
Distributed deductive databases, declaratively
The L10 logic programming language

Robert J. Simmons Bernardo Toninho Frank Pfenning
Carnegie Mellon University

{rjsimmon,btoninho,fp}@cs.cmu.edu

Abstract
We present the design of L10, a rich forward-chaining (a.k.a.
“bottom-up”) logic programming language. L10 allows parallel
computation to be explicitly specified through the use of worlds,
a logically-motivated concept that has been used to describe dis-
tributed functional programming. An interpreter for L10 runs these
logic programs on top of the infrastructure of the X10 programming
language, and is responsible for mapping between L10’s worlds
and places, the related X10 construct for describing distributed
computation.

Categories and Subject Descriptors D.1.6 [Programming Tech-
niques]: Logic programming

General Terms Design, Languages

Keywords distributed programming, logic programming, X10

1. Introduction
Forward-chaining logic programming is a way to declaratively
specify many algorithms, particularly those that involve database-
like operations or iteration to a fixed point, in a succinct and nat-
ural way. In this paper, we present the design and preliminary im-
plementation of the L10 language, which permits explicit declara-
tions of parallelism through the use of worlds. Worlds are similar
to X10’s places in that they represent potentially discrete locations
where data can be stored and computation can take place. However,
the concepts are not identical, and one role of an implementation of
L10 is to map worlds onto places in such a way that the maximum
amount of useful parallelism can be exposed.

1.1 Forward-chaining logic programming
Forward-chaining logic programming deals with a collections of
facts (which we think of as a finite relation) that model some
structure. Computations on these structures are described by rules.
For instance, the following two rules specify a path relation as
the transitive closure of a relation edge that represents edges in a
graph. The first rule says that any edge is also a path, and the second
rule says that we can extend every path along an edge.

edge X Y -> path X Y.
edge X Y, path Y Z -> path X Z.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
X10 ’11 June 4, 2011, San Jose, California
Copyright c⃝ 2011 ACM 978-1-4503-0770-3/01/06. . . $10.00

In the first rule, edge X Y is the premise and path X Y is the
conclusion. We use a syntax for rules which emphasizes that
rules are just logical implications; a reader familiar with Pro-
log notation would expect to see the second rule written as
“path(X,Z) :- edge(X,Y), path(Y,Z)”.

The operational interpretation of these rules is exhaustive for-
ward deduction. This means that we repeatedly take facts from our
database and try to match them against the premises of our rules;
whenever we succeed, we add the conclusion of that rule to the
database if that fact is not already present. Once no new facts can
be derived, we say that the database is saturated and forward de-
duction terminates. Systems implementing forward-chaining logic
programming are often called deductive databases, as they perform
exhaustive forward deduction over databases of facts to compute
other databases of facts.

Forward-chaining logic programming is a natural way of spec-
ifying many important algorithms. Two particularly important
papers in this area are Shieber, Schabes, and Pereira’s work on
specifying parsing algorithms as forward-chaining logic programs
[10] and McAllester’s work on specifying program analyses [6].
McAllester’s work, which also showed that a suitable interpreter
permits high-level reasoning about the asymptotic time complexity
of logic programs, has been particularly influential.

In addition to McAllester’s foundational theoretical work, re-
cent work has shown that large-scale program analysis is possible
using simple forward-chaining rules on top of efficient Datalog im-
plementations [1, 2, 4, 5, 15, 16]. The experience of the BDDB-
DDB project in particular was that the logical specification of Java
pointer analysis, in addition to being orders of magnitude more con-
cise than hand-tuned analyses written in Java, could be executed
twice as fast as those hand-coded analyses [15].

1.2 Distributed programming with worlds
The foundation of distributed programming in L10 is the world.
Worlds abstractly represent (potentially) different locations for the
storage and computation of relations. All relations must be explic-
itly declared in L10 programs, and the declaration of a relation
must associate it with some declared world.

We will use as an example a liveness analysis on programs writ-
ten in a simple low-level language. The result of liveness analysis
is a two place relation live between line numbers in the program
and variable names – if live L X is in the database, then when
the program counter is set to L the contents of variable X cannot be
discarded. We declare this relation in L10 as follows:

wLive : world.
live : nat -> t -> rel @ wLive.

The first declaration introduces a single world, wLive, and the sec-
ond declaration introduces a two-place relation live that exists at
world wLive (the keyword rel stands for “relation”). Line num-

bers are represented by the built-in type nat of natural numbers,
and variables are represented by the built-in type t of arbitrary con-
stants.

Liveness analysis depends on the program’s code, and there
may be other analyses (such as neededness analysis) that also
depend on the program’s code but that are independent of liveness
analysis. If we put the relations that encode the program and the
relations that encode neededness analysis at separate worlds (say,
wCode and wNeed), it allows the L10 interpreter to potentially
map these worlds to different X10 places. If wCode and wLive are
mapped to different X10 places, then computing the live relation
will involve communication between X10 places. If wLive and
wNeed are mapped to different X10 places, then the computation
of liveness and neededness analysis can happen in parallel.

The idea of parameterizing relations by worlds is not an arbi-
trary choice; it has a logical basis in the intuitionistic Kripke se-
mantics for modal logics as explored by Simpson [13]. Murphy
has previously shown that Simpson’s explicit worlds can be used
as the basis for a distributed programming language [7, 8]. Mur-
phy’s language, ML5, is a ML-like language for distributed web
programming that is in some ways similar to X10. In both ML5
and L10 different worlds allow data to exist in different physical
locations, but ML5 allows back-and-forth communication between
worlds whereas the communication in L10 is necessarily one-way.

1.3 Constructive negation with worlds
Worlds have another important use in L10. They stage the compu-
tation by determining the order in which relations are computed.
Consider the world wCode mentioned above. Information about the
program’s code can be encoded in three relations that exist at world
wCode – succ L L’ denotes that we may execute line L’ imme-
diately after executing line L, def L X denotes that X is defined at
line L, and use L X denotes that X is used at line L. (We show how
these relations are computed in Section 2.1.1.) Given these rela-
tions, liveness analysis can be defined by two rules. First, a variable
is live on any line where it is used:

use L X -> live L X.

Second, if a variable X is live at line L’, it is live at all the prede-
cessors of L’ that do not, themselves, define X:

live L’ X,
succ L L’,
not (def L X) -> live L X.

The second rule must be treated carefully, because it depends
on a fact about the def relation not holding. Negation introduces
a well-known complication to the execution of logic programs: a
rule such as “not fact -> fact” can cause inconsistent behav-
ior in a logic programming interpreter that checks premises (“Is
fact in the database? No.”) and then asserts conclusions (“Okay,
then add fact to the database.”) The theory of stratified negation
argues that some uses of negation make sense. If we have a rule
“not fact1 -> fact2” and if it is possible to stage the compu-
tation to ensure that, when this rule is considered, there can be no
additional facts about fact1, then we are justified in applying the
rule and deriving fact2. In L10, we use worlds to stage compu-
tation, so the second rule asserts that we have to do all necessary
computation at world wCode first, before we try to do any computa-
tion at wLive. It must also be the case that wCode cannot depend on
wLive, or else we would not be able to stage the computation ap-
propriately. L10 programs forbid any cyclic dependencies between
worlds for this reason.

While deductive databases have long allowed for stratified nega-
tion of various kinds, they have always justified negation in terms
of models that assign Boolean truth values to facts. Research into

constructive provability logic provides a proof-theoretic justifica-
tion for L10’s implementation of staging and stratified negation
[11, 12]. The details of the exact relationship between L10 and
constructive provability logic are outside the scope of this paper,
however.

1.4 Summary
L10 is a forward-chaining logic programming language that uses
a logically-motivated notion of worlds for two different purposes:
the explicit declaration of parallelism (Section 1.2) and program
staging, which enables stratified negation (Section 1.3).

Using the same logical mechanism for these two purposes, even
though they are somewhat related, does introduce some tension into
our language. As an example, we might really want the computa-
tion and data for both wCode and wLive to take place at the same
X10 place, but we are forced to use two different worlds, which
may be mapped to different places, in order to refer negatively to
the def relation when defining the live relation.

In Section 2, we will discuss a few more aspects of the L10
language through a series of examples. In Section 3 we will dis-
cuss how Elton, the prototype interpreter for the L10 language, op-
erates. The Elton implementation is available from http://l10.
hyperkind.org: a sequential interpreter exists, and the parallel
interpreter is still in development. In Section 4 we conclude and
discuss some future work.

2. Features of the L10 language
In the previous section, we gave an overview of the primary high-
level features of L10: exhaustive forward deduction and explicit
worlds for specifying parallelism and staging computation. In this
section, we will give several more examples that go into more detail
about the features and expressiveness of our language.

2.1 Parallel program analyses
Much recent interest in forward-chaining logic programming has
come from the compiler and program analysis communities; many
important program analyses can be given very concise and natu-
ral specifications, as well as efficient implementations, through the
use of deductive databases [1, 4, 6, 15]. In this section, we consider
a small low-level intermediate language in a compiler with three-
address operations. The goal is to specify liveness and neededness
analysis in logical form, and we will see that the natural specifica-
tions exhibit some parallelism that can be exploited. As discussed
in the introduction, L10’s worlds are used both to enable stratified
negation and to expose this natural parallelism.

For the purpose of the example, our language has the instruc-
tions shown below. We use x, y, z for variables, c for constants, ⊕
(op) for binary operations, and ? (cmp) for comparison operations.
We use l for line numbers, which are represented as natural num-
bers (of type nat) in L10; comparisons and addition for natural
numbers are primitives in the language.

The informal notation for these analyses, taken from Pfenning’s
lecture notes for a Compiler Design course (available from http:
//www.cs.cmu.edu/~fp/courses/15411-f09/), is given be-
low on the left; the encoding of these facts in L10 is given on the
right.

l : x← y ⊕ z line L (binop X Y Op Z)
l : x← y line L (move X Y)
l : x← c line L (loadc X C)
l : goto l′ line L (goto L’)
l : if (x ? c) goto l′ line L (if X Cmp C L’)
l : return x line L (return X)

We capture instructions as a type inst, declared on line 6 in
Figure 1. L10 allows user-defined types in addition to the three

1 // Commands
2
3 inst: type.
4 binop: t -> t -> t -> t -> inst.
5 move: t -> t -> inst.
6 loadc: t -> t -> inst.
7 goto: nat -> inst.
8 if: t -> t -> t -> nat -> inst.
9 return: t -> inst.

10
11 wCode: world.
12 line: nat -> inst -> rel @ wCode.
13
14 // Extracting relevant information
15
16 succ: nat -> nat -> rel @ wCode.
17 def: nat -> t -> rel @ wCode.
18 use: nat -> t -> rel @ wCode.
19
20 line L (binop X Y Op Z) ->
21 succ L (L+1),
22 def L X,
23 use L Y, use L Z.
24
25 line L (move X Y) ->
26 succ L (L+1),
27 def L X,
28 use L Y.
29
30 line L (loadc X C) ->
31 succ L (L+1),
32 def L X.
33
34 line L (goto L’) ->
35 succ L L’.
36
37 line L (if X Cmp C1 L’) ->
38 succ L L’, succ L (L+1),
39 use L X.
40
41 line L (return X) ->
42 use L X.

Figure 1. Program analysis: capturing program information.

built-in types string (string literals), nat (nonnegative integers),
and t (an open-ended type of arbitrary constants).

2.1.1 Extracting program information
The first phase of the analysis extracts relevant information from
the program, which is represented as facts of the form above. Both
the description of the program and the extracted information are
stored at the L10 world wCode. There are three relevant relations
here, at least initially:

• succ l l′: line l has (potential) successor l′ in the program CFG.
• def l x: line l defines variable x.
• use l x: line l uses variable x.

Given a line of code, this first stage in the analysis extracts
the successors, defined variables, and used variables. For instance,
a binary operation has one successor, defines one variable, and
uses two variables, whereas a conditional jump has two (potential)
successors, defines no variables, and uses one variable. These two

1 nec: nat -> t -> rel @ wCode.
2 line L (if X Comp C L1) -> nec L X.
3 line L (return X) -> nec L X.
4
5 wNeed: world.
6 needed: nat -> t -> rel @ wNeed.
7
8 nec L X -> needed L X.
9

10 needed L’ X,
11 succ L L’,
12 not (def L X) ->
13 needed L X.
14
15 use L Y,
16 def L X,
17 succ L L’,
18 needed L’ X ->
19 needed L Y.

Figure 2. Program analysis: neededness.

rules are logically represented in informal notation as follows:

l : x← y ⊕ z

succ l (l + 1)
def l x
use l y
use l z

J1

l : if (x ? c) goto l′

succ l (l + 1)
succ l l′

use l x

J5

The L10 code for this portion of the analysis can be seen in
Figure 1. The language allows rules to have multiple conclusions,
though all the relations in a conclusion must be defined at the same
world.

2.1.2 Liveness analysis
With succ, def, and use defined, we now can implement liveness
analysis as described in Section 1. Usually, liveness analysis is
presented in the form of data flow equations for which we compute
a least fixed point. Here, however, we simply run the two rules
from Section 1.3 to saturation, which can also be seen as a least
fixed point computation.1 The second rule presented there makes it
clear that liveness uses a form of backward propagation: from the
knowledge that x is live at l′ we infer that x is live at l under certain
conditions.

2.1.3 Neededness analysis
The L10 program we have been developing has used worlds for
stratified negation, but we have not yet explored any opportunities
for parallelism. We will now consider a neededness analysis that
can inform dead-code elimination and run in parallel to liveness
analysis. The liveness information computed in the previous sec-
tion is not appropriate for dead-code elimination, because an as-
signment such as l : z ← z + x in a loop for a variable z which
is not otherwise used will flag z as live throughout the loop, even
though l is dead code. Slightly more precise is neededness. We will
define two new relations:

• nec l x: at line l, x is necessary for control flow or as the return
value

• needed l x: at line l, x is needed

1 It is the least fixed point of the operator which extends the database of
facts by all facts arising from executing all applicable rules.

1 wDead: world.
2 dead: nat -> rel @ wDead.
3
4 def L X, succ L L’, not (needed L’ X) -> dead L.

Figure 3. Program analysis: dead code.

The first relation is defined at world wCode like the def, succ, and
use relations. The second relation is defined at world wNeed, seeded
by these necessary variables and propagated backwards, similar to
liveness analysis. The L10 code for neededness analysis is given in
Figure 2.

2.1.4 Dead-code elimination
Having performed a neededness analysis, identifying dead code
(shown in Figure 3), is straightforward: code is dead if it defines
a variable that is not needed. We introduce a relation dead L,
meaning that the command at line L is dead code.

Since neededness and liveness analysis as presented above are
independent, we can compute liveness in parallel with neededness
and dead-code identification.

2.2 Regular expressions
Our next example is a regular expression matcher, which we will
primarily use to introduce a new concept: worlds indexed by first-
order terms. The type regexp captures the form of regular ex-
pressions over an arbitrary alphabet. Tokens will be represented by
string constants.

Match the token a: a tok "a"
Match the empty string: ϵ emp
Match r once or more: r+ some RE
Match r1 and r2 in sequence: r1r2 seq RE1 RE2
Match either r1 or r2: r1 | r2 alt RE1 RE2

Other common regular expressions can be defined with these prim-
itives; for example, r? ≡ (r | ϵ) and r∗ ≡ (ϵ | r+).

Having described regular expressions, we can describe a regular
expression matcher. We will use two relations. The string we are
trying to match against the regular expression will be represented
by the set of facts in the token relation, and we will introduce a
three-place relation match which takes a regular expression and
two positions, represented as natural numbers.

The fundamental difference between this example and those we
have seen in the previous sections is that the match relation is as-
sociated with a world indexed by the matched regular expression.
The declaration of the indexed world w1 on line 13 of Figure 4 ac-
tually defines a family of worlds w1(RE). When the head of a rule
is a relation associated with world w1(RE) for some specific RE, the
premises can refer to a relation associated with world w1(RE’) if
RE’ is a subterm of RE. For instance, relations associated with the
world w1(alt emp (tok "a")) can depend on relations associ-
ated with worlds w1(emp) and w1(tok "a"), but not on relations
associated with the world w(tok "b"). As we will later see, this is
crucial to ensure termination of our matcher.

The declaration of the match relation has to specify the re-
lationship between the arguments of the relation and the world’s
index. We do this by assigning a name, RE, to the first argument
when we declare the match relation on line 15 of Figure 4. The no-
tation “{RE: regexp} nat ->...” is equivalent to the notation
“regexp -> nat ->...” that we have been using, but it allows
the argument to be named and mentioned later on in the declara-
tion. Names can always be provided, so we could also have written
“{RE: regexp} {I: nat}...” if we wanted.

1 // Regular expressions
2
3 regexp : type.
4 tok: string -> regexp.
5 emp: regexp.
6 some: regexp -> regexp.
7 seq: regexp -> regexp -> regexp.
8 alt: regexp -> regexp -> regexp.
9

10 // Parsing regular expressions
11
12 w0: world.
13 w1: regexp -> world.
14 token: string -> nat -> rel @ w0.
15 match: {RE: regexp} nat -> nat -> rel @ w1 RE.
16
17 token T I -> match (tok T) I (I+1).
18
19 token _ I -> match emp I I.
20
21 match RE I J -> match (some RE) I J.
22
23 match RE I J,
24 match (some RE) J K ->
25 match (some RE) I K.
26
27 match RE1 I J,
28 match RE2 J K ->
29 match (seq RE1 RE2) I K.
30
31 match RE1 I J -> match (alt RE1 RE2) I J.
32
33 match RE2 I J -> match (alt RE1 RE2) I J.

Figure 4. Regular expression matching.

The rules that define the match relation, lines 17-33 in Figure 4,
give the meaning of each regular expression constructor in a fairly
straightforward manner. We can match a token if it occurs in a
database (line 17); given an arbitrary token in a position i, we can
always match the empty string in that position (line 19); if the string
from i to j matches r1 and the string from j to k matches r2, then
the string from i to k matches r1r2 (lines 27-29).

2.2.1 Testing regular expressions
We encode a string as a series of facts, so the string “foo” is
represented as this database:{

token "f" 0 token "o" 2
token "o" 1 token "EOF" 3

}
and the string “boo” is represented as this database:{

token "b" 0 token "o" 2
token "o" 1 token "EOF" 3

}
If our regular expression of interest is f(o+), then we can con-
clude that the string matches the regular expression if the fact
match (seq (tok "f") (some (tok "o"))) 0 3 is deriv-
able from the database describing the string.

As mentioned in Section 1.1, the rules in a program are applied
to known facts to derive new facts until no new information can be
derived. We may then wonder how our regular expression matcher
can reach saturation, considering that we can apparently always
derive match emp 0 0, then match (alt emp emp) 0 0, and
so on forever. Most deductive databases would not even allow a

1 // Adding negation to regular expressions
2
3 neg: regexp -> regexp.
4
5 token _ I,
6 token _ J,
7 I <= J,
8 not (match RE I J) ->
9 match (neg RE) I J.

10
11 db3 = (token "d" 0, token "a" 1,
12 token "a" 2, token "EOF" 3)
13 @ w1 (seq (neg (alt (tok "b") (tok "c")))
14 (some (tok "a"))).
15
16 db4 = (token "b" 0, token "a" 1,
17 token "a" 2, token "EOF" 3)
18 @ w1 (seq (neg (alt (tok "b") (tok "c")))
19 (some (tok "a"))).
20

Figure 5. Regular expressions with negation, and two queries that
try to match the strings “daa” (db3) and “baa” (db4) against the
regular expression ¬(b | c)(a+).

program like the one in Figure 4, because the rules dealing with
alternation (r1 | r2) on lines 31 and 33 of Figure 4 violate range
restriction, a common requirement that all variables mentioned in
a conclusion appear in a premise. This is a recurring pattern in
forward-chaining logic programs, and a usual solution is to add
a new relation, subterm(RE), which enumerates the subterms of
the regular expression we are interested in. Then, the rules on
lines 31 and 33 of Figure 4 could be given the additional premise
of subterm(alt RE1 RE2), which would make the rules range
restricted.

Adding an explicit subterm predicate is unnecessary in L10.
When we made the regular expression argument an index to the
world w1, it restricted us to writing programs where the derivabil-
ity of a fact of the form match RE I J could only depend on
the derivability of a fact of the form match RE’ I’ J’ if RE’
was a subterm of RE. Because we always know the form of the
fact that we want to derive – in the motivating example, it was
match (seq (tok "f") (some (tok "o"))) 0 3 – then we
can simply ask L10 to only do the exhaustive forward-chaining
necessary to prove this fact (if it is, in fact, provable). To this end,
whenever we request that L10 do exhaustive forward reasoning, we
annotate the initial database with a world that limits how far satura-
tion goes. This prevents the computation from diverging, since the
problematic facts exist at worlds which are known to be irrelevant
and so will never be considered.

To review, L10 implements a notion of limited saturation: by
annotating worlds with terms and requiring that facts at indexed
worlds only depend on facts at the same world when the index is a
subterm, we can capture a class of algorithms that naturally saturate
up to a point. If an indexed world depends a non-indexed world –
in the regular expression example, w1 depends on w0 – then all
instances w1(E) of the indexed world depend on the non-indexed
world. This feature serves the three purposes: it makes programs
more concise by removing the need for extra subterm premises;
it increases efficiency, since we only compute facts that exist in
worlds that are relevant to the current computation; and it increases
the number of opportunities for parallelism, since having worlds
that depend on terms allows many more worlds to be independent

from each other so that L10 may perform the computation in
parallel. This last point will be discussed further in Section 3.

2.2.2 Regular expressions with negation
As a final example, we will consider one extension to our regular
expression program: the negation of a regular expression neg(R)
(or, informally, ¬r). The rule, given on lines 5-9 of Figure 5, is
straightforward – a string from i to j matches the regular expression
¬r if it does not match the regular expression r.

While the intuitive meaning of the rule for negated regular ex-
pressions is clear, it is not immediately obvious that this use of
negation is justified, as we are referring to the negation of the match
relation to prove something about the match relation. It is justified
since the world w1 is indexed by a regular expression. The subterm
ordering on regular expressions, which in the previous section al-
lowed us to perform limited saturation, also ensures that we can
stage computation at world w1(RE) before considering computa-
tion at world w1(neg(RE)). This use of stratified negation is one
instance of locally stratified negation, which was first considered
by Przymusinski [9].

3. Elton, the L10 interpreter
We envision two ways to run L10 code. An interpreter reads in L10
programs and interprets them directly, whereas a compiler works
much like Lex or Yacc utilities, reading L10 and outputting code
in another language like X10 or Standard ML. We are developing
an interpreter written in a combination of X10 and Standard ML
and a compiler to Standard ML. These are available at http:
//l10.hyperkind.org.

Within a particular stage – that is, when performing computa-
tion at a particular world – the interpreter is not fundamentally dif-
ferent than a standard deductive database. Currently, this part of El-
ton uses inefficient data structures; we plan to implement indexed
tuple-at-a-time evaluation that validates McAllester’s cost seman-
tics (at least when all evaluation is at a single X10 place) [6].

3.1 Static scheduling
A unique aspect of Elton is that it enables parallelism by mapping
different stages to different places in a coherent way. When a query
is made, the interpreter will statically assign different stages to
different X10 places depending on the number of places that are
available. When none of the worlds are indexed, this is done by
making a breadth-first search of the world dependency graph. For
example, if we wanted to compute both the liveness and dead code
analyses of Section 2.1, then the computation would be scheduled
on two different places as long as more than one place is available.

The result of this breadth-first search is a task list for every
X10 place. In the program analysis example, one possibility is that
wCode and wLive will be scheduled at Place A and wNeed and
wDead will be scheduled at Place B. In this case, computation at
Place B will block until the the def, succ, use, and nec relations
are derived at Place A.

3.2 Scheduling indexed worlds
The story is somewhat more interesting in the case when some
of the worlds are indexed. In these cases, a breadth-first search of
the (relevant) subterm indices of the world will be performed until
either all subterms have been considered or the number of unique
branches exceeds the available parallelism. As a concrete example,
the regular expression queries from Figure 5 can be scheduled as
shown in Figure 6 if there are at least three places available. This
assignment is interesting in part because it is effectively the kind
of search performed by a backward-chaining (a.k.a. “top-down”)
interpreter for logic programs in the style of Prolog.

w0 w1(¬(b | c)(a+))

Place
C

Place
B

Place
A

w1(¬(b | c))

w1(a+)w1(a)

w1(b | c)

w1(b)

w1(c)

Figure 6. Place assignment for the queries in Figure 5

3.3 Integration with X10
We have specified a query syntax for triggering computations, but
have not specified how the resulting saturated databases can be
queried. One reason for this is that we expect such queries to
be performed through an API within X10. While it is convenient
to have a concrete syntax for specifying L10 rules, many of the
uses of L10 logic programs are to provide data to functional or
imperative programs (such as register allocation in the case of our
alias analysis). Elton will eventually be accessible through an X10
library that allows the programmer to load L10 programs, specify
databases, and query results. Similar APIs exist for many deductive
database/programming language combinations; examples include
Dyna, which exposes an API to C++ [3] and a McAllester-style
interpreter that exposes an API to Standard ML [14].

4. Conclusion and future work
We have described the preliminary design and implementation of
L10, a logic programming language that uses explicit worlds to
stage computation and that uses the infrastructure of X10 to take
advantage of implicit parallelism in programs. There are many
immediate opportunities to extend L10 to add expressiveness, and
there is also much to explore and evaluate in terms of efficiently
executing L10 programs in the context of X10. We will conclude
by discussing some of this future work.

Minimizing communication Because it can be costly to transmit
data from one place to another, it is important to be very clear about
when non-local communication can take place. The current model
for L10 execution is that all necessary information is transmitted to
the world associated with the conclusion(s) and dealt with there. It
may be preferable in many situations to perform an indexed lookup
at a different place and only communicate the result.

In unpublished work, Henry DeYoung has considered program
transformations for epistemic logic programs that deal with these
sorts of optimizations in a distributed setting, and applying his work
to L10 should allow us to automatically transform programs in a
way that decreases communication costs.

Foundations in constructive provability logic The theoretical ba-
sis for L10 is intended to be constructive provability logic [12], an
intuitionistic modal logic that allows stratified negation to be mod-
eled as regular intuitionistic negation. However, the theory of con-
structive provability logic is still lacking a few critical elements that
must be addressed in order to ensure that L10 as we have presented
it here has a consistent logical basis. The first issue is that existing
formalizations of constructive provability logic only capture propo-
sitional logic even though L10 allows for first-order quantification.
Similarly, the introduction of indexed worlds is unique to L10 and
is not modeled in current formalizations of constructive provability
logic.

Distributed worlds In this paper, we have only considered using
worlds indexed by structured terms where all the subterms could be
obtained statically. Another way of distributing worlds indexed by
strings or integers is by using a hash function to distribute relations

over all available places. This would require a significant change to
the static scheduling presented in Section 3, but the result would be
the ability to describe MapReduce-style computations in L10.

Acknowledgments
Henry DeYoung contributed important insights to this paper. Sup-
port for this research was provided by an X10 Innovation Award
from IBM, and by the Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) through the
Carnegie Mellon Portugal Program under Grants NGN-44 and
SFRH / BD / 33763 / 2009.

References
[1] M. Bravenboer and Y. Smaragdakis. Strictly declarative specification

of sophisticated points-to analyses. In Proceedings of the Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA ’09), pages 243–261, 2009.

[2] M. Bravenboer and Y. Smaragdakis. Exception analysis and points-to
analysis: better together. In Proceedings of the International Sympo-
sium on Software Testing and Analysis (ISSTA ’09), pages 1–12, 2009.

[3] J. Eisner, E. Goldlust, and N. A. Smith. Compiling comp ling:
Weighted dynamic programming and the Dyna language. In Proceed-
ings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing (HLT-EMNLP),
pages 281–290, 2005.

[4] M. S. Lam, J. Whaley, B. Livshits, M. C. Martin, D. Avots, M. Carbin,
and C. Unkel. Context-sensitive program analysis as database queries.
In Proceedings of the Symposium on Principles of Database Systems
(PADS ’05), 2005.

[5] B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis for Java. In
Proceedings of the 3rd Asian Symposium on Programming Languages
and Systems. Springer LNCS 3780, 2005.

[6] D. A. McAllester. On the complexity analysis of static analyses.
Journal of the ACM, 49(4):512–537, 2002.

[7] T. Murphy VII. Modal Types for Mobile Code. PhD thesis, Carnegie
Mellon University, 2008. Available as technical report CMU-CS-08-
126.

[8] T. Murphy VII, K. Crary, R. Harper, and F. Pfenning. A symmetric
modal lambda calculus for distributed computing. In Proceedings
of the 19th Annual IEEE Symposium on Logic in Computer Science,
pages 286–295, 2004.

[9] T. C. Przymusinski. On the declarative semantics of deductive
databases and logic programs. In Foundations of deductive databases
and logic programming, pages 193–216. Morgan Kaufmann Publish-
ers Inc., 1988.

[10] S. M. Shieber, Y. Schabes, and F. C. N. Pereira. Principles and
implementation of deductive parsing. Journal of Logic Programming,
24(1–2):3–36, 1995.

[11] R. J. Simmons and B. Toninho. Principles of constructive provability
logic. Technical Report CMU-CS-10-151, School of Computer Sci-
ence, Carnegie Mellon University, 2010.

[12] R. J. Simmons and B. Toninho. Constructive provability logic, 2011.
Submitted, available from http://l10.hyperkind.org.

[13] A. K. Simpson. The Proof Theory and Semantics of Intuitionistic
Modal Logic. PhD thesis, University of Edinburgh, 1994.

[14] J. M. Uecker. A library for bottom-up logic programming in a func-
tional language. Bachelor’s thesis, Jacobs University Bremen, 2010.

[15] J. Whaley. Context-Sensitive Pointer Analysis using Binary Decision
Diagrams. PhD thesis, Stanford University, 2007.

[16] J. Whaley, D. Avots, M. Carbin, and M. S. Lam. Using Datalog and
binary decision diagrams for program analysis. In Proceedings of
the 3rd Asian Symposium on Programming Languages and Systems.
Springer LNCS 3780, 2005.

