
Higher order focusing for ordered logic
Request For Logic (RFL) #7
Robert J. Simmons, Daniel Licata, and Jason Reed
March 4, 2010

In the previous note, we talked about coverage checking and case analysis with linear 
functions representing one-hole contexts. In this note, we push this further to do a 
version of higher-order focusing for ordered logic using the same notion of linear 
functions for one-hole contexts that reach into structures. Ordered logic occupies a 
unique position in this respect: because any one-hole context ƛx.Γ’(x) into an ordered 
structure is equivalent to ƛx.Γ,x,Δ, we can get away with explicitly representing the 
left and right hand sides. Experience seems to show that this is often quite a bit less 
satisfying than in linear logic where a one-hole context λx.Γ’(x) is equivalent to ƛx.Δ,x 
- the formulation we use here seems, in any case, no worse than the explicit left-hand-
side-right-hand-side formulation..

We only consider the Lambek calculus portion of ordered logic: that is, we don’t consider 
the validity or mobility modalities. Our proof appears to have the property that if we 
changed the properties of the context formation operator “,” we would still have a valid 
proof - in other words, this can be seen as a proof of rigid logic or a redundant proof 
of linear logic just by manipulating the algebraic properties of the comma.

Higher order focusing for ordered logic 
Contexts are written as Γ or Δ. The context formation operator “,” is associative and 
commutative with unit “·”.

 Γ,Δ ::= hyp A⁻ | hyp Q⁺ | Γ,Δ | ·
 
We adopt the convention that a context with one hole is written as Γ’ or Δ’, a context 
with two holes is written as Γ’’ or Δ’’, and so on. However, these should really 
be understood as eta-contracted versions of the representational linear functions 
(ƛx.Γ’(x)), (ƛx.ƛy.Γ’’(x)(y)), and so on. The hole [] is similarly shorthand for (ƛx.x).

The basic idea is that while we usually write the cut principle for ordered logic like 
this:

 If Ω ⊢ A and Ω₁,hyp A,Ω₂ ⊢ C, then Ω₁,Ω,Ω₂ ⊢ C

However, we can talk about this cut principle more generally with one-hole contexts Ω’, 
where we write the cut principle like this:

 If Ω ⊢ A and Ω’(hyp A) ⊢ C, then Ω’(Ω) ⊢ C

Patterns 
In higher-order focusing, propositions are handled by patterns, which are defined 
independently of the rules of the logic. Positive propositions are defined by constructor 
patterns, and negative propositions are defined by destructor patterns.

 A⁺ ::= Q⁺ | ↓A⁻ | A⁺ • B⁺ | 1 | A⁺ ⊕ B⁺ | 0
 A⁻ ::= Q⁻ | ↑A⁺ | A⁺ ↠ B⁻ | A⁺ ↣ B⁻ | A⁻ & B⁻ | ⊤ 
 γ  ::= Q⁻ | A⁺



Constructor patterns 

 ---------------
 hyp Q⁺ ⊩ Q⁺

 ---------------
 hyp A⁻ ⊩ ↓A⁻

 Δ₁ ⊩ A₁
 Δ₂ ⊩ A₂
 -----------------
 Δ₁,Δ₂ ⊩ A₁⁺ • A₂⁺

 ---------------
 · ⊩ 1
 Δ ⊩ A
 ---------------
 Δ ⊩ A ⊕ B

 Δ ⊩ B
 ---------------
 Δ ⊩ A ⊕ B

Destructor patterns 

Destructor patterns are interesting because their type is ((ctx ⊸ ctx) → prop⁻ → gamma → 
type) - in other words, one of the outputs is not a context but rather a linear function 
from contexts to contexts (a context with a hole in it). When we write Δ’(Δ₁[]) we “really 
mean” the linear function ƛΔ₂.Δ’(Δ₁Δ₂).

 Δ₁ ⊩ A₁⁺
 Δ₂’ ⊩ A₂⁻ > γ
 --------------------------
 Δ₂’(Δ₁,[]) ⊩ A₁⁺ ↣ A₂⁻ > γ

 Δ₁ ⊩ A₁⁺
 Δ₂’ ⊩ A₂⁻ > γ
 --------------------------
 Δ₂’([],Δ₁) ⊩ A₁⁺ ↠ A₂⁻ > γ

 Δ’ ⊩ A > γ
 --------------------------
 Δ’ ⊩ A & B > γ

 Δ’ ⊩ B > γ
 --------------------------
 Δ’ ⊩ A & B > γ

 --------------------------
 [] ⊩ ↓A⁺ > A⁺

 --------------------------
 [] ⊩ Q⁻ > Q⁻

Properties of patterns 

In order for cut elimination to terminate, we depend on the subformula property of 
patterns. The introduction of, for instance, recursive types where this does not hold 



may be reasonable programming languages, but can have nonterminating cut elimination 
procedures.

 (S⁺) If Δ ⊩ A⁺ then size(Δ) < size(A⁺)
 (S⁻) If Δ ⊩ A⁻ > γ, then size(Δ) < size(A⁻) and size(γ) < size(A⁻)

Rules of the focused logic 
The only terribly curious part of the focused logic is our use of a representational 
linear function in the rule for having a one-hole context imply a one-hole context (the 
“holey alpha substitution” rule). 

Left focus 

 Δ’ ⊩ A⁻ > γ₀     ⇐ Figure out the pattern of A⁻
 Γ’ ≡ Γo’ ○ Γi’   ⇐ Γ’ is the composition of outside Γo’ and inside Γi’
 Γi’ ⊢ Δ’         ⇐ Alpha substitution (= prove stuff, possibly after inverting)
 Γo’ ⊢ γ₀ > γ     ⇐ Gamma substitution (= prove stuff, possibly after inverting)
 --------------- Perform Left Focus
 Γ’ ⊢ [A⁻] > γ

 Γ ≡ Γ’(hyp A⁻)
 Γ’ ⊢ [A⁻] > γ  
 --------------- Enter Left Focus
 Γ ⊢ γ   

Right focus 

 Δ ⊩ A⁺           ⇐ Figure out the pattern of A⁺
 Γ ⊢ Δ            ⇐ Alpha substitution (= prove stuff, possibly after inverting)
 --------------- Perform Right Focus
 Γ ⊢ [A⁺]

 Γ ⊢ [A⁺]
 --------------- Enter Right Focus
 Γ ⊢ A⁺

Inversion 

 Δ’ ⊩ A⁻ > γ  ⇒  Δ’(Γ) ⊢ γ
 -------------------------- Right inversion
 Γ ⊢ A⁻

 Δ ⊩ A⁺  ⇒  Γ’(Δ) ⊢ γ 
 -------------------------- Left inversion
 Γ’ ⊢ A⁺ > γ

 Γ’ ≡ []
 -------------------------- Atom
 Γ’ ⊢ Q⁻ > Q⁻



Alpha substitution 

 Γ₁ ⊢ Δ₁
 Γ₂ ⊢ Δ₂
 --------------- Split 
 Γ₁,Γ₂ ⊢ Δ₁,Δ₂

 --------------- Unit
 · ⊢ ·

 --------------- Atomic
 hyp Q⁺ ⊢ hyp Q⁺

 Γ ⊢ A⁻
 --------------- Invert and prove
 Γ ⊢ hyp A⁻ 

Holey alpha substitution 

 ΠΓ. ΠΔ. (Γ ⊢ Δ) -o Γ’(Γ) ⊢ Δ’(Δ)
 --------------------------------- Holey
 Γ’ ⊢ Δ’

Identity 
This should be true and straightforward, but we don’t prove it here (Dan sketched it out 
on paper).

Cut principles 
Cut is proved by a slew of mutually inductive statements, as usual. In all cases, the 
induction argument is either that the principal formula A⁺/A⁻/Δ/Δ’ gets smaller, or the 
principal formula stays the same and one of the input derivations gets smaller while the 
other stays the same.

 (+)  If Γ ⊢ [A⁺]        and Γ’ ⊢ A⁺ > γ             then Γ’(Γ) ⊢ γ
 (-)  If Γ ⊢ A⁻          and Γ’ ⊢ [A⁻] > γ           then Γ’(Γ) ⊢ γ
 (R1) If Γ ⊢ Δ           and Γ’(Δ) ⊢ γ               then Γ’(Γ) ⊢ γ
 (R2) If Γ₁’ ⊢ Δ’        and Γ’(Δ’(Γ)) ⊢ γ           then Γ’(Γ₁’(Γ)) ⊢ γ
 (R3) If Γ ⊢ A⁻          and Γ’(hyp A⁻) ⊢ γ          then Γ’(Γ) ⊢ γ
 (R4) If Γ ⊢ A⁻          and Γ’’(hyp A⁻) ⊢ [B⁻] > γ  then Γ’’(Γ) ⊢ [B⁻] > γ
 (R5) If Γ ⊢ A⁻          and Γ’(hyp A⁻) ⊢ [B⁺]       then Γ’(Γ) ⊢ [B⁺]
 (R6) If Γ ⊢ A⁻          and Γ’’(hyp A⁻) ⊢ γ₀ > γ    then Γ’’(Γ) ⊢ γ₀ > γ
 (R7) If Γ ⊢ A⁻          and Γ’’(hyp A⁻) ⊢ Ψ’        then Γ’’(Γ) ⊢ Ψ’ 
 (R8) If Γ ⊢ A⁻          and Γ’(hyp A⁻) ⊢ Ψ          then Γ’(Γ) ⊢ Ψ 
 (R9) If Γ ⊢ A⁻          and Γ’(hyp A⁻) ⊢ B⁻         then Γ’(Γ) ⊢ B⁻
 (L1) If Γ₁ ⊢ γ₀         and Γ’ ⊢ γ₀ > γ             then Γ’(Γ₁) ⊢ γ
 (L2) If Γ₁’ ⊢ [A⁻] > γ₀ and Γ’ ⊢ γ₀ > γ             then Γ’○Γ₁’ ⊢ [A⁻] > γ
 (L3) If Γ₁’ ⊢ γ₁ > γ₀ and Γ’ ⊢ γ₀ > γ             then Γ’○Γ₁’ ⊢ γ₁ > γ
 



Proof of (+) 

 D₁ :: Δ ⊩ A⁺   
 D₂ :: Γ ⊢ Δ  
 ------------------------------- Perform Right Focus
 Γ ⊢ [A⁺]

 E :: Δ ⊩ A⁺  ⇒  Γ’(Δ) ⊢ γ 
 ------------------------------- Left inversion
 Γ’ ⊢ A⁺ > γ
 
 By application of E and D₁, E₁ :: Γ’(Δ) ⊢ γ
 By (S⁺) on D₁ Δ < A⁺, so by (R1) on D₂ and E₁, F₁ :: Γ’(Γ) ⊢ γ

Proof of (-) 
 
 D :: Δ’ ⊩ A⁻ > γ  ⇒  Δ’(Γ) ⊢ γ
 ------------------------------- Right inversion
 Γ ⊢ A⁻

 E₁ :: Δ’ ⊩ A⁻ > γ₀  
 E₂ :: Γ’ ≡ Γo’ ○ Γi’
 E₃ :: Γi’ ⊢ Δ’      
 E₄ :: Γo’ ⊢ γ₀ > γ  
 ------------------------------- Perform Left Focus
 Γ’ ⊢ [A⁻] > γ

 By application of D and E₁, D₁ :: Δ’(Γ) ⊢ γ₀
 Because Δ’ < A⁻, by (R2) on E₃ and D₁, F₁ :: Γi’(Γ) ⊢ γ₀
 Because γ₀ < A⁻, by (L1) on F₁ and E₄, F₂ :: Γo’(Γi’(Γ)) ⊢ γ
 By equality E₂ using F₂, F₃ :: Γ’(Γ) ⊢ γ

Proof of (R1) 

Proof proceeds by case analysis on the first derivation.

Case 1:
 D₁ :: Γ₁ ⊢ Δ₁
 D₂ :: Γ₂ ⊢ Δ₂
 --------------- Split 
 Γ₁,Γ₂ ⊢ Δ₁,Δ₂

 E :: Γ’(Δ₁,Δ₂) ⊢ γ

 To show: Γ’(Γ₁,Γ₂) ⊢ γ
 Because Γ’(Δ₁,Δ₂) = (ƛx.Γ’(x,Δ₂))(Δ₁), by (R1) on D₁ and E we have
   F₁ :: Γ’(Γ₁,Δ₂) ⊢ γ
 Because Γ’(Γ₁,Δ₂) = (ƛx.Γ’(Γ₁,x))(Δ₂), by (R1) on D₂ and F₁ we have
   F₂ :: Γ’(Γ₁,Γ₂) ⊢ γ

Case 2: 
 --------------- Unit
 · ⊢ ·

 E :: Γ’(·) ⊢ γ

 To show: Γ’(·) ⊢ γ. Immediate from E.



Case 3:
 --------------- Atomic
 hyp Q⁺ ⊢ hyp Q⁺

 E :: Γ’(hyp Q⁺) ⊢ γ

 To show: Γ’(hyp Q⁺) ⊢ γ. Immediate from E.

Case 4:
 D :: Γ ⊢ A⁻
 --------------- Invert and prove
 Γ ⊢ hyp A⁻ 

 E :: Γ’(hyp A⁻) ⊢ γ
 
 To show: Γ’(Γ) ⊢ γ. By (R3) on D and E.

Proof of (R2) 

The first proof rule is definitely Holey, so by inversion we have D’ ::  ΠΓ. ΠΔ. (Γ ⊢ Δ) 
-o (Γ’(Γ) ⊢ Δ’(Δ)). So for an arbitrary Γ and Δ, we have a one-hole derivation, which we 
proceed by case analysis upon D’.

The two-dimensional notation kind of fails us here because of the higher-order-ness of the 
representational functions. In (R7) we give an alternate style of proof where instead of 
the generic Holey rule we transform the single Holey rule into three rules that correspond 
to the three cases we give here. However, while this version has more awkward notation, 
it’s more pleasing conceptually: if we have one-hole contexts as linear functions on the 
object level, it is worth thinking about having them on the meta level as well.

Case 1:
 Γ₁’ = ƛx.x
 Δ’  = ƛx.x, 
 D’  = λΓ.λΔ.ƛD.Holey D :: ΠΓ. ΠΔ. (Γ ⊢ Δ) -o (Γ ⊢ Δ)
 E :: Γ’(Γ) ⊢ γ

Case 2:
 Γ₁’ = ƛx. Γ₁’(x),Γ₂ 
 Δ’  = ƛx. Δ₁’(x),Δ₂
 D’  = λΓ.λΔ.ƛD.Holey(Split (D₁’(D)) D₂)
    :: ΠΓ.ΠΔ. (Γ ⊢ Δ) -o (Γ₁’(Γ),Γ₂ ⊢ Δ₁’(Δ),Δ₂)
 D₁ :: ΠΓ.ΠΔ. (Γ ⊢ Δ) -o (Γ₁’(Γ) ⊢ Δ₁’(Δ))
 D₂ :: Γ₂ ⊢ Δ₂
 E  :: Γ’(Δ₁’(Γ),Δ₂) ⊢ γ

 To show: Γ’(Γ₁’(Γ),Γ₂) ⊢ γ. 
 Because Γ’(Δ₁’(Γ),Δ₂) = (ƛx.Γ’(Δ₁’(Γ),x))(Δ₂), by (R1) on D₂ and E we get
   F₁ :: Γ’(Δ₁’(Γ),Γ₂) ⊢ γ
 Because Γ’(Δ₁’(Γ),Γ₂) = (ƛx.Γ’(x,Γ₂))(Δ₁’(Γ)), by (R2) on (Holey D₁) and F₁ we get
   F₂ :: Γ’(Γ₁’(Γ),Γ₂) ⊢ γ
 



Case 3:
 Γ₁’ = ƛx. Γ₁,Γ₂’(x) 
 Δ’  = ƛx. Δ₁,Δ₂’(x)
 D’  = λΓ.λΔ.ƛD.Holey(Split D₁ (D₂’(D))) 
    :: ΠΓ.ΠΔ. (Γ ⊢ Δ) -o (Γ₁,Γ₂’(Γ) ⊢ Δ₁,Δ₂’(Δ))
 D₁ :: Γ₁ ⊢ Δ₁
 D₂ :: ΠΓ.ΠΔ. (Γ ⊢ Δ) -o (Γ₂’(Γ) ⊢ Δ₂’(Δ))
 E  :: Γ’(Δ₁,Δ₂’(Γ)) ⊢ γ

 To show: Γ’(Γ₁’(Γ),Γ₂) ⊢ γ. 
 Because Γ’(Δ₁,Δ₂’(Γ)) = (ƛx.Γ’(x,Δ₂’(Γ)))(Δ₁), by (R1) on D₁ and E we get
   F₁ :: Γ’(Γ₁,Δ₂’(Γ)) ⊢ γ
 Because Γ’(Γ₁,Δ₂’(Γ)) = (ƛx.Γ’(Γ₁,x))(Δ₂’(Γ)), by (R2) on (Holey D₂) and F₁ we get
   F₂ :: Γ’(Γ₁,Γ₂’(Γ)) ⊢ γ

%{ === Proof of (R3) === }% 
 
Proof proceeds by case analysis on the second derivation. The fact that case 1 and 2 are 
complete case analysis is a property of linear one-hole-contextey functions.

 If Γ ⊢ A⁻          and Γ’(hyp A⁻) ⊢ γ   then Γ’(Γ) ⊢ γ

Case 1:
 D :: Γ ⊢ A⁻

 E₁ :: Γ’(hyp A⁻) ≡ Γ’(hyp A⁻)
 E₂ :: Γ’ ⊢ [A⁻] > γ  
 ------------------------------------------- Enter Left Focus
 Γ’(hyp A⁻) ⊢ γ   

 To show: Γ’(Γ) ⊢ γ. By (-) on D and E₂

Case 2:
 D :: Γ ⊢ A⁻

 E₁ :: Γ’(hyp A⁻) ≡ Γ’’(hyp A⁻)(hyp B⁻)
 E₂ :: Γ’’(hyp A) ⊢ [B⁻] > γ  
 ------------------------------------------- Enter Left Focus
 Γ’(hyp A⁻) ⊢ γ   

 To show: Γ’’(Γ)(hyp B⁻) ⊢ γ.
 By (R4) on D and E₂, F₂ :: Γ’’(Γ) ⊢ [B⁻] > γ
 We have F₁ :: Γ’(Γ) ≡ Γ’’(Γ)(hyp B⁻)
 By rule on F₁ and F₂, F :: Γ’(Γ) ⊢ γ

Case 3:
 D :: Γ ⊢ A⁻

 E :: Γ’(hyp A⁻) ⊢ [B⁺]
 ------------------------------------------- Enter Right Focus
 Γ’(hyp A⁻) ⊢ B⁺

 To show: Γ’(Γ) ⊢ B⁺. 
 By (R5) on D and D and E, F₁ :: Γ’(Γ) ⊢ [B⁺]
 By rule on F₁, F :: Γ’(Γ) ⊢ B⁺



Proof of (R4) 

Case analysis on the second derivation (essentially it’s just a case analysis
on which branch the principal formula ends up in).

Case 1:
 D :: Γ ⊢ A⁻
 
 E₁ :: Δ’ ⊩ B⁻ > γ₀  
 E₂ :: Γ’’(hyp A⁻) ≡ Γo’’(hyp A⁻) ○ Γi’
 E₃ :: Γi’ ⊢ Δ’      
 E₄ :: Γo’’(hyp A⁻) ⊢ γ₀ > γ  
 ------------------------------------------- Perform Left Focus
 Γ’’(hyp A⁻) ⊢ [B⁻] > γ

 To show: Γ’’(hyp A⁻) ⊢ [A⁻] > γ
 We have F₂ :: Γ’’(Γ) ≡ Γo’’(Γ) ○ Γi’
 By (R6) on D and E₄, F₄ :: Γo’’(hyp A⁻) ⊢ γ₀ > γ
 By rule on E₁, F₂, E₃, F₄, F :: Γ’’(hyp A⁻) ⊢ [B⁻] > γ

Case 2:
 D :: Γ ⊢ A⁻
 
 E₁ :: Δ’ ⊩ B⁻ > γ₀  
 E₂ :: Γ’’(hyp A⁻) ≡ Γo’ ○ Γi’’(hyp A⁻)
 E₃ :: Γi’’(hyp A⁻) ⊢ Δ’      
 E₄ :: Γo’ ⊢ γ₀ > γ  
 ------------------------------------------- Perform Left Focus
 Γ’’(hyp A⁻) ⊢ [B⁻] > γ

 To show: Γ’’ ⊢ [B⁻] > γ
 We have F₂ :: Γ’’(Γ) ≡ Γo’ ○ Γi’’(Γ)
 By (R7) on D and E₃, F₃ :: Γi’’(Γ) ⊢ Δ’
 By rule on E₁, F₂, F₃, E₄, F :: Γ’’(Γ) ⊢ [B⁻] > γ      

Proof of (R5) 

 D :: Γ ⊢ A⁻

 E₁ :: Δ ⊩ B⁺
 E₂ :: Γ’(hyp A⁻) ⊢ Δ 
 ------------------------------------------- Perform Right Focus
 Γ’(hyp A⁻) ⊢ [B⁺]

 To show: Γ’(Γ) ⊢ [B⁺]
 By (R8) on D and E₂, F₂ :: Γ’(Γ) ⊢ Δ
 By rule on E₁, F₂, F :: Γ’(Γ) ⊢ [B⁺]
 



Proof of (R6) 

Case analysis on the second derivation.

Case 1:
 D :: Γ ⊢ A

 E :: Δ ⊩ B⁺  ⇒  Γ’’(hyp A⁻)(Δ) ⊢ γ 
 ------------------------------------------- Left inversion
 Γ’’(hyp A) ⊢ B⁺ > γ

 To show: Γ’’(Γ) ⊢ B⁺ > γ
 I need to create a computational function from Δ ⊩ B⁺ to Γ’’(Γ)(Δ) ⊢ γ.
    Assume F₁ :: Δ ⊩ B⁺
    By application of F₁ to E, E₂ :: Γ’’(hyp A⁻)(Δ) ⊢ γ
    By (R3) on D and E₂, F₂ :: Γ’’(Γ)(Δ) ⊢ γ 
 Therefore, F :: Δ ⊩ B⁺  ⇒  Γ’’(Γ)(Δ) ⊢ γ
 By rule, Γ’’(Γ) ⊢ B⁺ > γ

We have to be careful in justifying the application of induction hypothesis (R3) in Case 
1. However, because this is an iterated inductive definition, we are justified in calling E₂ 
a smaller derivation.

Case 2:
 D :: Γ ⊢ A

 E :: Γ’’(hyp A⁻) ≡ []
 ------------------------------------------- Atom
 Γ’’(hyp A⁻) ⊢ Q⁻ > Q⁻
 
 Immediate from the contradiction implied by E.
  

Proof of (R7) 

Case analysis on the second derivation. Remember, as we said when proving (R2), here we 
use the derived rules for the Holey derivation. The first analogue would be making one-hole 
contexts a formal structure Σ ::= [] | Σ,Γ | Γ,Σ

Case 1:
 D :: Γ ⊢ A

 E :: Γ’’(hyp A⁻) ≡ [] 
 ------------------------------------------- Holey/Hole
 Γ’’(hyp A⁻) ⊢ []

 Immediate from the contradiction implied by E.

Case 2:
 D :: Γ ⊢ A

 E₁ :: Γ₁’’(hyp A⁻) ⊢ Ψ₁’
 E₂ :: Γ₂ ⊢ Ψ₂
 ------------------------------------------- Holey/Left
 Γ₁’’(hyp A⁻),Γ₂ ⊢ Ψ₁’,Ψ₂ 

 By (R7) on D and E₁, F₁ :: Γ₁’’(Γ) ⊢ Ψ₁’
 By rule on F₁ and E₂, Γ₁’’(Γ),Γ₂ ⊢ Ψ₁’,Ψ₂



Case 3:
 D :: Γ ⊢ A

 E₁ :: Γ₁’ ⊢ Ψ₁’
 E₂ :: Γ₂’(hyp A⁻) ⊢ Ψ₂
 ------------------------------------------- Holey/Left
 Γ₁’,Γ₂’(hyp A⁻) ⊢ Ψ₁’,Ψ₂ 

 By (R8) on D and E₂, F₂ :: Γ₂’(Γ) ⊢ Ψ₂
 By rule on E₁ and F₂, Γ₁’,Γ₂’(Γ) ⊢ Ψ₁’,Ψ₂

Case 4:
 D :: Γ ⊢ A

 E₁ :: Γ₁’(hyp A⁻) ⊢ Ψ₁
 E₂ :: Γ₂’ ⊢ Ψ₂’
 ------------------------------------------- Holey/Right
 Γ₁’(hyp A⁻),Γ₂’ ⊢ Ψ₁,Ψ₂’ 

 By (R8) on D and E₁, F₁ :: Γ₁’(Γ) ⊢ Ψ₁
 By rule on F₁ and E₂, Γ₁’(Γ),Γ₂’ ⊢ Ψ₁,Ψ₂’

Case 5:
 D :: Γ ⊢ A

 E₁ :: Γ₁ ⊢ Ψ₁
 E₂ :: Γ₂’’(hyp A⁻) ⊢ Ψ₂’
 ------------------------------------------- Holey/Right
 Γ₁,Γ₂’’(hyp A⁻) ⊢ Ψ₁,Ψ₂’ 

 By (R7) on D and E₂, F₂ :: Γ₂’’(Γ) ⊢ Ψ₂’
 By rule on E₁ and F₂, Γ₁,Γ₂’’(Γ) ⊢ Ψ₁,Ψ₂’

Proof of (R8) 

Proof (as pretty much always) is by case analysis on the second derivation. The rules Unit 
and Atom contradict the assumption that our context takes the form Γ’(hyp A⁻), so we will 
not consider them.

Case 1:
 D :: Γ ⊢ A

 E₁ :: Γ₁’(hyp A⁻) ⊢ Ψ₁
 E₂ :: Γ₂ ⊢ Ψ₂
 ------------------------------------------- Split 
 Γ₁’(hyp A⁻),Γ₂ ⊢ Ψ₁,Ψ₂

 By (R8) on D and E₁, F₁ :: Γ₁’(Γ) ⊢ Ψ₁
 By rule on F₁ and E₂, Γ₁’(Γ),Γ₂ ⊢ Ψ₁,Ψ₂

Case 2:
 D :: Γ ⊢ A

 E₁ :: Γ₁ ⊢ Δ₁
 E₂ :: Γ₂’(hyp A⁻) ⊢ Δ₂
 ------------------------------------------- Split 
 Γ₁,Γ₂’(hyp A⁻) ⊢ Δ₁,Δ₂

 By (R8) on D and E₁, F₁ :: Γ₁’(Γ) ⊢ Ψ₁
 By rule on F₁ and E₂, Γ₁’(Γ),Γ₂ ⊢ Ψ₁,Ψ₂



Case 3:
 D :: Γ ⊢ A

 E :: Γ’(hyp A⁻) ⊢ B⁻
 ------------------------------------------- Invert and prove
 Γ’(hyp A⁻) ⊢ hyp B⁻ 

 By (R9) on D and E, F :: Γ’(Γ) ⊢ B⁻
 By rule on F, Γ’(Γ) ⊢ hyp B⁻

Proof of (R9) 

 D :: Γ ⊢ A⁻
 
 E :: Δ’ ⊩ B⁻ > γ  ⇒  Δ’(Γ’(hyp A⁻)) ⊢ γ
 ------------------------------------------- Right inversion
 Γ’(hyp A⁻) ⊢ B⁻
 
 I need to create a computational function from Δ ⊩ B⁻ > γ to Δ’(Γ’(Δ)) ⊢ γ.
    Assume F₁ :: Δ ⊩ B⁻ > γ
    By application of F₁ to E, E₂ :: Δ’(Γ’(hyp A⁻)) ⊢ γ
    By (R3) on D and E₂, F₂ :: Δ’(Γ’(Γ)) ⊢ γ
 Therefore, F₁  :: Δ’ ⊩ B⁻ > γ  ⇒  Δ’(Γ’(Γ)) ⊢ γ
 By rule on E, F :: Γ’(Γ) ⊢ B⁻

Proof of (L1) 

Case analysis on the first derivation:

Case 1:
 D₁ :: Γ ⊢ [A⁺]
 ------------------------------------------- Enter Right Focus
 Γ ⊢ A⁺
 
 E :: Γ’ ⊢ A⁺ > γ

 By (+) on D₁ and E, F₁ :: Γ’(Γ) ⊢ γ

Case 2:
 D₁ :: Γ₁’ ⊢ [B⁻] > γ₀
 ------------------------------------------- Enter Left Focus
 Γ₁’(hyp B⁻) ⊢ γ₀
 
 E :: Γ’ ⊢ γ₀ > γ 
 
 By (L2) on D₁ and E, F₁ :: Γ’○Γ₁’ ⊢ [B⁻] > γ
 By rule, F :: Γ’(Γ₁’(hyp B⁻)) ⊢ γ



Proof of (L2) 

 D₁ :: Δ’ ⊩ A⁻ > γ₁ 
 D₂ :: Γ₁’ ≡ Γo’ ○ Γi’
 D₃ :: Γi’ ⊢ Δ’      
 D₄ :: Γo’ ⊢ γ₁ > γ₀  
 ------------------------------------------- Perform Left Focus
 Γ₁’ ⊢ [A⁻] > γ₀

 E :: Γ’ ⊢ γ₀ > γ 
 
 By (L3) on D₄ and E, F₄ :: Γ’○Γo’ ⊢ γ₁ > γ
 We have F₂ :: Γ’○Γ₁’ = (Γ’○Γo’)○Γi’
 By rule on D₁, F₂, D₃, and D₄, F :: Γ’○Γ₁’ ⊢ γ₁ > γ

Proof of (L3) 

Case analysis on the first derivation.

Case 1:
 D₁ :: Δ ⊩ A⁺  ⇒  Γ₁’(Δ) ⊢ γ₀ 
 ------------------------------------------- Left inversion
 Γ₁’ ⊢ A⁺ > γ₀

 E :: Γ’ ⊢ γ₀ > γ

 I need to create a computational function from Δ ⊩ A⁺ to Γ’○Γ₁’ ⊢ γ.
    Assume F₀ :: Δ ⊩ A⁺
    By application of F₀ to D₁, D₂ :: Γ₁’(Δ) ⊢ γ₀
    By (L1) on D₂ and E, F₂ :: Γ’(Γ₁’(Δ)) ⊢ γ
 Therefore, F₁ :: Δ ⊩ A⁺  ⇒  Γ’○Γ₁’ ⊢ γ
 By rule, Γ’○Γ₁’ ⊢ A⁺ > γ 

Case 2:
 -------------------------- Atom
 [] ⊢ Q⁻ > Q⁻

 E :: Γ’ ⊢ Q⁻ > γ
 
 To show: Γ’ ⊢ Q⁻ > γ. Immediate from E


