/data/amazon

only stay open as long as they have bagels to sell. Once they sell out, they close up shop and get going for the
next day. I ordered a poppyseed bagel even though I don't like them as I was curious as to what was up with
these bagels and can tell you that they are in fact better than new york city bagels. I can’t even believe I'm
saying that, but it’s true. You all need to do what you can to get over there to get some of these bagels. They're
unbelievable. I can’t explain with words exactly why they 're so amazing, but trust me, you will love yourself
for eating these bagels. Coffee isn’t that great, but it doesn’t matter. Get these bagels ?!

The Amazon reviews are similar to the Yelp reviews, with no discernible structure. Therefore,
we expect most of the models to be better at generating the beer reviews than those from the Yelp
and Amazon datasets.

6.3.3 Automatic Evaluation

To measure the performance of the models, we will evaluate the generated text to the original review
written by the target user for the target item, using the following metrics:

1. ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [67] is a recall oriented metric
for evaluating automatically generated summaries with human generated ones and was used
by some of the previous work to evaluate their approaches. The commonly used version of
this metric is the ROUGE-N, which computes N-gram overlap between the system and refer-
ence summaries. N is typically 1,2 or 3. This will help us determine how closely the generated
text resembles the original. It also accounts for the different word usage of different users.

2. BLEU (BiLingual Evaluation Understudy) [94] is a metric used for evaluating the quality of
machine-translated text. It uses a modified form of precision computed between the system
generated text and the reference.

3. METEOR (Metric for Evaluation of Translation with Explicit ORdering) [31] was proposed to
overcome some of the limitations of BLEU. It uses a harmonic mean of precision and recall to
calculate the score, and was found to correlate highly with human judgements.

4. MSE (Mean Squared Error) using a classifier (rating prediction / regression) trained on the
original reviews for rating prediction, applied to the generated summaries. This will help us
determine if the overall sentiment conveyed by the generated text is the same as the original.

5. Perplexity: The negative log likelihood of the generated text under a language model trained
on the original reviews. This will help us determine if the word sequence in the generated text
follows a similar grammar as the original corpus. Although we could use a generic English
language grammar checker, we should note that the generated text can be only as good as the
corpus used to train the model. Like we saw in the examples, the training corpora is not exactly
grammatically correct.

6. Predictability of aspect ratings: In the beer datasets, RateBeer and BeerAdv, in addition to
the overall ratings, users also provide individual ratings for the different aspects of the item.
That makes it possible to test if the generated text contains the same sentiment as the original,
for each of the aspects, in these two datasets. We will train separate classifiers for predicting
each of the aspect ratings from the original reviews. These classifiers can then be applied on
the generated text.

46

6.3.4 Human Judgements

In certain tasks, it has been noted that a good performance on intrinsic metrics does not necessarily
correlate with human ratings. Therefore, it is equally important to test the models’ performances
using external evaluation methods.

We propose a Mechanical Turk setup for evaluating the generated text. For each test item, the
turker is shown the original user’s rating and review for the item. Along side those, the generated
text from a pair of the test systems is shown in a random order. The turker is asked to rate the
generated text according to their similarity to the actual review and how closely they convey the
overall sentiment as indicated by the actual rating given by the user. Such an evaluation screen is
shown in Figure[6.3] The average scores by multiple MTurkers will help us compare the performance
of the different algorithms with respect to how humans evaluate their performance.

6.4 Timeline

* Knowledge Graph based methods
* Improving rating prediction - Published at RecSys 2016
» Explanation generation - Published at RecSys 2017 (joint work with Kathryn Mazaitis)
* Neural Network based methods
* Improving rating prediction - Published at RecSys 2017
* Explanation generation:
— Preliminary Experiments - Ongoing work - Fall 2017
— MTurk pipeline - Fall 2017
= Evaluation of Explanations - Spring 2018

* Thesis writing and defense - Summer 2018

47

Original Review Test Review A Test Review B

I enjoyed the Inferno film for the most part
as I'm very fond of Tom Hanks as Robert
Langdon. While it was obviously
impractical to include an involved literary
discussion of Dante's Inferno in the film,
it's a shame that it was barely touched on
at all as to me, it was one of the most
interesting aspects of the entire story. Like
many, | was also surprised and
disappointed by the changed ending. The
book's solution was challenging but
elegant; the film... clunky and predictable.

This user gave the movie 4 out of 5 stars

The largest positive for this movie is
Tom Hanks. He was excellent again as
Robert Langdon. Aside from Hanks, the
story was muddled but chase-movie
action and constant changes of
beautiful scenery makes this
entertaining if forgettable.

The best part of the book, the glorious
and great finale that made Dan Brown
a genius was changed to the most
common, stupid ending of a silly
Hollywood mystery/ thriller movie.

This movie starts off strong with a
chase sequence and the explanation of
the villain's motives. Then we get to
the usual Dan Brown- esque puzzle
solving. One thing i would say though
is the climax of the movie was done
even better than i expected. Only thing
i would say is a bit sub par was the lack
of puzzle solving which i loved in the
previous movies but still, to me this
movie was a 9/10 without a doubt.

Which of the Test Reviews matches the Original Review better?

O BothA&B O Only A O Only B O Neither

Which of the Test Reviews conveys the same sentiment as the Original Review ?

O BothA&B O Only A O Only B O Neither

Which of the Test Reviews emphasizes the same likeable aspect of the item as the Original Review?

O BothA&B O Only A O Only B O Neither

Which of the Test Reviews emphasizes the same unlikeable aspect of the item as the Original Review?

O BothA&B O Only A O Only B O Neither

The English language and style of which of the Test Reviews resemble that of a human ?

O BothA&B O Only A O Only B O Neither

The English language and style of which of the Test Reviews resemble that of the Original Review ?

O BothA&B O Only A O Only B O Neither
Which of the Test Reviews is coherent ?
O BothA&B O Only A O Only B O Neither
Which of the Test Reviews is readable ?
O BothA&B O Only A O Only B O Neither

Figure 6.3: Sample evaluation screen for an Amazon M Turker

48

Bibliography

(1]

2]

(5]

(6]
[7]

[11]

[12]

Behnoush Abdollahi and Olfa Nasraoui. Explainable restricted boltzmann machines for col-
laborative filtering. CoRR, abs/1606.07129, 2016. URL http://arxiv.org/abs/1606.
07129, 3.1

Behnoush Abdollahi and Olfa Nasraoui. Using explainability for constrained matrix factor-
ization. In Proc. Eleventh ACM Conference on Recommender Systems, RecSys 17, pages 79-83,
2017.3.1

Gediminas Adomavicius and Alexander Tuzhilin. Context-aware recommender systems. In
Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys 08, pages 335-336,
2008. [

Sungjin Ahn, Heeyoul Choi, Tanel Pirnamaa, and Yoshua Bengio. A neural knowledge lan-
guage model. CoRR, abs/1608.00318, 2016. URL http://arxiv.org/abs/1608.00318,
6.1.4

Amjad Almahairi, Kyle Kastner, Kyunghyun Cho, and Aaron Courville. Learning distributed
representations from reviews for collaborative filtering. In Proceedings of the 9th ACM Confer-
ence on Recommender Systems, RecSys ’15, pages 147-154, 2015.

Authors anonymized. Inmind movie agent - a platform for research. Under Review, 2017.

Lukasz Augustyniak, Krzysztof Rajda, and Tomasz Kajdanowicz. Method for aspect-based
sentiment annotation using rhetorical analysis. In Intelligent Information and Database Systems
- 9th Asian Conference, ACIIDS, pages 772-781, 2017.

Stephen H. Bach, Matthias Broecheler, Bert Huang, and Lise Getoor. Hinge-loss markov ran-
dom fields and probabilistic soft logic. arXiv:1505.04406 [cs.LG], 2015.

Lars Backstrom and Jure Leskovec. Supervised random walks: Predicting and recommending
links in social networks. In Proc. WSDM 11, pages 635-644, 2011. 2.3.1}2.3.2}2.3.2]

Trapit Bansal, David Belanger, and Andrew McCallum. Ask the gru: Multi-task learning for
deep text recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems,

RecSys '16, pages 107-114, 2016.

Yang Bao, Hui Fang, and Jie Zhang. Topicmf: Simultaneously exploiting ratings and reviews
for recommendation. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelli-

gence, AAAI'14, pages 2-8, 2014.
A. Bartoli, A. d. Lorenzo, E. Medvet, D. Morello, and F. Tarlao. "best dinner ever!!! ”: Auto-
matic generation of restaurant reviews with Istm-rnn. In 2016 [EEE/WIC/ACM International

49

http://arxiv.org/abs/1606.07129
http://arxiv.org/abs/1606.07129
http://arxiv.org/abs/1608.00318

Conference on Web Intelligence (WI), pages 721-724, 2016.

[13] Kirell Benzi, Vassilis Kalofolias, Xavier Bresson, and Pierre Vandergheynst. Song recommen-
dation with non-negative matrix factorization and graph total variation. In 2016 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, ICASSP 2016, Shanghai, China, March
20-25, 2016, pages 2439-2443, 2016.

[14] Mustafa Bilgic and Raymond J. Mooney. Explaining recommendations: Satisfaction vs. pro-
motion. In Beyond Personalization Workshop, January 2005.

[15] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993-1022, March 2003.

[16] Matthew Brand. A random walks perspective on maximizing satisfaction and profit. In Proc.
SDM, 2005.

[17] Cristian Bucilug, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 06, pages 535-541, 2006.

[18] Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In SIGIR, pages 335-336, 1998.

[19] R.Catherine and W. Cohen. Personalized recommendations using knowledge graphs: A prob-
abilistic logic programming approach. In Proc. RecSys '16, pages 325-332, 2016.

[20] R. Catherine and W. Cohen. Transnets: Learning to transform for recommendation. In Proc.

RecSys '17,2017.

[21] R. Catherine, K. Mazaitis, M. Eskenazi, and W. Cohen. Explainable entity-based recommen-
dations with knowledge graphs. In Proc. RecSys "17 Posters, 2017.

[22] Minmin Chen, Zhixiang Xu, Kilian Q. Weinberger, and Fei Sha. Marginalized denoising au-
toencoders for domain adaptation. In Proceedings of the 29th International Coference on Interna-
tional Conference on Machine Learning, ICML'12, pages 1627-1634, 2012.

(23] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Info-
gan: Interpretable representation learning by information maximizing generative adversarial
nets. In NIPS 2016, pages 2172-2180, 2016.

[24] Jianpeng Cheng and Mirella Lapata. Neural summarization by extracting sentences and
words. In Proc. 54th Annual Meeting of the Association for Computational Linguistics, ACL, 2016.
[6.1.1]

[25] Sumit Chopra, Michael Auli, and Alexander M. Rush. Abstractive sentence summarization
with attentive recurrent neural networks. In NAACL HLT 2016, pages 93-98, 2016.

[26] Felipe Costa, Sixun Ouyang, Peter Dolog, and Aonghus Lawlor. Automatic generation of nat-
ural language explanations. 2017.

[27] Paul Covington, Jay Adams, and Emre Sargin. Deep neural networks for youtube recommen-
dations. In Proceedings of the 10th ACM Conference on Recommender Systems, RecSys '16, pages
191-198, 2016. [F.1.2]

(28] Andrew M Dai and Quoc V Le. Semi-supervised sequence learning. In C. Cortes, N. D.

50

[40]

[41]

Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 3079-3087. 2015. [6.1.4]

Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google news per-
sonalization: Scalable online collaborative filtering. In Proc. WWW °07, pages 271-280, 2007.
221

Luis de Campos, Juan Fernandez-Luna, Juan Huete, and Miguel Rueda-Morales. Combin-
ing content-based and collaborative recommendations: A hybrid approach based on bayesian
networks. Int. J. Approx. Reasoning, 2010.

Michael Denkowski and Alon Lavie. Meteor universal: Language specific translation evalu-
ation for any target language. In Proceedings of the EACL 2014 Workshop on Statistical Machine
Translation, 2014.

Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexander J. Smola, Jing Jiang, and Chong Wang.
Jointly modeling aspects, ratings and sentiments for movie recommendation (jmars). In Pro-
ceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14, pages 193-202, 2014.

Chris Ding, Tao Li, and Michael Jordan. Convex and semi-nonnegative matrix factorizations.
IEEE TPAMI, 2010.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. In JMLR ’11, pages 2121-2159, 2011.

Ali Mamdouh Elkahky, Yang Song, and Xiaodong He. A multi-view deep learning approach
for cross domain user modeling in recommendation systems. In Proceedings of the 24th Inter-
national Conference on World Wide Web, WWW ’15, pages 278-288, 2015.

Zhe Gan, Yunchen Pu, Ricardo Henao, Chunyuan Li, Xiaodong He, and Lawrence Carin.
Learning generic sentence representations using convolutional neural networks. In Proceed-
ings of the 2017 Conference on Empirical Methods in Natural Language Processing, EMNLP, pages
2380-2390, 2017.[6.1.4

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han. Opinosis: A graph-based approach to
abstractive summarization of highly redundant opinions. In Proceedings of the 23rd International
Conference on Computational Linguistics, COLING ’10, pages 340-348, 2010.

Fatih Gedikli, Dietmar Jannach, and Mouzhi Ge. How should i explain? a comparison of
different explanation types for reccommender systems. Int. . Hum.-Comput. Stud., 72(4):367-
382, April 2014.[T]

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings of the
27th International Conference on Neural Information Processing Systems, NIPS'14, pages 2672-
2680, 2014. [6.24

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K. Li. Incorporating copying mechanism in
sequence-to-sequence learning. In Proc. 54th Annual Meeting of the Association for Computational

Linguistics, ACL, 2016.
Ido Guy, Naama Zwerdling, David Carmel, Inbal Ronen, Erel Uziel, Sivan Yogev, and Shila

51

Ofek-Koifman. Personalized recommendation of social software items based on social rela-
tions. In Proc. RecSys, 20009.

[42] Ben Hachey, Will Radford, and Andrew Chisholm. Learning to generate one-sentence bi-
ographies from wikidata. In Proceedings of the 15th Conference of the European Chapter of the
Association for Computational Linguistics, EACL, pages 633-642, 2017.

[43] Taher H. Haveliwala. Topic-sensitive pagerank. In Proc. WWW 02, pages 517-526, 2002.

[44] Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. Trirank: Review-aware explainable
recommendation by modeling aspects. In Proceedings of the 24th ACM International on Confer-
ence on Information and Knowledge Management, CIKM ’15, pages 1661-1670, 2015.

[45] Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web,
WWW 17, pages 173-182, 2017.

[46]]. Herlocker,]. Konstan, and J. Riedl. Explaining collaborative filtering recommendations. In
CSCW, pages 241-250, 2000.

[47] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. In Deep Learning and Representation Learning Workshop, NIPS "14, 2014.

[48] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation, 9
(8):1735-1780, November 1997.

[49] Julia Hoxha and Achim Rettinger. First-order probabilistic model for hybrid recommenda-
tions. In Proc. ICMLA 13, pages 133-139, 2013.

[50] Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard Hovy, and Eric Xing. Harnessing deep
neural networks with logic rules. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 2410-2420, August 2016.

[51] Mohsen Jamali and Martin Ester. Trustwalker: A random walk model for combining trust-

based and item-based recommendation. In Proc. KDD, 20009.

(52] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proc. SIGKDD,
2002.24.2]

(53] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu. Convolutional
matrix factorization for document context-aware recommendation. In Proceedings of the 10th
ACM Conference on Recommender Systems, RecSys 16, pages 233-240, 2016.

[54] Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Proceedings of
the 2016 Conference on Empirical Methods in Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 1317-1327, 2016.

[55] Toannis Konstas, Vassilios Stathopoulos, and Joemon M. Jose. On social networks and collab-
orative recommendation. In Proc. SIGIR '09, pages 195-202, 2009.

[56] Yehuda Koren. Factorization meets the neighborhood: A multifaceted collaborative filtering

model. In Proc. KDD 08, pages 426-434, 2008.

[57] Pigi Kouki, Shobeir Fakhraei, James Foulds, Magdalini Eirinaki, and Lise Getoor. Hyper: A
flexible and extensible probabilistic framework for hybrid recommender systems. In Proc.

52

RecSys '15, pages 99-106, 2015.

[58] Pigi Kouki, James Schaffer, Jay Pujara, John O’'Donovan, and Lise Getoor. User preferences for
hybrid explanations. In Proceedings of the Eleventh ACM Conference on Recommender Systems,
RecSys '17, pages 84-88, 2017.

[59] Mathias Kraus and Stefan Feuerriegel. Sentiment analysis based on rhetorical structure the-
ory: Learning deep neural networks from discourse trees. CoRR, abs/1704.05228,2017. URL
http://arxiv.org/abs/1704.05228,

[60] Quoc V Le and Tomas Mikolov. Distributed representations of sentences and documents. In
ICML, volume 14, pages 1188-1196, 2014.

[61] Rémi Lebret, David Grangier, and Michael Auli. Neural text generation from structured data
with application to the biography domain. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, EMINLP, pages 1203-1213, 2016.

[62] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[63] Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. A hierarchical neural autoencoder for para-
graphs and documents. In Proceedings of the 53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint Conference on Natural Language Processing of
the Asian Federation of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China,
Volume 1: Long Papers, pages 1106-1115, 2015.

[64] Piji Li, Zihao Wang, Zhaochun Ren, Lidong Bing, and Wai Lam. Neural rating regression
with abstractive tips generation for recommendation. In Proc. 40th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR "17, pages 345-354,
2017.

[65] Sheng Li, Jaya Kawale, and Yun Fu. Deep collaborative filtering via marginalized denoising
auto-encoder. In Proceedings of the 24th ACM International on Conference on Information and
Knowledge Management, CIKM 15, pages 811-820, 2015.

[66] Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, and Eric P. Xing. Recurrent topic-
transition GAN for visual paragraph generation. CoRR, abs/1703.07022, 2017.

[67] Chin-Yew Lin and Eduard H. Hovy. Automatic evaluation of summaries using n-gram co-
occurrence statistics. In HLT-NAACL 2003, 2003.

[(68] Thomas Lin, Mausam, and Oren Etzioni. Entity linking at web scale. In Proc. AKBC-WEKEX
'12, pages 84-88, 2012.

[69] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity and rela-
tion embeddings for knowledge graph completion. In Proc. Twenty-Ninth AAAI Conference on
Artificial Intelligence, AAAT'15, pages 2181-2187, 2015.

[70] Guang Ling, Michael R. Lyu, and Irwin King. Ratings meet reviews, a combined approach
to recommend. In Proceedings of the 8th ACM Conference on Recommender Systems, RecSys '14,

pages 105-112, 2014. 4 [4.1.1]

[71] Zachary Chase Lipton, Sharad Vikram, and Julian McAuley. Capturing meaning in product
reviews with character-level generative text models. CoRR, abs/1511.03683, 2015.

53

http://arxiv.org/abs/1704.05228

[6.2.212}[6.3.2]

[72] Chenxi Liu, Junhua Mao, Fei Sha, and Alan L. Yuille. Attention correctness in neural image
captioning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, pages
4176-4182, 2017. 614

(73] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag New York, Inc., 1984.

[74] Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard Socher. Knowing when to look: Adaptive
attention via A visual sentinel for image captioning. CoRR, abs/1612.01887,2016. URLhttp:
//arxiv.org/abs/1612.01887.

[75] Hao Ma, Dengyong Zhou, Chao Liu, Michael R. Lyu, and Irwin King. Recommender systems
with social regularization. In Proceedings of the Fourth ACM International Conference on Web
Search and Data Mining, WSDM 11, pages 287-296, 2011.

[76] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

[77] J. McAuley and J. Leskovec. Hidden factors and hidden topics: Understanding rating dimen-
sions with review text. In RecSys '13, pages 165-172.

(78] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: Understanding rating
dimensions with review text. In Proceedings of the 7th ACM Conference on Recommender Systems,
RecSys '13, pages 165-172, 2013. 4} [4.1.1}[4.2.3}|4.3.2}|4.3.3]

[79] Julian McAuley, Jure Leskovec, and Dan Jurafsky. Learning attitudes and attributes from
multi-aspect reviews. In Proceedings of the 2012 IEEE 12th International Conference on Data

Mining, ICDM ’12, pages 1020-1025, 2012.

(80] Julian McAuley, Rahul Pandey, and Jure Leskovec. Inferring networks of substitutable and
complementary products. In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’15, pages 785-794, 2015.

[81] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR "15, pages 43-52, 2015.

4.3.1}[6.3.2]

[82] Julian John McAuley and Jure Leskovec. From amateurs to connoisseurs: Modeling the evolu-
tion of user expertise through online reviews. In Proc. WWW ’13, pages 897-908, 2013.

[83] Andrew Kachites McCallum. Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002.

[84] Hongyuan Mei, Mohit Bansal, and Matthew R. Walter. What to talk about and how? selective
generation using Istms with coarse-to-fine alignment. In NAACL HLT 2016, The 2016 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, pages 720-730, 2016.
(85] Tom Mitchell, William Cohen, Estevam Hruschka Jr., Partha Talukdar, Justin Betteridge,
Andrew Carlson, Bhavana Mishra, Matthew Gardner, Bryan Kisiel, Jayant Krishnamurthy,

Ni Lao, Kathryn Mazaitis, Thahir Mohamed, Ndapandula Nakashole, Emmanouil Platanios,
Alan Ritter, Mehdi Samadi, Burr Settles, Richard Wang, Derry Wijaya, Abhinav Gupta, Xinlei

54

http://arxiv.org/abs/1612.01887
http://arxiv.org/abs/1612.01887

86]

(87]

(88]

[91]

[92]

(93]

Chen, Abulhair Saparov, Malcolm Greaves, and Joel Welling. Never-ending learning. In Proc.
AAAIL 2015. 2.1} 2.2} 3.1]

Subhabrata Mukherjee, Kashyap Popat, and Gerhard Weikum. Exploring latent semantic fac-
tors to find useful product reviews. In Proceedings of the 2017 SIAM International Conference on
Data Mining, pages 480-488, 2017.

C. Musto, P. Basile, M. de Gemmiis, P. Lops, G. Semeraro, and S. Rutigliano. Automatic se-
lection of linked open data features in graph-based recommender systems. In CBRecSys 2015.

22B.1]

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. Summarunner: A recurrent neural network
based sequence model for extractive summarization of documents. In Proc. Thirty-First AAAI
Conference on Artificial Intelligence, pages 3075-3081, 2017.

Shashi Narayan, Nikos Papasarantopoulos, Mirella Lapata, and Shay B. Cohen. Neural ex-
tractive summarization with side information. CoRR, abs/1704.04530, 2017. URL http:
//arxiv.org/abs/1704.04530.

Hitoshi Nishikawa, Takaaki Hasegawa, Yoshihiro Matsuo, and Gen-ichiro Kikui. Optimizing
informativeness and readability for sentiment summarization. In ACL Short Papers, pages 325-

330, 2010. [6.1.1]

Aédron van den Oord, Sander Dieleman, and Benjamin Schrauwen. Deep content-based mu-
sic recommendation. In Proceedings of the 26th International Conference on Neural Information
Processing Systems, NIPS’13, pages 2643-2651, 2013.

V. Ostuni, T. Di Noia, E. Di Sciascio, and R. Mirizzi. Top-n recommendations from implicit
feedback leveraging linked open data. In RecSys '13, pages 85-92.

Enrico Palumbo, Giuseppe Rizzo, and Raphaél Troncy. Entity2rec: Learning user-item re-
latedness from knowledge graphs for top-n item recommendation. In Proc. Eleventh ACM
Conference on Recommender Systems, RecSys 17, pages 32-36, 2017.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ACL 02, pages 311-318, 2002.

Michael Pazzani and Daniel Billsus. Learning and revising user profiles: The identification
ofinteresting web sites. Mach. Learn., 27(3):313-331, June 1997.

Soujanya Poria, Erik Cambria, Devamanyu Hazarika, Navonil Majumder, Amir Zadeh, and
Louis-Philippe Morency. Context-dependent sentiment analysis in user-generated videos. In
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ACL, pages
873-883,2017.4.1.3|

Mickaél Poussevin, Vincent Guigue, and Patrick Gallinari. Extended recommendation frame-
work: Generating the text of a user review as a personalized summary.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak
Lee. Generative adversarial text to image synthesis. In Proceedings of the 33rd International
Conference on International Conference on Machine Learning - Volume 48, ICML'16, pages 1060-
1069, 2016. 624

55

http://arxiv.org/abs/1704.04530
http://arxiv.org/abs/1704.04530

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Steffen Rendle. Factorization machines. In Proceedings of the 2010 IEEE International Conference
on Data Mining, ICDM ’10, pages 995-1000, 2010.

Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive
sentence summarization. In Proceedings of the 2015 Conference on Empirical Methods in Natural

Language Processing, EMINLP, pages 379-389, 2015.

Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In Proceedings
of the 20th International Conference on Neural Information Processing Systems, NIPS'07, pages

1257-1264, 2007. @ F23)E33]
Tim Salimans, lan J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. In NIPS 2016, pages 2226-2234, 2016.

Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu. Representation learning of users and
items for review rating prediction using attention-based convolutional neural network. In
3rd International Workshop on Machine Learning Methods for Recommender Systems (MLRec), SDM

'17,2017. A [E12

Lei Sha, Lili Mou, Tianyu Liu, Pascal Poupart, Sujian Li, Baobao Chang, and Zhifang Sui.
Order-planning neural text generation from structured data. CoRR, abs/1709.00155, 2017.
URLhttp://arxiv.org/abs/1709.00155.

A. Sharma and D. Cosley. Do social explanations work?: Studying and modeling the effects of
social explanations in recommender systems. In WWW ’13, pages 1133-1144, 2013.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Y.
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sen-
timent treebank. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 1631-1642. Association for Computational Linguistics, 2013.

Hongya Song, Zhaochun Ren, Shangsong Liang, Piji Li, Jun Ma, and Maarten de Rijke. Sum-
marizing answers in non-factoid community question-answering. In Proc. Tenth ACM Inter-
national Conference on Web Search and Data Mining, WSDM ’17, pages 405-414, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.,
15(1):1929-1958, 2014.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of semantic knowl-
edge. In Proc. WWW, 2007.

Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. Pathsim: Meta path-based
top-k similarity search in heterogeneous information networks. PVLDB, 2011.

Yunzhi Tan, Min Zhang, Yiqun Liu, and Shaoping Ma. Rating-boosted latent topics: Under-
standing users and items with ratings and reviews. In Proceedings of the Twenty-Fifth Interna-
tional Joint Conference on Artificial Intelligence, [JCAI'16, pages 2640-2646, 2016.

[112] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-

scale information network embedding. In Proc. 24th International Conference on World Wide
Web, WWW 15, pages 1067-1077, 2015.

[113] Jian Tang, Yifan Yang, Samuel Carton, Ming Zhang, and Qiaozhu Mei. Context-aware natural

56

http://arxiv.org/abs/1709.00155

language generation with recurrent neural networks. CoRR, abs/1611.09900, 2016. URL
http://arxiv.org/abs/1611.09900.

[114] Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. Translational recommender networks. CoRR,
abs/1707.05176, 2017. URL http://arxiv.org/abs/1707.05176.

[115] Nava Tintarev and Judith Masthoff. Designing and Evaluating Explanations for Recommender
Systems, pages 479-510. Springer US, Boston, MA, 2011.

[116] Hanghang Tong and Christos Faloutsos. Center-piece subgraphs: Problem definition and fast
solutions. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD "06, pages 404-413, 2006.

[117] J. Vig, S. Sen, and J. Riedl. Tagsplanations: Explaining recommendations using tags. In IUI "09,
pages 47-56. [3.1]
[118] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Man-

zagol. Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. J. Mach. Learn. Res., 11:3371-3408, December 2010.

[119] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: A neural
image caption generator. In The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2015.

[120] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. Show and tell: Lessons
learned from the 2015 mscoco image captioning challenge. IEEE Trans. Pattern Anal. Mach.
Intell., 39(4):652-663, April 2017.

[121] Chong Wang and David M. Blei. Collaborative topic modeling for recommending scientific
articles. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD "11, pages 448-456, 2011. [4.1.1}|4.1.2}4.2.3[|4.3.3]

[122] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. Collaborative deep learning for recommender
systems. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD 15, pages 1235-1244, 2015. [4}]4.1.2}|4.2.3} 4.3.3)

[123] Lu Wang and Wang Ling. Neural network-based abstract generation for opinions and argu-
ments. 2016. [6.1.1]

[124] M. Wang, M. Liy, J. Liu, S. Wang, G. Long, and B. Qian. Safe Medicine Recommendation via
Medical Knowledge Graph Embedding. ArXiv e-prints, October 2017.

[125] William Yang Wang and William W. Cohen. Joint information extraction and reasoning: A
scalable statistical relational learning approach. In Proc. ACL 2015, pages 355-364, 2015.

[126] William Yang Wang, Kathryn Mazaitis, and William W. Cohen. Programming with personal-
ized pagerank: A locally groundable first-order probabilistic logic. In Proc. CIKM 13, pages

2129-2138,2013.223.223.23.113.23.2]

[127] Zhongqing Wang and Yue Zhang. Opinion recommendation using A neural model. In Proc.
Conference on Empirical Methods in Natural Language Processing, EMNLP, pages 1627-1638,

2017.[6.1.3}[6.2.2] [4][6.3.1
[128] Jonatas Wehrmann, Willian Becker, Henry E. L. Cagnini, and Rodrigo C. Barros. A character-

57

http://arxiv.org/abs/1611.09900
http://arxiv.org/abs/1707.05176

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

based convolutional neural network for language-agnostic twitter sentiment analysis. In 2017
International Joint Conference on Neural Networks, [CNN, pages 2384-2391, 2017.

Chao-Yuan Wu, Alex Beutel, Amr Ahmed, and Alexander]. Smola. Explaining reviews and
ratings with paco: Poisson additive co-clustering. In Proceedings of the 25th International Con-
ference Companion on World Wide Web, WWW ’16 Companion, pages 127-128, 2016.

Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. Collaborative denoising auto-

encoders for top-n recommender systems. In Proceedings of the Ninth ACM International Con-
ference on Web Search and Data Mining, WSDM ’16, pages 153-162, 2016.

Han Xiao, Minlie Huang, and Xiaoyan Zhu. From one point to a manifold: Knowledge graph
embedding for precise link prediction. In Proc. Twenty-Fifth International Joint Conference on
Artificial Intelligence, JCAI'16, pages 1315-1321, 2016.

Wenhan Xiong, Thien Hoang, and William Yang Wang. DeepPath: A Reinforcement Learning
Method for Knowledge Graph Reasoning. In Proc. 2017 Conference on Empirical Methods in
Natural Language Processing EMNLP, pages 575-584, 2017.

Kelvin Xu, Jimmy Lei Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhutdi-
nov, Richard S. Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption gener-
ation with visual attention. In Proceedings of the 32Nd International Conference on International
Conference on Machine Learning - Volume 37, ICML'15, pages 2048-2057, 2015.

Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu, William W. Cohen, and Ruslan Salakhut-
dinov. Words or characters? fine-grained gating for reading comprehension. CoRR,
abs/1611.01724,2016. URLhttp://arxiv.org/abs/1611.01724.

Zhilin Yang, Ruslan Salakhutdinov, and William W. Cohen. Multi-task cross-lingual sequence
tagging from scratch. CoRR, abs/1603.06270, 2016. URL http://arxiv.org/abs/1603.
06270. [6.2.2]

Zhilin Yang, Ye Yuan, Yuexin Wu, William W. Cohen, and Ruslan Salakhutdinov. Review net-
works for caption generation. In Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, pages 2361-2369, 2016.

Yuanshun Yao, Bimal Viswanath, Jenna Cryan, Haitao Zheng, and Ben Y. Zhao. Automated
crowdturfing attacks and defenses in online review systems. CoRR, abs/1708.08151, 2017.
URLhttp://arxiv.org/abs/1708.08151.

Michihiro Yasunaga, Rui Zhang, Kshitijh Meelu, Ayush Pareek, Krishnan Srinivasan, and
Dragomir R. Radev. Graph-based neural multi-document summarization. In Proc. 21st Con-
ference on Computational Natural Language Learning (CoNLL 2017), pages 452-462,2017.

Xing Yi, Liangjie Hong, Erheng Zhong, Nanthan Nan Liu, and Suju Rajan. Beyond clicks:
Dwell time for personalization. In Proceedings of the 8th ACM Conference on Recommender Sys-
tems, RecSys '14, pages 113-120, 2014.

X.Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal, B. Norick, and J. Han. Personalized entity
recommendation: A heterogeneous information network approach. In WSDM 14, pages 283 -

292.31]
Xiao Yu, Xiang Ren, Yizhou Sun, Bradley Sturt, Urvashi Khandelwal, Quanquan Gu, Bran-

58

http://arxiv.org/abs/1611.01724
http://arxiv.org/abs/1603.06270
http://arxiv.org/abs/1603.06270
http://arxiv.org/abs/1708.08151

don Norick, and Jiawei Han. Recommendation in heterogeneous information networks with
implicit user feedback. In Proc. RecSys, 2013.

[142] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu, Bradley Sturt, Urvashi Khandelwal, Brandon
Norick, and Jiawei Han. Personalized entity recommendation: A heterogeneous information
network approach. In Proc. WSDM, 2014. 12.2.1}[2.4.1}[2.4.2} |2.4.5|

[143] Amir Zadeh, Minghai Chen, Soujanya Poria, Erik Cambria, and Louis-Philippe Morency. Ten-
sor fusion network for multimodal sentiment analysis. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, EMNLP, pages 1114-1125, 2017.

[144] Y. Zhang, G. Lai, M. Zhang, Y. Zhang, Y. Liu, and S. Ma. Explicit factor models for explainable
recommendation based on phrase-level sentiment analysis. In SIGIR ’14, pages 83-92.

[145] Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang, Yiqun Liu, and Shaoping Ma. Explicit
factor models for explainable recommendation based on phrase-level sentiment analysis. In
Proceedings of the 37th International ACM SIGIR Conference on Research &/ Development in Infor-

mation Retrieval, SIGIR "14, pages 83-92, 2014.

[146] Lei Zheng, Vahid Noroozi, and Philip S. Yu. Joint deep modeling of users and items using
reviews for recommendation. In Proceedings of the Tenth ACM International Conference on Web
Search and Data Mining, WSDM ’17, pages 425-434, 2017. [4}[4.1.2} [4.2.1} [4.2.2} [4.3.3}[1]

59

	1 Introduction
	2 Completed Work: Rating Prediction using Knowledge Graphs
	2.1 Background and Concepts: Knowledge Graphs
	2.2 Related Work: Knowledge Graphs for Recommendation
	2.2.1 HeteRec_p

	2.3 Method
	2.3.1 Recommendation as Personalized PageRank
	2.3.2 Learning to Recommend using ProPPR
	2.3.3 Approach 2: TypeSim
	2.3.4 Approach 3: GraphLF

	2.4 Experiments and Results
	2.4.1 Datasets
	2.4.2 Experimental Setup
	2.4.3 Performance Comparison on Yelp
	2.4.4 Performance Comparison on IM100K
	2.4.5 Effect of Dataset Density on Performance

	2.5 Contributions

	3 Ongoing Work: Entity based Explanations using Knowledge Graphs
	3.1 Related Work: Knowledge Graphs for Explanation
	3.2 Explanation Method
	3.3 Real World Deployment and Evaluation
	3.4 Contributions

	4 Completed Work: Rating Prediction from Reviews using TransNets
	4.1 Related Work: Recommendation using Reviews
	4.1.1 Non-Neural Models
	4.1.2 Neural Net Models
	4.1.3 Comparison to Related Architectures and Tasks

	4.2 The TransNet Method
	4.2.1 CNNs to process text
	4.2.2 The DeepCoNN model
	4.2.3 Limitations of DeepCoNN
	4.2.4 TransNets
	4.2.5 Training TransNets
	4.2.6 Extended TransNets

	4.3 Experiments and Results
	4.3.1 Datasets
	4.3.2 Evaluation Procedure and Settings
	4.3.3 Competitive Baselines
	4.3.4 Evaluation on Rating Prediction

	4.4 Contributions

	5 Preliminary Work: User Review Prediction using TransNets
	6 Proposed Work: User Review Generation
	6.1 Related Work: Explanation using Reviews
	6.1.1 Non-Personalized Summarization
	6.1.2 Extractive / Non-Neural Models for personalized explanations
	6.1.3 Abstractive / Neural Models for personalized explanations
	6.1.4 Comparison to Related Tasks

	6.2 Paradigms and Models for Improving Review Generation
	6.2.1 Extractive vs. Abstractive Text
	6.2.2 Character and Word Level Models
	6.2.3 Beam Search
	6.2.4 GAN style training

	6.3 Proposed Work
	6.3.1 Models to be compared
	6.3.2 Datasets
	6.3.3 Automatic Evaluation
	6.3.4 Human Judgements

	6.4 Timeline

	Bibliography

