On unlexable programming languages

Robert J. Simmons

April 1, 2011

Abstract

One of the features of the Per]l programming language is that it is formally unparsable. In this
article, we consider the design of a programming language that is similarly unlexable, in that the
correct separation of a string of characters into lexical tokens is undecidable in general.

1 Introduction

The inspiration for this paper was a factual claim and an opinion, both of which I attribute with some
uncertainly to Larry Wall's October 2010 lecture at Carnegie Mellon University. Both claims, however,
are also definitively attributed to Jeffrey Kegler. The factual claim is that it Perl 5 is an unparsable
language []. The opinion is that this is a good thing []. If a language with undecidable
parsing is good, a language with undecidable lexing must be freaking awesome. Hence, this paper.

2 An undecidable family of lexers

The recipe for Perl's unparsability is rather straightforward: Perl is unparsable because **the only way to
parse Perl 5 is to run it or to simulate it using a language of equivalent power'" []. Specifically,
the use of BEGIN blocks can force code evaluation during the compilation phase and the eval function
can trigger compilation at runtime [].

Kegler, who established Perl's formal unparsability, was unamused that **Perl-bashers" picked up
his result as a criticism of Perl [], declaring that Perl's unparsability is a good thing, and that, in
fact, **demanding a parseable language is the sign of weak programmer." The underlying truth of this
statement is that Perl's unparsability means that Perl can have no meaningful notion of abstract syntax,
so that it is impossible to contemplate static analyses, factoring tools, or IDE feedback that works in
general on Per] programs, since such tools uniformly work on the level of abstract syntax. Perl can only
be interpreted, not compiled or, in a certain sense, reasoned about.

How can we apply similar principles to the design of a programming language with undecidable
lexing? In Perl, it is the BEGIN blocks which bootstrap parsing into potentially problematic Turing
tarpits. We define the lexing problem to be the process of taking a stream of characters and unambigu-
ously returning either an error or a single lexical token and a sub-stream of the original stream. Lexers

79

-0 9 0001 |j 111 t 00011111 | E 10110 | P 01011
0 00 a 1 k 11100 u 00000111 | F 10101 | Q 01010
1 1111111 |b 0110 |1 001100 v 11011 G 10100 | R 01001
2 01 c 1010 | m 110101 w 11010 H 10011 | S 01000
3 0111 d 0010 |n 101 x 11111 I 10010 | T 00111
4 1011 e 1110 | o0 001 y 11110] 10001 | U 00110
5 0011 f 11 p 100 z 11101 K 10000 | V 00101
6 1101 g 010 q 000 A 10 L 01111 | W 00100
7 0101 h 110 r 10101010 | B 11001 M 01110 | X 00011
8 1001 i O0l1 S 11111000 | C 11000 N 01101 | Y 00010

D 10111 O 01100 | Z 00001

Figure 1: Standard encoding of letters as bitstrings from the literature [].

deal with potential ambiguity by always selecting the longest possible lex; this is how we ensure that that
the C token elsebob always parses as a single identifier and not as the reserved word else followed
by the identifier bob.

We specify that the lexer returns a sub-stream to ensure that lexing can only read from the character
stream, not add to it.! In this paper, we will assume that the character stream available to the lexer is a
byte sequence - which we intuitively connect to the standard ASCII encoding of characters.?

2.1 The Dec/n languages

The parametrized Dec/n family of languages - where n is a Godel numbering of the three param-
eters, as yet unspecified - all share the following properties. Tokens such as *, ~, and ~ are lexed
individually, but an identifier is a string of alphanumeric characters (plus underscores) such that no
prefix corresponds to a non-terminating lambda calculus expression. This, combined with the requirement
that lexers return the longest possible token, is the reason why any perfect Dec/n lexer must solve
the halting problem. For instance, in the Dec/5 language (defined below), the alphanumeric sequence
algalKLaffq01X1uasOfoo parsesas two tokens, alqgalKLaffq01X1uas0 and foo, since the former
corresponds to a non-terminating expression.

A particular member of the Dec/n family is defined by three parameters. The first is a way of in-
terpreting a series of alphanumeric characters as a bitstrings (by giving a bitstring encoding for each
alphanumeric character in turn).> The second is a way of encoding bitstrings as lambda calculus ex-
pressions. The third is an evaluation strategy to use to attempt normalization.

80

2.2 Dec/5

The Dec/5 language is a specific instantiation of the Dec/n family. Characters are encoded as bitstrings
using a standard character-by-character encoding from the literature [1, even though this encod-
ing does have the potential disadvantage that many sequences of alphanumeric characters map to the
same bitstring. For convenience, we repeat this encoding in Figure 1.

The second piece for instantiating Dec/5 is a way of encoding bitstrings as lambda expressions.
We use the encoding from the Jot programming language [Bar]. Jot actually presents itself as a full
programming language, not just an encoding of lambda-calculus terms, but its termination behavior
is dependent on the evaluation strategy of the host language []. This is nevertheless perfect for
our purposes: we use Jot merely as one potential encoding of (a subset of) the terms of the untyped
lambda-calculus. Dec/5 uses a call-by-value evaluation strategy to attempt to normalize terms to a
value.

One useful aspect of the standard encoding of alphanumeric sequences is that any combinator
calculus term can be encoded directly as an alphanumeric sequence by writing application (prefix) as
“*a" and the S and K combinators as **s" and *'k'" (respectively). For instance, the token aaksask can
be extended by virtue of the fact that (K'S)(SK) is a terminating combinator calculus term [Bar].

3 Implementation

In Figure 2, we can see the signature allowing us to instantiate an (necessarily incomplete) lexer for any
Dec/n language. The particular implementation can only prove non-termination by detecting a cycle
in evaluation. All divergent terms will fail to be noticed by the implementation and will either cause
the implementation to diverge (if 1imit is NONE) or else raise an exception.

The implementation is available from https://bitbucket.org/robsimmons/dec-n.

4 Conclusion

This paper only scratches the surface of undecidable lexing techniques. Ever since Cohen's seminal
work on the area [], Godel encodings for programs have received insufficient attention. Our
Jot encoding is the most disappointing aspect of the implementation: not only does it fail to capture
all lambda calculus terms (merely allowing the simulation of all combinator calculus terms), but the
encoding is boring from the perspective of non-termination: almost all encodings terminate. As an
example, the Dec/n implementation can lex all of Shakespeare's Othello (downloaded from Project
Gutenberg) under the Dec/5 instantiation without ever finding a non-terminating term.

1Investigating ultralexing, where the lexer can modify the character stream, is an exciting direction for future work.
“Investigating undecidable UTF encoding techniques is an exciting direction for future work.
3Investigating non-compositional encodings of alphanumeric strings as bitstrings is an exciting direction for future work.

81

signature LEX_ARGS = sig

(* Maximum number steps to look for a cycle or an

* irreducable expression.

* NONE - the lexer will not terminate on a divergent sequence
* SOME n - only for n steps, then raise an exception *)

val limit: int option

(* The encoding of a given character as a bitlist.
* Most-significant-bit first! *)
val charcode: char -> bool list option

(* The encoding function that turns bitlists
* into lambda calculus expressions. *)
val lambdacode: bool list -> Lambda.exp

(* A step function for the lambda calculus;
* NONE implies termination *)
val step: Lambda.exp -> Lambda.exp option

end

Figure 2: The LEX_ARGS signature, parameterizing undecidable lexers.
References
[Bar] Chris Barker. Iota and jot: the simplest languages? http://semarch.linguistics.

fas.nyu.edu/barker/Iota/.

[Coh80] Norman H. Cohen. Godel numbers: a new approach to structured programming. S/G-
PLAN Notices, 15:70-74, 1980.

[Keg08a] Jeffrey Kegler. Perl is undecidable. 7he Perl Review, 5:7-11, 2008.
[Keg08b] Jeffrey Kegler. Rice's theorem. 7he Perl Review, 4:23-29, 2008.

[Keg09] Jeffrey Kegler. Unparseability is a good thing, 2009. http://www.perlmonks.org/
?node_1id=790624.

[Rey72] John C. Reynolds. Definitional interpreters for higher-order programming languages. In
Proceedings of the ACM annual conference, pages 717-740. ACM, 1972.

[Sim11] Robert J. Simmons. On unlexable programming languages. In SIGBOVIK 2011, pages
79-82. ACH, April 2011.

82

