Linear functions and coverage checking stuff with holes in it Request For Logic (RFL) #6
Robert J. Simmons
December 14, 2009

I describe the encoding of cut admissibility for rigid logic in order to motivate the problem of case analysis and coverage checking for contexts with holes in them - something that can be represented as linear functions. I describe several of the reasons this doesn't work in Celf and Twelf, and also why it seems pretty cool despite not existing.

Rigid (i.e. non-commutative ordered) logic

Consider the non-associative Lambek calculus, i.e. non-associative ordered logic. We'll call it Rigid Logic due to the rigid tree-like structure of contexts and because it gets really old referring to the non-associative Lambek calculus.

----- id
$$Q \vdash Q$$

$$\Delta \vdash A \qquad \Gamma[B] \vdash C$$

$$\Gamma[A \twoheadrightarrow B, \Delta] \vdash C$$

$$\Gamma, A \vdash B$$

$$\Gamma \vdash A \twoheadrightarrow B$$

$$\Delta \vdash A \qquad \Gamma[B] \vdash C$$

$$\Gamma[\Delta, A \rightarrowtail B] \vdash C$$

$$A, \Gamma \vdash B$$

$$\Gamma \vdash A \rightarrowtail B$$

$$\Gamma[A, B] \vdash C$$

$$\Gamma[A, B] \vdash C$$

$$\Gamma[A \bullet B] \vdash C$$

The rules for rigid logic look much like the ones for ordered logic, but the context is not associative as in ordered logic, so a , (a \rightarrow b, b \rightarrow c) \vdash c is not provable but (a , a \rightarrow b) , b \rightarrow c \vdash c is:

init ------ init b + b c + c

----- init -------
$$\Rightarrow$$
 L

a + a b, b \Rightarrow c + c

(a, a \Rightarrow b), b \Rightarrow c + c

Encoding rigid logic

We'll consider only the \rightarrow fragment of rigid logic, and both (non-adequate) Twelf encoding of the proof and (presumably adequate) Celf encoding.

Propositions

```
Twelf:
prop : type.
                 %name prop A.
atm : type.
                          %name atm Q q.
a : atm -> prop.
 → : prop -> prop -> prop. %infix right 9 →.
 %block vprop : block {q : atm}.
Celf (no infix or Unicode):
 prop : type.
atm : type.
a : atm -> prop.
 imp : prop -> prop -> prop.
Contexts
Twelf:
ctx : type. %name ctx G y.
hyp : prop -> ctx.
, : ctx \rightarrow ctx \rightarrow ctx. %infix none 6 ,.
Celf:
```

Rules

ctx : type.

hyp : prop -> ctx.

cons : ctx -> ctx -> ctx.

Here's where we're unable to keep a simple Twelf encoding adequate. The \rightarrow L rule has a premise $\Gamma[B] \vdash C$ and a conclusion $\Gamma[A \rightarrow B, \Delta]$. $\Gamma[-]$ is usually described as a context with a single hole in it somewhere, which can be filled by any proposition. Therefore, it seems like it should be representable as a function from contexts to contexts:

```
{\tt Twelf:}
```

```
\vdash: ctx → prop → type. %name \vdash D. %infix none 3 \vdash. id: hyp (a Q) \vdash a Q. →R: G , hyp A \vdash B → C → B. →L: {G} GA \vdash A → G(hyp B) \vdash C → G(hyp (A → B) , GA) \vdash C.
```

However, this is not adequate, because the function G is a regular substitution function - the argument to a function can be present multiple times:

I've never seen any reference that indicates that either of these are legitimate instantiations of $\rightarrow R$ - in order to capture the intended meaning, G needs to be a linear function from contexts to contexts - a context with *exactly one* hole. Enter Celf (we're actually only using the LLF fragment), which gives what I believe to be an adequate encoding of the problematic $\rightarrow L$ rule.

```
Celf:
    seq : ctx -> prop -> type.
    id : seq (hyp (a Q)) (a Q).
    impR : seq (cons G (hyp A)) B -> seq G (imp A B).
    impL : Pi G: ctx -o ctx.
        seq GA A -> seq (G(hyp B)) C -> seq (G(cons (hyp(imp A B)) GA)) C.
```

Note that in both cases, in order for cut-elimination to typecheck at all we have to make the implicit argument G to \rightarrow L/impL - the context with the hole in it - explicit.

Cut admissibility

Now we can consider Twelf and CLF proofs of cut elimination. We shouldn't really expect the Twelf proof to work - the failure of adequacy means are going to be Twelf proofs of "G \vdash A" that don't correspond to any true sequent calculus proofs - but we should expect it to fail for interesting reasons. The Celf encoding fails for non-odd reasons. Celf has no meta-reasoning so I shouldn't expect it to check the proof, but I cannot get Celf to accept the computational content of the proof!

Twelf non-proof

Because our representation of derivations isn't adequate, we shouldn't expect this Twelf proof to work, but it is enlightening in its failures. We have to make the context-with-hole explicit as we did in *L, but beyond that, cut admissibility should look like this:

```
cut : \{A\} GA \vdash A \rightarrow \{G\} G(hyp A) \vdash C \rightarrow G(GA) \vdash C \rightarrow type.
%% IDENTITY CUTS
il : cut (a Q) id G E E.
i2 : cut (a Q) D ([\gamma] \gamma) id D.
%% LEFT COMMUTATIVE CUTS
11 : cut A (\rightarrowL GA<sub>2</sub> (D<sub>1</sub> : GA<sub>1</sub> \vdash B<sub>1</sub>) (D<sub>2</sub> : GA<sub>2</sub>(hyp B<sub>2</sub>) \vdash A)) G E
          (\twoheadrightarrow L ([\gamma] G(GA_2 \gamma)) D_1 F_2)
          <- cut A D<sub>2</sub> G E F<sub>2</sub>.
%% RIGHT COMMUTATIVE CUTS
r1 : cut A D G (→R E)
          (→R F)
          <- cut A D ([\gamma] G(\gamma) , hyp C<sub>1</sub>) E F.
r2 : cut A D ([\gamma] G (hyp(B1 \rightarrow B2) , G1(\gamma))) (\rightarrowL G E1 E2)
          (→L G F<sub>1</sub> E<sub>2</sub>)
          <- cut A D ([\gamma] G<sub>1</sub>(\gamma)) E<sub>1</sub> F<sub>1</sub>.
r3 : cut A D ([\gamma] G(\gamma) (hyp(B<sub>1</sub> \rightarrow B<sub>2</sub>) , G<sub>1</sub>)) (\rightarrowL (G(hyp A)) E<sub>1</sub> E<sub>2</sub>)
          (→L (G(GA)) E<sub>1</sub> F<sub>2</sub>)
          <- cut A D ([\gamma] G(\gamma) (hyp B<sub>2</sub>)) E<sub>2</sub> F<sub>2</sub>.
%% PRINCIPAL CUTS
p1 : cut (A<sub>1</sub> \rightarrow A<sub>2</sub>) (\rightarrowR D) ([\gamma] G(\gamma , G<sub>1</sub>)) (\rightarrowL G E<sub>1</sub> E<sub>2</sub>) F
          <- cut A<sub>1</sub> E<sub>1</sub> ([\gamma] GA , \gamma) D F<sub>1</sub>
          <- cut A<sub>2</sub> F<sub>1</sub> G E<sub>2</sub> F.
```

```
%mode cut +A +D +G +E -F.
%worlds (vprop) (cut _ _ _ _ _).
%total {A [D E]} (cut A D G E F).
```

Failure 1: mode checking

So, the first failure is that rule r2 (and r3) don't mode check! We'll look at r2 first:

Occurrence of variable G1 in input (+) argument not necessarily ground

This makes sense in light of the non-adequate encoding. In this case, we're thinking about the second derivation **L looking like this:

And then making a recursive call using the derivation $\Gamma_1[A] \vdash B$. But Twelf calls foul: $\Gamma[-]$ is encoded as a function ($[\gamma]$ G (hyp(B₁ \rightarrow B₂) , G₁(γ))). But what if G doesn't use it's argument, that is, what if ($[\gamma]$ G γ = $[\gamma]$ G') for some non-function G'? This would be impossible if G was a linear function, but it's possible here. In that case, then B₁, B₂, and G₁ are completely unconstrained, so we can't expect G₁ to be fully constrained when we use it in the recursive call!

Rule r3 gives the same error message, but for G, not G'. In that case, I have a premise ([γ] G(γ) (hyp(B₁ \rightarrow B₂) , G₁)) and I match it against an incoming input. What if it's this input?

```
([\gamma] (hyp(A \rightarrow B) , hyp C) , (hyp(A \rightarrow B) , hyp C))

There are many possibilities – two of them are actually linear in \delta!

B<sub>1</sub> = A, B<sub>2</sub> = B, G<sub>1</sub> = hyp C, G = [\gamma][\delta] \delta , \delta
```

```
B_1 = A, B_2 = B, G_1 = \text{hyp C}, G = [\gamma][\delta] \text{ (hyp (A <math>\rightarrow B) , hyp C) , } \delta
B_1 = A, B_2 = B, G_1 = \text{hyp C}, G = [\gamma][\delta] \delta \text{ , (hyp (A <math>\rightarrow B) , hyp C)}
B_1 = ?, B_2 = ?, G_1 = ?, G = [\gamma][\delta] \text{ (hyp (A <math>\rightarrow B) , hyp C) , (hyp (A \rightarrow B) , hyp C)}
```

Of course the fourth possibility is a problem, but even before then, Twelf does not deal with with the possibility of there being multiple successful ways of instantiating something. I hope that this is the same observation being made in section 5.2.3 of [JR].

Failure 2: coverage checking

Coverage checking also fails, but in each case this can be chalked up to a failure of the.

Celf proof

The computational content of cut should be adequately representable in Celf:

 \leftarrow cut A D2 (\g. G(g)) E F2.

```
%% RIGHT COMMUTATIVE CUTS
r1 : cut A D (\g. G g)
      (impR E)
      (impR F)
      <- cut A D (\g. cons (G g) (hyp C1)) E F.
r2: cut A D (\g. G(cons (hyp(imp B1 B2)) (G1(g))))
      (impL (\g. G(g)) E1 E2)
      (impL (\g. G(g)) F1 E2)
      <- cut A D (\g. G1(g)) E1 F1.
r3 : cut A D (\g. G(g) (cons (hyp(imp B1 B2)) G1))
      (impL (\g. G(hyp A)(g)) E1 E2)
      (impL (\g. G(GA)(g)) E1 F2)
      <- cut A D (\g. G(g)(hyp B2)) E2 F2.
%% PRINCIPAL CUTS
p1 : cut (imp A1 A2) (impR D) (\g. G(cons g G1)) (impL G E1 E2) F
      <- cut A1 E1 (\g. cons GA g) D F1
      <- cut A2 F1 G E2 F.
```

Failure 3: type reconstruction

Even after making the context argument explicit, Celf does not accept r1 or r2 in the above signature.

Functional programming with linear stuff

It seems like this would be a fun programming language, though - able to describe logic-programmey things like difference lists:

```
queue : list -o list
 isEmpty : queue -> bool
 isEmpty \lambda x.x = true
 isEmpty = false
 push : int -> queue -> queue
 push N \lambda x.Q[x] = \lambda x.Q[N :: x]
 pop : queue -> int * queue
 pop \lambda x.N :: Q[x] = (N, \lambda x.Q[x])
 pop Xx.x = raise EmptyQueue
 append : queue -> queue -> queue
 append \lambda x.Q_1[x] \lambda y.Q_2[y] = \lambda z.Q_1[Q_2[z]]
 to list : queue -> list
 to list \lambda x.Q_1[x] = Q_1[nil]
 from list : list -> queue
 from list Q_1[nil] = \lambda x \cdot Q_1[x]
Quoth Dan Licata: so what is the relationship between linear functions and derivatives
[CM]? I have no idea.
 list(bool * tree) = tree → tree
                          = \chi_{X.X}
 ((true, r) :: S)^* = \lambda x.node(S^* x, r) (or \lambda x.S^*(node(x, r)))
 ((false , 1) :: S)^* = \lambda x.node(1, S^* x) (or \lambda x.S^*(node(1, x)))
```

References

[CM] C. McBride, "The derivative of a regular type is its type of one-hole contexts," 2001. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.8611

[JR] J. Reed, "A hybrid logical framework," Ph.D. dissertation, Carnegie Mellon University, July 2009. [Online]. Available: http://reports-archive.adm.cs.cmu.edu/anon/2009/abstracts/09-155.html