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Abstract
The abstract interpretation of programs relates the exact semantics
of a programming language to an approximate semantics that can
be effectively computed. We show that, by specifying operational
semantics in a bottom-up, linear logic programming language – a
technique we call substructural operational semantics (SSOS) –
manifestly sound program approximations can be derived by sim-
ple and intuitive approximations of the logic program. As exam-
ples, we describe how to derive a simple alias analysis, 0CFA, and
kCFA analysis from a substructural operational semantics of the
relevant languages.

Categories and Subject Descriptors D.1.6 [Programming Tech-
niques]: Logic programming; F.3.2 [Logics and Meanings of Pro-
gram]: Semantics of Programming Languages–Program analysis

General Terms Design, Languages, Theory

Keywords abstract interpretation, operational semantics, bottom-
up linear logic programming

1. Introduction
A general recipe for constructing a sound program analysis is to
(1) specify the operational semantics of the underlying program-
ming language via an interpreter, and (2) specify a terminating
approximation of the interpreter itself. This is the basic idea be-
hind abstract interpretation (Cousout and Cousot 1977) which pro-
vides techniques for constructing approximations (for example, by
exhibiting a Galois connection between concrete and abstract do-
mains). The correctness proof establishes the appropriate relation-
ship between the concrete and abstract computations, and shows
termination. We need to vary both the specification of the oper-
ational semantics and the form of the approximation in order to
obtain various kinds of program analyses, sometimes with consid-
erable ingenuity.

In this paper we propose a new class of instances of the gen-
eral schema of abstract interpretation. The interpreters are specified
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in logical form, using the recently proposed substructural opera-
tional semantics (SSOS) (Cervesato et al. 2002; Pfenning 2004).
Briefly, we represent the state of the interpreter as a collection of
linear propositions1 and its computation steps as inference rules,
to be applied in a forward-chaining style. This kind of specifica-
tion creates the opportunity for describing, by logical means, ap-
proximations which are correct by construction. We explore sev-
eral such logical approximations: (1) replacing linear predicates by
persistent ones, which yields a form of collecting semantics, (2)
eliminating existential quantification by Skolemization, and (3) in-
troducing equations that collapse infinite domains into finite ones.
The resulting approximations are now (non-linear) bottom-up logic
programs which can be run to saturation, generalizing proposals
by McAllester and Ganzinger (McAllester 2002; Ganzinger and
McAllester 2002) with certain higher-order features.

We illustrate our approach by deriving alias analysis as pre-
sented by Aho et al. (2007), 0CFA (Shivers 1988) and kCFA in
the form presented by Van Horn and Mairson (2008) from natural
SSOS specifications. While defining these specific approximations
requires insight, their correctness proofs do not, because they fol-
low from a general metatheorem justifying the kinds of approxi-
mations we make, together with straightforward termination argu-
ments.

2. A simple example
As simple illustration of our techniques, both for specification and
approximation, we define a stateful system that generates infinitely
many distinct names and relates them with a successor predicate.
We show how to approximate this process to obtain the (a) the
natural numbers, (b) the natural numbers modulo 2, and (c) the
two-element abstract domain with zero and positive numbers.

Consider a linear proposition at(x), representing a piece of
stateful information (that we are at position x), and a persistent
proposition !next(x, y) which means that x is followed by y.2

Initially, we are at the origin, at(0), and there is no next place.
If we are at position x we can transition by creating a new place
y, moving to it, and asserting that y follows x. In linear logic, this
process can be specified as

∀x. at(x) ( ∃y. !next(x, y)⊗ at(y).

We write this directly as an inference rule in the form

at(x)

!next(x, y)
at(y)

∃y.

Applying this rule in a state will consume a linear proposition
at(x) and add the linear proposition at(y) for a new y, as well

1 In the sense of linear logic (Girard 1987), not linear arithmetic.
2 We always write linear propositions as plain names and persistent propo-
sitions preceded by an exclamation point, as one would in linear logic.



as the persistent proposition !next(x, y). Each state we can reach is
characterized by a collection of available place names, persistent,
and linear propositions. It is easy to see that the state can only
evolve as follows:

Names Persistent Propositions Linear Propositions
0 at(0)
0, y1 !next(0, y1) at(y1)
0, y1, y2 !next(0, y1), !next(y1, y2) at(y2)

. . .

The combination of linearity and existential quantification for name
generation in this form is well-known, and has been used exten-
sively for specification (e.g., in LO (Bozzano and Delzanno 2002),
MSR (Cervesato and Scedrov 2006), or CLF (Cervesato et al. 2002;
Watkins et al. 2008)). We can see that this system generates a struc-
ture isomorphic to the natural numbers, with each number receiving
a distinct name and next as the successor predicate.

2.1 Approximating linearity by persistence
We can create a kind of collecting semantics by making all linear
predicates persistent. The approximate rule reads

!at(x)

!next(x, y)
!at(y)

∃y.

and the state might evolve as follows:

Names Persistent Propositions
0 !at(0)
0, y1 !next(0, y1), !at(0), !at(y1)
0, y1, y2 !next(0, y1), !next(y1, y2), !at(0), !at(y1), !at(y2)

. . .

At first this might seem like a useful approximation, with the at
predicate now being true for all generated names, representing
precisely the natural number predicate, but this is not the case. In
the second state above we can also apply our rule again with the
same premise, !at(0), which is now still part of the state since we
have made it persistent. This yields a new constant, say z1, and the
state

!next(0, y1), !next(0, z1), !at(0), !at(y1), !at(z1)

with names 0, y1, z1. Because of the generative nature of the ex-
istential quantifier and the persistent nature of the approximation,
this can be repeated over and over again, creating a very poor ap-
proximation of the original system.

2.2 Eliminating existentials by Skolemization
If we inspect the logical form of the rule

∀x. !at(x) ( ∃y. !next(x, y)⊗ !at(y).

we notice a quantifier dependence that suggests Skolemization.
Instead of generating a new name every time a rule is applied, we
replace y by a Skolem function s which depends on x.

∀x. !at(x) ( !next(x, s(x))⊗ !at(s(x)),

or, in rule form
!at(x)

!next(x, s(x))
!at(s(x))

Note that this does not preserve the meaning of the original rule
(which is much more prolific), but approximates it by choosing a
unique y for any given x, calling it s(x).

Now the system can only evolve as follows, with 0 as the only
name throughout:

!at(0)
!next(0, s(0)), !at(0), !at(s(0))
!next(0, s(0)), !next(s(0), s(s(0))),!at(0), !at(s(0)),!at(s(s(0)))
. . .

Applying the rule again to !at(0) in the second or third state as
before only infers persistent facts that are already known. By con-
traction on persistent propositions (each is recorded only once), this
does not change the state.

The net results of the first two approximations is that we have
generated a structure isomorphic to the natural numbers, including
the successor (next) and natural number (at) predicates. However,
this approximation does not yet terminate.

2.3 Approximation via equality
In order to generate a finite approximation we can now, for exam-
ple, consider the natural numbers modulo 2, which corresponds to
an abstract domain of even and odd numbers. We specify this with
the equality 0 = s(s(0)). After two steps we have (again, with 0
remaining the only name throughout):

!at(0)
!next(0, s(0)), !at(0), !at(s(0))
!next(0, s(0)), !next(s(0), 0)), !at(0), !at(s(0))

Applying our rule with premise !at(s(0)) to the second state
yields the third state because the conclusion !next(s(0), s(s(0))) =
!next(s(0), 0) and !at(s(s(0))) = !at(0) by the assumed equality.
Any further rule applications from the last state will only generate
facts already known, modulo our equality, so computation of the
approximation terminates by saturation.

2.4 Equality and Skolemization
We can also exploit equality to streamline Skolemization and obtain
a wider range of approximations. When Skolemizing, we leave the
quantifier in place and just assert that the parameter be equal to a
Skolem term.

∀x. !at(x) ( ∃y. y = s(x)⊗ !next(x, y)⊗ !at(y)

Equalities are always persistent, once they are generated, so this
means exactly the same as the earlier

∀x. !at(x) ( !next(x, s(x))⊗ !at(s(x)).

The equality-based formulation of Skolemization suggests that
it may not be necessary for the Skolem function to depend on all
universally quantified variables. The approximation will be cruder
if we make it depend on fewer, but it will still be sound. For
example, if instead of the Skolem function s(x) we introduce a
single Skolem constant p (for “positive”) we obtain

∀x. !at(x) ( ∃y. y = p⊗ !next(x, y)⊗ !at(y)

which is finitary and represents the two-element abstract domain
consisting of 0 and positive numbers. The approximation again
saturates in two steps, but with a different state recording that the
successor of a positive number is positive.

!at(0)
!next(0, p), !at(0), !at(p)
!next(0, p), !next(p, p), !at(0), !at(p)

3. Linear logical algorithms
In the example of the previous section we exploited linear logic to
represent state change and name generation, which then served as
the basis for our approximations. In this section we define a specific



fragment of linear logic and endow it with an operational seman-
tics. This language is rich enough to support the specifications of
concrete interpreters (presented in Sec. 4) which we can then ap-
proximate with the techniques sketched above to obtain program
analyses (presented in Secs. 5, 6 and 7).

The connection between linear logic and logic programming
dates back to Andreoli (1992) and has been explored in several
other forms, including Hodas and Miller (1994), but with a few
exceptions, most of this work relates linear logic to a backward-
chaining (i.e., “top-down”) style of logic programming.

Our language is a forward-chaining (i.e., “bottom-up”) logic
programming language where rules are exhaustively applied to
derive new propositions until no more new propositions can be
derived. It is effectively a restriction of Lollimon3 (López et al.
2005), which integrates backward-chaining and forward-chaining
linear logic programming, and a generalization of the language for
specifying linear logical algorithms (Simmons and Pfenning 2008),
which is purely forward-chaining. We deal with linear logical al-
gorithms from an essentially operational perspective in this work;
previous work describes the connection to linear logic in detail.

A program P is a set of rules R with the following form:

0 or more premises

0 or more conclusions
∃x1, . . . , xn

Each premise is either a linear atomic proposition or a per-
sistent atomic proposition, and each conclusion is either a linear
atomic proposition, persistent atomic proposition, or a constraint,
and both conclusions and premises are interpreted as linear con-
junctions. Atomic propositions are of the form pred(t1, . . . , tn)
where pred is some predicate and the ti are terms. A constraint is
of the form t = s, where t and s are terms. Persistent atomic propo-
sitions are marked with an exclamation point.4 Each rule R has a
set of schematic variables, which are implicitly universally quanti-
fied, and a set of existential variables x1, . . . , xn. We require two
properties of programs:

1. Range restriction: Every variable occurring in a conclusion
must either appear strictly5 in some premise or as one of the
existentially bound parameters x1, . . . , xn.

2. Separation: Every predicate must be used consistently, appear-
ing either only in linear atomic propositions or only in persistent
atomic propositions in a given program – therefore we speak of
predicates, not just propositions, as being either linear or per-
sistent.

The language that appears here is the language of Simmons and
Pfenning (2008) extended with existential parameters, equational
constraints, and a higher-order term language. The first two exten-
sions – existential parameters and equational constraints – were in-
troduced in Sec. 2; we will briefly discuss the implications of a
higher-order term language, and then define the operational seman-
tics of our linear logical algorithms language.

3.1 Skolemization and higher-order terms
We will be quite informal with the notation we use to describe the
term languages used throughout this paper, but the underlying term

3 Our language is not a precise fragment or Lollimon – the latter system
treats the “polarity” of atomic propositions differently – but the difference
is unimportant for the purposes of this paper.
4 In (Simmons and Pfenning 2008) persistent atomic propositions were
unmarked and linear atomic propositions were underlined – the difference is
merely notational, though the exclamation point is intentionally suggestive
of the exponential operator of linear logic.
5 As explained in the next section.

language is a well-understood language based on the simply-typed
λ-calculus as found in λProlog or Twelf. This means that, in addi-
tion to term constructors a(t1, . . . , tn), the language of terms in-
cludes functions λx.t. This allows us to express the binding struc-
ture of the languages we will discuss in the style of higher-order ab-
stract syntax. We tacitly assume that all terms, substitutions, equa-
tions, and propositions are well-typed.

Therefore, when we write λλx.e later in the paper, this should
be understood as syntactic sugar for a term lambda(λx.e(x)),
where λ is actually a lambda in the term language and where
lambda is a constructor with type (tm → tm) → tm. Similarly,
when we write substitution as [y/x]e, this corresponds to the term
e(y) – substitution in the object language (the language we are
specifying) is expressed as application in the term language (the
language we are using to write things down). For this reason, we
require that each schematic variable have a strict occurrence in
the premise (Pfenning and Schürmann 1998), which makes higher-
order matching unitary and decidable (Schürmann 2000), even in
the presence of definitional equations and dependent types.

A fairly common design pattern in saturating, forward-chaining
logic programs is to enumerate the subterms of a term and then
perform a computation on those subterms. Consider the problem
of describing the subterms of untyped lambda-calculus terms pro-
vided by the grammar

e ::= x | e1(e2) | λx.e
A purely persistent approach, where a new existential parameter is
substituted into open terms, will not saturate for reasons already
discussed: the rule on the right can be applied repeatedly, generat-
ing a new name each time.

!subterms(e1(e2))

!subterms(e1)
!subterms(e2)

!subterms(λx.e)

!subterms([y/x]e)
∃y

However, if we Skolemize the second rule (calling the Skolem
function var) we obtain the following rule (and a saturating algo-
rithm).

!subterms(λx.e)

!subterms([y/x]e)
y = var(λx.e)

∃y

In this representation, a variable is effectively a pointer back to
its binding site. In the rest of the paper, our default position when
encountering a parameter substituted into a higher-order function
λx.e will be to equate that parameter with var(λx.e), even if the
rule has other schematic variables.

3.2 Operational semantics
We begin with a few definitions that will allow us to specify the
operational behavior of linear logical algorithms. First, we define
program states, which describe single configurations of the param-
eters, equational constraints, linear, and persistent propositions, and
rule firings which describe the ways in which a rule may be applied
in a given state.

Definition 1. A program state S is a tuple 〈Σ,Λ,Γ,∆〉, where Σ is
a set of parameters that have been introduced by existential quan-
tification, Λ is a system of equations, Γ is a multiset of persistent
propositions, and ∆ is a multiset of linear propositions.

We consider Λ to be an unspecified set of equality constraints
such that equational entailment, Λ ` t = s, is decidable. It is
not necessary that Γ be a multiset, since it represents a context of
persistent propositions, but it simplifies the subsequent discussion
and proofs to do so. We will write “∆,Γ” to represent the multiset
union of ∆ and Γ.



Definition 2. A rule firing is a tuple (S, R,∆∗, σ), where S =
〈Σ,Λ,Γ, (∆,∆∗)〉 and σ is a substitution of arbitrary terms
(which may include the parameters in Σ) for the free variables
of the rule R, if for every persistent premise Ai in R, there is an
A ∈ Γ such that, Λ ` σAi = A and if for every linear premise Bi
in R, there is a distinct B ∈ ∆∗ s.t. Λ ` σBi = B.

These two concepts give us the necessary machinery to define
the evolution of a program state into another program state by firing
a rule, which may add parameters, constraints, and propositions.

Definition 3. An evolution of S = 〈Σ,Λ,Γ, (∆,∆∗)〉 under a
rule firing (S, R,∆∗, σ) is a new program state of the form S ′ =
〈(Σ,Σ′),Λ′, (Γ,Γ′), (∆,∆′)〉, where there is one fresh parameter
in Σ′ for each existential parameter xi in R, if, letting δ be the
substitution σ extended to substitute a unique parameter in Σ′ for
each xi, Λ′ is Λ extended with the constraints in the conclusion of
R under δ and Γ′ and ∆′ are the multisets of persistent and linear
conclusions (respectively) of R under δ.

An evolution as described above is productive if there are pa-
rameters in Σ′ that are not equal to terms that existed previously
under Λ′, if Λ′ makes any terms equal that were not equal under Λ,
if there are any propositions in Γ′ that are not equal to propositions
in Γ under Λ′, or if ∆′ is nonempty. Then we define a program
trace S1, . . . ,Sn to be a list of states, each of which is a productive
evolution of the previous one under some rule firing. A complete
trace is one where the final state Sn cannot take any productive
transitions; borrowing terminology from Lollimon, such a program
is said to have reached quiescence. This is an operational semantics
without backtracking – at each step, one of possibly many rule fir-
ings is applied, and the trace continues without ever reconsidering
this choice.

3.3 Approximate versions of programs
As described previously, a feature of linear logical algorithms is
that turning all linear predicates into persistent predicates results
in a new program that is a sound approximation of the original
program; as described in the definition below, there are a number
of other transformations that may be performed.

Definition 4. A program Pa is an approximate version of a pro-
gram P if all predicates in Pa are persistent and if, for each rule
in Pa, the existential parameters are identical to the existential pa-
rameters of the corresponding rule in P , the premises are a subset
of the premises of the corresponding rule in P , and the conclusions
are a superset of the conclusions of the corresponding rule in P .

We will formally define the correctness requirement in Sec. 8,
where we also prove that any terminating approximate version of a
program produces a valid abstraction of the original program; intu-
itively, however, correctness means that the approximate version of
a program exhibits all the properties of the original program. There-
fore, if the approximate version of a program reaches quiescence
(or saturation, which is a more appropriate term in the absence of
linear propositions), we can “read off” a conservative approxima-
tion of all the behaviors of the original program from the final state
of the approximate program.

4. Substructural Operational Semantics
Substructural operational semantics (SSOS) was originally pro-
posed by Pfenning (2004) as an alternative to structural opera-
tional semantics (SOS) for specifying the dynamic semantics of
programming languages. While SOS is a powerful and successful
method for specifying the dynamic semantics of programming lan-
guages, it is essentially non-modular. The transitions in the lan-
guage are described by the relation e1 7→ e2, which is defined

inductively. However, if we make the state of the system more
complicated than just an expression, the relation must get similarly
more complicated. In order for a store σ to be part of the state,
we must change the relation to 〈σ1, e1〉 7→ 〈σ2, e2〉 and change
every rule accordingly. If we then want to have a multiset of pro-
cesses ∆, as well as global state, we must change the relation to
〈σ1, (∆1, e1)〉 7→ 〈σ2, (∆2, e2)〉 and again change every rule ac-
cordingly.

Proposed solutions to this problem, such as Modular Structural
Operational Semantics, presented by Mosses (2004), identify a
need for a notion of ambient state, but preserve the notion that
the state transition relation 7→ is inductively defined. In the case
of SSOS we define the transitions in the dynamic semantics of the
programming language as transitions in a forward-chaining linear
logic program; ambient state can be represented by the ambient
context of linear and persistent propositions. In this section, we
will introduce the concepts of SSOS style gradually, beginning
by presenting a pure continuation-passing style language fragment
where all intermediate values are named and all function calls are
tail calls so that no stack is necessary and working our way towards
an A-normal form language6 with mutable pairs.

4.1 Pure continuation-passing style language
We begin by describing a pure continuation-passing style language.
The expressions e enforce that all computations immediately be
named and allow only tail calls. The pure fragment of the language
handles pairs and lambda abstractions:

c ::= fst | snd
e ::= y | let x = 〈〈y1, y2〉〉 in e | let x = c y in e

| let x = λλx0.e0 in e | y1(y2)
v ::= () | 〈v1, v2〉 | λx.e

4.2 Evaluation
Evaluation is handled by linear forward-chaining rules, and the cru-
cial propositions are evald(e), which is a linear proposition declar-
ing that the expression e is evaluating with the destination d, and
bind(x, v), which is a persistent proposition declaring that the pa-
rameter x is associated with the value v. Taken as a whole, the
persistent propositions of the form bind(x, v) make up an environ-
ment mapping parameters to variables. The rule for evaluating a fst
redex is

evald(let x = fst y1 in e)
!bind(y1, 〈v1, v2〉)

!bind(y, v1)
evald([y/x]e)

∃y

This rule should be read “if there is a linear proposition describing
a computation with destination d evaluating let x = fst y1 in e,
where y1 is bound to the pair 〈v1, v2〉, the linear proposition may
be consumed and replaced by a computation with destination d
evaluating [y/x]e, where y is a newly created parameter bound to
v1.”

It is important that the y in the conclusion !bind(y, v1) is newly
created – over the course of a program’s execution, the above rule
might be fired multiple times with the same premises, and so sub-
stituting a newly created parameter into the conclusion ensures that
we do not end up with an over-approximation in which a variable
is bound to two different values. The program will maintain the
invariant that each parameter y is associated with exactly one per-
sistent proposition !bind(y, v1).

The evaluation predicate takes two arguments – the fact that
d is subscript is just a bit of notation, and we could equivalently
have written eval(e, d). We will focus on destinations d in greater

6 As described by Flanagan et al. (1993).



detail, but for now we can observe that multiple linear propositions,
each of which represent a process, can appear simultaneously; we
already have a specification that can deal with either one process
or a multiset of processes! Destinations can be seen as just tags that
distinguish different processes from one another.

Destinations also allow us to mark the value that is ultimately
returned from an expression. The rule for the final case where we
are evaluating a bare parameter y is

evald(y)
!bind(y, v)

returnd(v)

This rule should be read “if there is a linear proposition of the form
evald(y), where y is bound to v, it may be consumed and replaced
with a linear proposition of the form returnd(v).”

The other two reduction rules for evaluating the pure fragment
are as follows:

evald(let x = snd y1 in e)
!bind(y1, 〈v1, v2〉)

!bind(y, v2)
evald([y/x]e)

∃y

evald(y1(y2))
!bind(y1, λx.e)
!bind(y2, v2)

!bind(y, v2)
evald([y/x]e)

∃y

Beyond that, we have the two further rules for creating pair values
and function values from expressions.

evald(let x = 〈〈y1, y2〉〉 in e)
!bind(y1, v1)
!bind(y2, v2)

!bind(y, 〈v1, v2〉)
evald([y/x]e)

∃y

evald(let x = λλx0.e0 in e)

!bind(y, λx0.e0)
evald([y/x]e)

∃y

In each case that performs some computation, one of the values
bound to a variable must take a certain form. A proposition such
as evald(let x

′ = fst y in e′) would be in an undesirable state if y
was bound to λx.e – this would correspond to a “stuck states” in
SOS formulations.

4.3 Extension to mutable state
If we want to assign to our pairs in the style of Lisp cons cells,
we need to replace the rules that dealt with pairs before – pairs
must be heap-allocated in order to be mutable – but we do not
have to change any other rules. Our syntax is extended with a
single construct for assignment, and we have a new value of heap
locations:

e ::= . . . | y1.c := y2; e
v ::= . . . | loc(d)

Locations are runtime artifacts that are introduced by evaluating
expressions that create pairs, thus allocating space on a heap rep-
resented by that destination. We write location values as loc(d),
where the argument d is a destination that is now being used to
mark the location of mutable data instead of marking the destina-
tion of a computation, which was up until now our only use of

destinations. The rule for creating a new pair is now as follows:

evald(let x = 〈〈y1, y2〉〉 in e)
!bind(y1, v1)
!bind(y2, v2)

!bind(y, loc(d′))
stored′(fst, v1)
stored′(snd, v2)
evald([y/x]e)

∃y, d′

This rule should be read “if there is a proposition of the form
evald(let x = 〈〈y1, y2〉〉 in e) with y1 bound to v1 and y2 bound
to v2, then it may be consumed, which creates a new destination
d′ where v1 and v2 are stored in the fst and the snd positions. Ex-
ecution continues with evald([y/x]e), where y is a new parameter
bound to loc(d′).”

Just as we maintain the invariant that each parameter y is as-
sociated with exactly one proposition bind(y, v), we will main-
tain the invariant that each destination d will be associated with
a unique first projection stored(fst, v1) and second projection
stored(snd, v2) in a given state. This invariant is more interest-
ing because of mutability – we may consume a linear proposition
stored(c, v), but it will always be replaced by some other linear
proposition stored(c, v

′).
The two rules for assignment and dereference are as follows.

Notice that both rules consume and create a linear proposition
representing a memory cell – the dereference rule must “write
back” the value in memory after it reads it, or else an attempt to
read a location twice would result in a stuck state.

evald(let x = c y1 in e)
!bind(y1, loc(d′))
stored′(c, v)

!bind(y, v)
evald([y/x]e)
stored′(c, v)

∃y

evald(y1.c := y2; e)
!bind(y1, loc(d′))
!bind(y2, v2)
stored′(c, v)

evald(e)
stored′(c, v2)

4.4 Introducing stacks
Now we are ready to step away from a purely continuation-passing
style by introducing non-tail calls, which requires introducing the
notion of a stack of frames waiting for functions to return. We will
extend the syntax of expressions as follows:

e ::= . . . | let x = y1(y2) in e

We implement stacks using the same destinations that we used be-
fore for representing mutable state – while linear propositions of
the form stored(. . .) held values, linear propositions of the form
compd(. . .) will hold suspended computations. A linear proposi-
tion of the form compd(let x = d′ in e) means that the expression
e (with x free) will not evaluate at destination d until some value is
returned to destination d′. A value will be returned to that destina-
tion precisely when the function call returns, and so a stack frame
is a suspended computation waiting on a function to return. There
are two rules for implementing non-tail calls:

evald(let x = y1(y2) in e)
!bind(y1, λx0.e0)
!bind(y2, v2)

!bind(y0, v2)
evald′([y0/x0]e0)
compd(let x = d′ in e)

∃y0, d′



c ::= fst | snd
e ::= y | let x = λλx0.e0

l0 in el | let x = y1(y2) in el | let x = 〈〈y1, y2〉〉 in el | let x = c y1 in el | y1.c := y2; el

v ::= λx.el | loc(d)

evald(y)
!bind(y, v)

returnd(v)

evald(let x = λλx0.e0
l0 in el)

!bind(y, λx0.e0
l0)

evald([y/x]e)

∃y

evald(let x = y1(y2) in el)
!bind(y1, λx0.e0

l0)
!bind(y2, v)

!bind(y0, v)
evald′([y0/x0]e0)
compd(let x = d′ in el)

∃y0, d′

compd(let x = d′ in el)
returnd′(v)

!bind(y, v)
evald([y/x]e)

∃y

evald(let x = 〈〈y1, y2〉〉 in el)
!bind(y1, v1)
!bind(y2, v2)

!bind(y, loc(d′))
stored′(fst, v1)
stored′(snd, v2)
evald([y/x]e)

∃y, d′

evald(let x = c y1 in el)
!bind(y1, loc(d′))
stored′(c, v)

!bind(y, v)
evald([y/x]e)
stored′(c, v)

∃y

evald(y1.c := y2; el)
!bind(y1, loc(d′))
!bind(y2, v2)
stored′(c, v)

evald(e)
stored′(c, v2)

Figure 1. Summary of the rules for functions and mutable pairs in Sec. 4 with labels added as described in Sec. 5.

compd(let x = d′ in e)
returnd′(v)

!bind(y, v)
evald([y/x]e)

∃y

This completes the introduction of a simple language in A-
normal form with function types, product types, and mutable pairs.
Much larger languages have been described in this style – the core
of Concurrent ML was described in a similar style by Cervesato
et al. (2002), and a number of language features such as futures
and first-class continuations were explored in SSOS by Pfenning
(2004). Our minimal language will form the basis of the alias
analysis we present in the next section.

5. Alias analysis
Now that we have the elements of a substructural operational se-
mantics in place, we are in a position to present an alias analysis
for the language from the previous section, collected in Fig. 1.

First, however, we have to make a minor modification to the
language that is motivated by the information we want to obtain
from the alias analysis we perform. Alias analysis is described
in terms of where variables were declared in a source program;
therefore, it is important to have a way to uniquely identify a
location in the source program. We can’t use the trick of “naming
all variables uniquely” that is used in many first-order presentations
of syntax, because our use of higher-order abstract syntax means
that our variables are subject to arbitrary renaming. Therefore, we
will introduce labels l into each expression that can be uniquely
placed in the source program, attaching them to each continuation
expression e and to the body of each abstraction. In effect, this
gives us a name for each line and each function. It has no effect
on the operational semantics and will only come into play when we
describe alias analysis. As an example, the syntax for declaring a
new function is “let x = λλx0.e0

l0 in el,” and the syntax for frames
is “let x = d in el.”

The full SSOS presentation of the resulting language is in Fig. 1.

5.1 Approximating to alias analysis
Now we will show how systematic approximations of the language
in Fig. 1 produce a program for alias analysis. We want to be able

to ask the following two questions about the relationships between
pointers:

• Could a variable declared at label l1 ever reference a pair cre-
ated at label l2?

• Could the first or second component of a pair created at label l1
ever reference a pair created at label l2?

Our approximation methodology makes the first two steps clear –
first, we turn all linear predicates into persistent predicates, gener-
ating a collecting semantics as the program now “remembers” all
intermediate values. However, as a linear logical algorithm this will
not terminate; rules could be applied over and over again to create
new parameters without ever reaching a point of saturation. There-
fore, at any point where a variable y is generated only to be sub-
stituted into an expression el (with x free), Skolemization (as de-
scribed in Sec. 3.1) suggests substituting var(λx.el) into e instead,
which we achieve by adding a new conclusion y = var(λx.el).
We treat this equality declaration as a notational definition as in-
troduced by Pfenning and Schürmann (1998), which leads to de-
cidable notion of equational entailment and higher-order match-
ing (Schürmann 2000) if every schematic variable has a strict oc-
currence (which we enforce for our language).

After we have followed these two standard steps, we still must
decide how to deal with the destination d′ introduced in the rule for
function calls and the similar destination introduced in the rule for
pair allocation. To get the results that we want, one solution is to
equate the destination with the label l0 naming the function in the
case of function calls, and to equate the destination with the label
l naming the line in the pair allocation case. The result is Fig. 2.
When we have performed exhaustive bottom-up reasoning using
the rules written there, the result gives us answers to the questions
we posed above:

• The variable declared at label l1 might point to a pair created
at label l2 if bind(var(λx.el1), loc(l2)) appears in the saturated
database.

• The first component of a pair created at label l1 might reference
a pair created at label l2 if storel1(fst, loc(l2)) appears in the
saturated database, and likewise for the second component.



!evald(y)
!bind(y, v)

!returnd(v)

!evald(let x = λλx0.e0
l0 in el)

!bind(y, λx0.e0
l0)

!evald([y/x]e)
y = var(λx.el)

∃y

!evald(let x = y1(y2) in el)
!bind(y1, λx0.e0

l0)
!bind(y2, v)

!bind(y0, v)
!evald′([y0/x0]e0)
!compd(let x = d′ in el)

y0 = var(λx0.e
l0
0 )

d′ = l0

∃y0, d′

!compd(let x = d′ in el)
!returnd′(v)

!bind(y, v)
!evald([y/x]e)
y = var(λx.el)

∃y

!evald(let x = 〈〈y1, y2〉〉 in el)
!bind(y1, v1)
!bind(y2, v2)

!bind(y, loc(d′))
!stored′(fst, v1)
!stored′(snd, v2)
!evald([y/x]e)
y = var(λx.el)
d′ = l

∃y, d′

!evald(let x = c y1 in el)
!bind(y1, loc(d′))
!stored′(c, v)

!bind(y, v)
!evald([y/x]e)
!stored′(c, v)
y = var(λx.el)

∃y

!evald(y1.c := y2; el)
!bind(y1, loc(d′))
!bind(y2, v)
!stored′(c, vx)

!evald(e)
!stored′(c, v)

Figure 2. The language from Fig. 1 transformed into an alias analysis by Skolemizing all existential parameters and making all propositions
persistent.

The termination of this analysis needs to be justified; this justifica-
tion comes from the fact that there are only a finite number of val-
ues that can arise – one value loc(d) for each variable declaration,
and one value λx0.e

l0
0 for each function declaration. The evalua-

tion propositions only deal with subterms of the original program,
and the possible destinations d are limited by the labels in the orig-
inal program. Therefore, for any finite input program we can give
a finite bound to the size of the saturated database of propositions,
which is enough to ensure termination.

The resulting analysis can be seen as an adaptation of the pointer
analysis in Chapter 12.4 of (Aho et al. 2007), where alias analysis
is presented as a bottom-up logic program, to a functional language
with first-class functions. The main difference is that this analysis
takes control flow into account, only analyzing reachable parts of
the program. Some extra machinery is also necessary to take into
account our language’s first-class functions that return values.

6. Control flow analysis
Programming languages are not generally specified in the A-
normal form considered thus far in the paper. A more natural pre-
sentation (though one that maintains separate syntactic classes for
expressions and values) looks like this:

e ::= x | λλx.e | e1(e2)
v ::= λx.e

We can describe the substructural operational semantics of this lan-
guage in two ways. We could add an expression to the previous lan-
guage “let x = e′ in e,” which allows the creation of arbitrary stack
frames, and then define a translation into the previous language that
names all subterms and makes evaluation order explicit.

However, we don’t want to define such a translation for every
language we define in SSOS, so we extend the language of frames
to include “d1(e2),” an application waiting for its function position
to be evaluated at d1, “v1(d2),” an application waiting for its
argument to be evaluated at d2, and call(d0), a frame waiting for a
function call to return. The resulting SSOS definition is described
by the six rules in Fig. 3.

The question addressed by 0CFA is, “for any given call site
in the the source program, what are the functions that might be
invoked at that location?” However, the question is often answered

by answering the more general question, “what values do each
subexpression and each function call evaluate to in the course of
evaluating the program?” This is the insight that we use to derive
the 0CFA analysis in Fig. 4.

As our methodology suggests, we make all predicates persis-
tent, and then equate the parameter y0 with the Skolemization of
the function it is being substituted into, var(λx.e). This leaves three
destination parameters in three different rules that must be equated
with pre-existing terms. In each case, we equate the destination
with the relevant subexpression, so that instead of the linear propo-
sition returnd(v) representing the return of a value to a destination,
we have the persistent proposition !returne(v) directly expressing
that the subexpression e might evaluate to v during the course of
evaluating the program. The answer to the relevant question of con-
trol flow analysis is then that a function λλx.emight be invoked at a
call site e1(e2) if returne1(λx.e) appears in the saturated database.
The comment made about reachability in alias analysis is relevant
here as well – if a function in the source program is only ever in-
voked with a non-terminating argument, then that function will not
be analyzed, as it would be in other presentations of 0CFA.

There is one other caveat to this analysis. In a 0CFA analysis of
the source program “let x = λλy.y in (x(x))(v)” (for some value
v) we would expect to learn that two arguments are passed to the
function λλy.y: first, the function itself, and second, the value v. In
contrast, if we take the program “((λλx.x)(λλy.y))v,” we would ex-
pect 0CFA to notice that only λλy.y is passed to the function λλx.x
and that only v is passed to the function λλy.y. However, because of
our use of higher-order abstract syntax, λλx.x and λλy.y are syntac-
tically identical (names of bound variables don’t matter), so in or-
der to get the expected results from the second program, we would
need to add distinct labels to terms as we did for alias analysis.

7. Instrumented interpreters and kCFA
In this section we develop a SSOS presentation of a language
from a presentation of Van Horn and Mairson’s lambda calculus
interpreter, and then following our methodology to derive the same
kCFA analysis discussed in (Van Horn and Mairson 2007, 2008).



evald(x)
!bind(x, v)

returnd(v)

evald(λλx.e)

returnd(λx.e)

evald(e1(e2))

evald1(e1)
compd(d1(e2))

∃d1

compd(d1(e2))
returnd1(v1)

evald2(e2)
compd(v1(d2))

∃d2

compd((λx.e)(d2))
returnd2(v2)

!bind(y0, v2)
evald0([y0/x]e)
compd(call(d0))

∃y0, d0

compd(call(d0))
returnd0(v)

returnd(v)

Figure 3. A SSOS interpreter for the lambda calculus.

!evald(x)
!bind(x, v)

!returnd(v)

!evald(λλx.e)

!returnd(λx.e)

!evald(e1(e2))

!evald1(e1)
!compd(d1(e2))
d1 = e1

∃d1

!compd(d1(e2))
!returnd1(v1)

!evald2(e2)
!compd(v1(d2))
d2 = e2

∃d2

!compd((λx.e)(d2))
!returnd2(v2)

!bind(y0, v2)
!evald0([y0/x]e)
!compd(call(d0))
y0 = d0 = var(λx.e)

∃y0, d0

!compd(call(d0))
!returnd0(v)

!returnd(v)

Figure 4. A 0CFA analysis for the lambda calculus based on the SSOS interpreter in Fig. 3.

7.1 Van Horn and Mairson’s interpreter
Van Horn and Mairson (2007, 2008) describe an interpreter for a
λ-calculus that forms the basis for their discussion of kCFA. The
abstract syntax is first-order – variables are just labels, and we adopt
the traditional convention that every variable in the input program
is distinct. Every term is additionally tagged with a label l. The
syntax of the language is as follows:

Tagged expressions e ::= tl

Untagged terms t ::= x | e1(e2) | λλ(x, e)
Values v ::= λ(x, e, ce)

Frames f ::= l1(l2) | call(l0)

The program on the left-hand-side of Fig. 5 is a literal translation
of the “instrumented interpreter” by Van Horn and Mairson (2008),
with one exception – rather than evaluating first the left-hand-side
of an application and then evaluating the right hand side, the rule
for application is as follows:

eval(tl11 (tl22 ), l, δ, ce)

eval(t1, l1, δ, ce)
eval(t2, l2, δ, ce)
comp(l1(l2), l, δ, ce)

This rule means that both parts of the application are evaluated
simultaneously. This change is completely non-essential, and is
used here only to reduce the number of required rules to five from
the six we would need otherwise.

This interpreter’s evaluation predicate is eval(t, l, δ, ce), where
t is an expression, l is the label that used to be attached to the term
t, and δ is a “contour,” a stack of locations representing the list
of function calls that have been made up to this point. Together l
and δ stand in for the destinations that we have used previously,
as we will discuss in the next section. Finally, ce is the “current
environment,” a finite map from variable names to contours. Finite
maps do not fall within the linear logical algorithms language, but
we can easily enough describe the required operations. We need
lookup ce(x), which returns the contour associated with x in ce,
extension ce[x 7→ l] which adds a new mapping to the finite map
(or overrides the one that was already there), and restriction ce|t,
which returns the sub-map of ce whose domain is the free variables
of t.

A notable point about this presentation is that we can perform
our approximation methodology of turning linear predicates into
persistent predicates and we are left with the same algorithm – if

we start with the single proposition eval(t, l, nil, emp), where nil is
an empty list and emp is an empty map, the output in terms of what
(if any) proposition return(v, l, nil) is eventually calculated is the
same, regardless of whether eval, comp, and return are all linear or
all persistent predicates.

7.2 SSOS-style interpreter
We can avoid finite maps and the first-order treatment of binding
by rewriting the specification using higher-order abstract syntax,
parameters, and an ambient notion of state as presented in the
middle column in Fig. 5. The syntax is as follows:

e ::= tl

t ::= e1(e2) | λλx.e
v ::= λx.e
f ::= l1(l2) | call(l0)

What we have is essentially a substructural operational semantics
definition of a language with a very different notion of destination-
passing. Instead of using parameters to associate each portion of the
computation with a unique destination, the combination of program
labels and contours gives each computation a destination in a direct
style.

7.3 Collecting semantics and kCFA
Consider the difference between the second premise of the first rule
(the one that handles variables) in the first two columns of Fig. 5.
In the Van Horn-style interpreter it is bind(x, ce(x), v), whereas in
the SSOS-style interpreter it is bind(x, v). In the Van Horn-style
interpreter, the current environment ce is carried around precisely
for this case – in order to locate the correct value, it is not enough
to specify the variable, we must also know the variable’s unique
calling context, represented by the contour ce(x) = δ′. In the
SSOS-style presentation the dynamic creation of parameters that
are uniquely associated with values ensures this property.

The (exact) collecting interpreter on the right-hand side of Fig. 5
therefore substitutes into a function, not just var(λx.e) as before,
but var(λx.e, δ), where δ is the calling contour. This ensures that
each new binding is unique, and therefore that when we encounter
a variable we will have all the information necessary to find the
unique value associated with it.

This gives us the handle we need to specify kCFA. In Van Horn
and Mairson’s kCFA interpreter, at every point where a contour δ
is extended, the list is truncated to contain k elements at most. In
our framework, we can just add the constraint that two lists where



Van Horn’s interpreter

eval(x, l, δ, ce)
!bind(x, ce(x), v)

return(v, l, δ)

eval(λλ(x, e), l, δ, ce)

return(λ(x, e, ce|λλx.e), l, δ)

eval(tl11 (tl22 ), l, δ, ce)

eval(t1, l1, δ, ce)
eval(t2, l2, δ, ce)
comp(l1(l2), l, δ, ce)

comp(l1(l2), l, δ, ce)

return(λ(x0, t
l0
0 , ce0), l1, δ)

return(v2, l2, δ)

!bind(x0, l :: δ, v2)
eval(t0, l0, l :: δ, ce0[x0 7→ δ])
comp(call(l0), l, δ, ce)

comp(call(l0), l, δ, ce)
return(v, l0, l :: δ)

return(v, l, δ)

SSOS-style interpreter

eval(x, l, δ)
!bind(x, v)

return(v, l, δ)

eval(λλx.e, l, δ)

return(λx.e, l, δ)

eval(tl11 (tl22 ), l, δ)

eval(t1, l1, δ)
eval(t2, l2, δ)
comp(l1(l2), l, δ)

comp(l1(l2), l, δ)

return(λx0.t
l0
0 , l1, δ)

return(v2, l2, δ)

!bind(x, v2)
eval([x/x0]t0, l0, l :: δ)
comp(call(l0), l, δ)

∃x

comp(call(l0), l, δ)
return(v, l0, l :: δ)

return(v, l, δ)

Collecting interpreter

!eval(var(λx.e, δ′), l, δ)
!bind(var(λx.e, δ′), v)

!return(v, l, δ)

!eval(λλx.e, l, δ)

!return(λx.e, l, δ)

!eval(tl11 (tl22 ), l, δ)

!eval(t1, l1, δ)
!eval(t2, l2, δ)
!comp(l1(l2), l, δ)

!comp(l1(l2), l, δ)

!return(λx0.t
l0
0 , l1, δ)

!return(v2, l2, δ)

!bind(x, v2)
!eval([x/x0]t0, l0, l :: δ)
!comp(call(l0), l, δ)

x = var(λx0.t
l0
0 , l :: δ)

∃x

!comp(call(l0), l, δ)
!return(v, l0, l :: δ)

!return(v, l, δ)

Figure 5. Comparing Van Horn and Mairson’s instrumented interpreter (left) to an SSOS interpreter that does not use destination-passing
(center) and a collecting interpreter that, with an additional equality constraint, captures kCFA as described in Sec. 7 (right).

the first k elements are equal are, themselves, equal. Under such
a constraint, our collecting semantics becomes a kCFA analysis as
described by Van Horn and Mairson (2008). For instance, if we
start the constraint system with the constraint that for all a, l1, and
l2, we have a :: l1 = a :: l2, the result will be 1CFA. Of course, if
if we treat all lists as equal (k = 0), we might as well just use the
same Skolem function that gave us 0CFA in the previous section.

8. Correctness of approximation
We now prove that the approximation techniques we have used
in this paper make sense generally. We will first define a notion
of abstraction, and then state the theorem that any approximate
version of a program, if terminating, produces an abstraction, thus
capturing all the behaviors of the original program.

Definition 5. A state 〈Σg,Λg,Γg, ∅〉 is a generalization of a state
〈Σ,Λ,Γ,∆〉 if there is a substitution function σ from parameters
in Σ to parameters in Σg such that, for all propositions A ∈ Γ,∆,
there exists a proposition Ag ∈ Γg such that Λg ` σA = Ag , and
if whenever Λ ` t = s, then Λg ` σt = σs.

Definition 6. A state S is an abstraction of a program P with
an initial state S0 if, for any program trace S0, . . . ,S ′, S is a
generalization of S ′.

Now we can state the meta-approximation theorem (proved in
Appendix A), that relates the definition of abstraction above to the
concept of an approximate version of a program as specified by
Definition 4.

Theorem 1 (Meta-approximation). If Pa is an approximate ver-
sion of P , S0 = 〈Σ0,Λ0,Γ0,∆0〉 is an initial state of P and

〈Σ0,Λ0, (Γ0,∆0), ∅〉, . . . ,Sa is a complete trace of the program
Pa, then Sa is an abstraction of P with initial state S0.

9. Conclusion
We have defined simple and sound transformations to approxi-
mate the computation of a forward-chaining linear logic program-
ming language with higher-order terms and persistent equality con-
straints. This language is suitable for writing interpreters for pro-
gramming languages in the style of substructural operational se-
mantics. We show that approximating such interpreters with our
transformations yields static analyses of programs written in those
languages. The relative ease of encoding two rather different anal-
yses, alias analysis and kCFA, suggests that our technique can be
used to derive other program analyses.

This work is similar to work by Bozzano et al. (2002, 2004) in
both its goals and its methodology. They encode distributed sys-
tems and communication protocols in a style is significantly differ-
ent from ours, but in a language that essentially includes all the fea-
tures of our language except for equality constraints. Then abstrac-
tions of those programs are used to verify properties of concurrent
protocols that were encoded in the logic (Bozzano and Delzanno
2002). Their approach differs from ours in a number of ways; in
particular, a general purpose approximation is used, in contrast to
our methodology of describing a whole class of approximations.
Furthermore, Bozzano et al.’s methods are designed to consider
properties of systems as a whole, not static analyses of individual
inputs as is the case in our work. Clarifying the precise relation-
ship between these two kinds of approximation more precisely is
an interesting direction for future work.



Jagadeesan et al. (2005) have also noted the usefulness of con-
straints in the specification of concurrent systems, but that work
was focused on λProlog, a higher-order backward-chaining logic
programming language without linearity, and was concerned solely
with specification, not approximation and analysis.

Another line of related work is the use of the ∇ quanti-
fier (Miller and Tiu 2005) for name generation, which we could
have used here instead of the existential quantifier, although the
difference does not become significant until we carry out formal
meta-reasoning (Tiu 2007). As a point of future work we conjec-
ture it may be possible to apply our use of Skolemization in the
realm of reasoning with and about generic judgments.

Another item of future work is to extend and exploit the
metacomplexity theorems about saturating bottom-up logic pro-
grams (McAllester 2002; Ganzinger and McAllester 2002; Sim-
mons and Pfenning 2008) in order to obtain, perhaps nearly me-
chanically, a bound on the complexity of various program analyses
that can be derived from a given interpreter. Prior theorems treat
neither higher-order features nor the logical notion of equality un-
derlying our approximations.

A fundamentally different kind of approximation of linear logic
programs via predicate substitution has been described by Miller
(To Appear). Miller’s approximations remain linear, which we have
ruled out so far in order to obtain a simple meta-approximation
theorem. We plan to investigate if the approaches can be fruitfully
combined.
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A. Proof of Theorem 1
First, we need to define general program traces, which are the
same as a program traces except that each state is required to be an
evolution – not necessarily a productive evolution – of the previous
state.

The first two lemmas show that an approximate version of a
program can simulate the program it approximates, and next two
formalize the notion that, in an approximate version of a program,
the saturated database at the conclusion of a complete program
trace captures all of the “behaviors” of that approximate program.
These two facts in combination mean that all of the behaviors of a
program are captured by the saturated database at the conclusion of
a complete trace of its approximate version.



Lemma 1 (One-step simulation). If program state S can evolve to
program state S+ under the rule firing (S, R,∆∗, σ), withR ∈ P ,
and ifPa is an approximate version ofP and Sg is a generalization
of S, then there exists a rule firing (Sg, Ra, ∅, σg) with Ra ∈ Pa
under which Sg evolves to S+

g and S+
g is a generalization of S+.

Proof. Let the program state S be 〈Σ,Λ,Γ, (∆,∆∗)〉, the program
state S+ be 〈(Σ,Σ′),Λ′, (Γ,Γ′), (∆,∆′)〉. We are given a pro-
gram state Sg = 〈Σg,Λg,Γg, ∅〉 that is a generalization of S, so
there is a substitution τ from Σ to Σg such that all the properties
for generalization hold.

In the rule Ra that corresponds to the rule R, if we take a
premise Ai of Ra, that premise appears in R, and so there is some
proposition A ∈ Γ,∆,∆∗ such that Λ ` σAi = A. By the
definition of generalization (second condition), Λg ` τ(σAi) =
τA. Also by the definition of generalization (first condition), we
have an Ag ∈ Γg such that Λg ` τA = Ag . By transitiv-
ity, Λg ` (τ ◦ σ)Ai = Ag , and we can construct a rule firing
(Sg, ∅, Ra, τ ◦ σ) that evolves Sg to S+

g .
We have to show that S+

g = 〈(Σg,Σ′g),Λ′g, (Γg,Γ′g), ∅〉 is a
generalization of S+. We can extend τ to τ ′ so that it appropri-
ately substitutes parameters in Σ′ with the parameter in Σ′g that is
assigned to the same existential variable (the existential variables
of R and Ra are identical). We need show that τ ′ satisfies the two
conditions for generalization.

For the first condition, we are given an A ∈ Γ,Γ′,∆,∆′ and
must exhibit a Ag ∈ Γg,Γ

′
g such that Λ′g ` τ ′Ag = A. If

A ∈ Γ,∆, this follows immediately from the fact that we have
an Ag ∈ Γg such that Λg ` τAg = A. If A ∈ Γ′,∆′, then
A = (δ ◦ σ)Bi for some conclusion Bi in R, where δ substitutes
parameters in Σ′ for existential variables in R. The conclusion Bi
also appears in Ra, and so there is a Ag ∈ Γ′g such that Ag =
(δ′ ◦ τ ◦σ)Bi, where δ′ substitutes parameters in Σ′g for existential
variables in Ra. Because of the way we constructed τ ′, we know
δ′◦τ = τ ′◦δ, so we haveAg = (τ ′◦δ◦σ)Bi = τ ′(δ◦σ)Bi = τ ′A,
and so Λ′g ` τ ′A = Ag , which is what we needed to show.

For the second condition, we have Λ′ ` t = s, and need to
show Λ′g ` τ ′t = τ ′s. Similar reasoning as above applies; old
equalities continue to hold, and for every equality that is added to
Λ′, an equivalent constraint is added to Λ′g .

Lemma 2 (Simulation). If 〈Σ0,Λ0,Γ0,∆0〉, . . . ,Sn is a program
trace of a program P , and Pa is an approximate version of P , then
there exists a general program trace 〈Σ0,Λ0, (Γ0,∆0), ∅〉, . . . ,S ′n
of the program Pa where S ′n is a generalization of Sn.

Proof. By induction on the length of the program trace.
In the base case, we need to know that 〈Σ0,Λ0, (Γ0,∆0), ∅〉 is

a generalization of 〈Σ0,Λ0,Γ0,∆0〉. This is immediate from the
definition of generalization.

In the inductive case, we are given a program trace S0, . . . ,Sn
and a general program trace S ′0, . . . ,S ′n where S ′n is a generaliza-
tion of Sn. The state Sn has a productive evolution to state Sn+1,
and so by Lemma 1, S ′n has an evolution to state S ′n+1 where S ′n+1

is a generalization of Sn+1, which is what we needed to show.

Lemma 3 (Monotonicity). If a program P and a state S contain
no linear predicates, then if S evolves in zero or more steps to S ′,
then S ′ is a generalization of S.

Proof. By induction on the length of the program trace. The base
case is again immediate, and in the inductive case the relevant
substitution is the identity, all of the propositions in the original
S continue to be present in S ′, and the second condition appeals to
the monotonicity of the equational constraints – extending Λ to Λ′

can only cause it relate more terms.

Lemma 4 (Saturation). If the programP uses no linear predicates,
and we have an initial state S0 = 〈Σ,Λ,Γ, ∅〉, then if S0, . . . ,Sa
is a complete trace of P and S0, . . . ,Sn is a general trace of P ,
Sa is a generalization of Sn.

Proof. By induction on the general trace S0, . . . ,Sn. The base
case follows from Lemma 3 – Sa generalizes S0 because the latter
evolved from the former.

In the inductive case, Sa is a generalization of Sn, and Sn
that evolves to Sn+1. We need to show Sa is a generalization of
Sn+1. By Lemma 1, Sa evolves to S+

a , which is a generalization of
Sn+1. Because generalization is transitive, it suffices to show that
Sa is a generalization of S+

a , which follows from the fact that the
evolution of Sa to S+

a is not productive, so every new parameter
and proposition in S+

a is equal to a term or proposition in Sa.

Lemmas 2 and 4 give us the pieces needed to complete the
proof of the meta-approximation theorem. We will first re-state the
theorem from Sec. 8:

Theorem 1 (Meta-approximation). If Pa is an approximate ver-
sion of P , S0 = 〈Σ0,Λ0,Γ0,∆0〉 is an initial state of P and
〈Σ0,Λ0, (Γ0,∆0), ∅〉, . . . ,Sa is a complete trace of the program
Pa, then Sa is an abstraction of P with initial state S0.

Proof of meta-approximation theorem. In order to show that Sa is
an abstraction of P with initial state S0 = 〈Σ0,Λ0,Γ0,∆0〉, we
must show that for any trace S0, . . . ,Sn of the program P , Sa is a
generalization of Sn. If we take some such arbitrary trace, we have
a general trace 〈Σ0,Λ0, (Γ0,∆0), ∅〉, . . . ,S ′n of the program Pa
by Lemma 2 such that S ′n is a generalization of Sn.

Lemma 4 gives us that Sa is a generalization of S ′n, and there-
fore, because generalization is transitive, we have what we needed
to show, that Sa is a generalization of Sn.


