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1 Introduction
Chaudhuri et al. have observed that, given a set of Horn clauses Ψ and a query, g, the 
set of SLD-derivations (Ψ ⊢ g) is isomorphic to the set of focused linear logic proofs 
(Ψ;· ⊢ g) where the bias of every atom is set to positive [CPP]. You could argue that 
this is lucky: the inverse method happens to start with the initial sequent (g ⊢ g) and 
then grow down on the left. The derivation of a sequent (a1...an ⊢ g) represents the 
possibility that SLD search can get to the point were g is provable if the subgoals a1...
an are all shown to be provable. 

To be clear, the “luck” here is that the multiset-like resource management of linear 
logic maps correctly onto SLD resolution. Persistent logic would correspond to SLD with a 
degree of loop-checking, and ordered logic and a bit of creativity could model either SLD 
resolution or strict, left-to-right Prolog style proof search.

In this note, I explore backwards and forwards proof search in ordered logic with two 
small-but-critical extensions. One is that Horn clauses can have two forms, expansive 
(A -• B • C) or contractive (A • B -• C). The other is that goals themselves get to be 
Horn clauses, not individual atomic propositions. This lends itself well to representing 
Chomsky normal form grammars, which will be our running example. There are eight 
possibilities to consider, corresponding to:

 * Positive or negative atoms
 * Contractive or expansive
 * Backward proof search or forward inverse-method search

As it turns out, the negative fragment doesn’t seem terribly interesting, and there is 
no longer the sharp contrast between using positive and negative polarities for atoms - 
though in almost all cases it seems more reasonable to use positive atoms. Rather, the 
interesting relationship between backward chaining proof search and the inverse method 
plays out between contractive and expansive rules - forward chaining on contractive 
rules is related to backward chaining on expansive rules, and vice versa. This should be 
generalizable to an extended Horn fragment that includes multiple-premise and multiple-
conclusion rules like (A • B -• C • D).

2 Extended example
Our running example will be an ambiguous parsing for arithmetic expressions given by the 
following rules:

e -> n
e -> e+e

We’ll represent numbers N with the atomic proposition N and the operator “+” with the 
atomic proposition P. These can be interpreted by expansive rules like (E -• E • P • E) 
or by contractive rules (E • P • E -• E). 



Expansive rules
E  -•  N
E  -•  E • P • E 
Goal : E  -•  N • P • N
All atoms positive

E  -•  ↑(N)
E  -•  ↑(E • P • E)
Goal:  E  -•  ↑(N • P • N)

Synthetic rules: 

ΩL, E, ΩR ⊢ J
-------------- r1
ΩL, N, ΩR ⊢ J

ΩL, E, P, E, ΩR ⊢ J
-------------------- r2
ΩL, E, ΩR ⊢ J

-------------------- rgoal 
N, P, N ⊢ N • P • N

Synthetic proof: 

-------------------- rgoal
N, P, N ⊢ N • P • N
-------------------- r1
N, P, E ⊢ N • P • N
-------------------- r1
E, P, E ⊢ N • P • N
-------------------- r2
E ⊢ N • P • N
  
Backward chaining (bad idea!) 

1) E ⊢ N • P • N   (goal)
2) E, P, E ⊢ N • P • N   (rule r2 on 1)
3) N, P, E ⊢ N • P • N   (rule r1 on 2)
4) N, P, N ⊢ N • P • N   (rule r1 on 3)
5) Done!   (rule rgoal on 4)

There are an unlimited number of sequent sets that can be derived in this way, such as (N, 
P, E, P, E ⊢ N • P • N), which can be derived by rule r2 on 3.

Inverse method (good idea!) 

1) N, P, N ⊢ N • P • N   (initial sequent derived from the goal)
2) N, P, E ⊢ N • P • N   (rule r1 on 1)
3) E, P, E ⊢ N • P • N   (rule r1 on 2)
4) E ⊢ N • P • N   (rule r2 on 3 - done!)

There are a limited number of additional sequents that can be derived - (E, P, N ⊢ N • P • 
N) is the only one we didn’t mention here.



All atoms negative

↓E  -•  ↑(↓N)
↓E  -•  ↑(↓E • ↓P • ↓E)
Goal:  ↓E  -•  ↑(↓N • ↓P • ↓N)

Synthetic rules:

Ω ⊢ E    ΩL, N, ΩR ⊢ J
----------------------- r1
ΩL, Ω, ΩR ⊢ J  

Ω ⊢ E    ΩL, E, P, E, ΩR ⊢ J
------------------------------ r2
ΩL, Ω, ΩR ⊢ J  

------ rN
N ⊢ N

------ rE
E ⊢ E 

------ rP
P ⊢ P

Ω₁ ⊢ N     Ω₂ ⊢ P     Ω₃ ⊢ N
------------------------------- rgoal
Ω₁, Ω₂, Ω₃ ⊢ ↓N • ↓P • ↓N

Synthetic proof:

                                   ------- rN  ------- rP  ------- rN
                                    N ⊢ N      P ⊢ P       N ⊢ N   
                       ------- rE  ------------------------------- rgoal
                        E ⊢ E      N, P, N ⊢ ↑N • ↑P • ↑N 
           ------- rE  ------------------------------------- r1
            E ⊢ E      N, P, E ⊢ ↑N • ↑P • ↑N 
------ rE  ------------------------------------ r1     
E ⊢ E      E, P, E ⊢ ↑N • ↑P • ↑N        
---------------------------------------- r2
E ⊢ ↑N • ↑P • ↑N

This is basically going to be a less-effi cient version of the story with positive-polarity 
connectives. 



Contractive rules
N  -•  E
E • P • E  -•  E
Goal : N • P • N  -•  E

All atoms positive

N  -•  ↑(E)
E • P • E  -•  ↑(E)
Goal : N • P • N  -•  ↑(E)

Synthetic connectives: 

ΩL, E, ΩR ⊢ J
-------------- r1
ΩL, N, ΩR ⊢ J

ΩL, E, ΩR ⊢ J
--------------------- r2
ΩL, E, P, E, ΩR ⊢ J

------ rgoal
E ⊢ E

Synthetic proof:

------ rgoal
E ⊢ E
------------ r2
E, P, E ⊢ E
------------ r1
N, P, E ⊢ E
------------ r1
N, P, N ⊢ E

Backward chaining (good idea!) 

1) N, P, N ⊢ E   (goal)
2) N, P, E ⊢ E   (rule r2 on 1)
3) E, P, E ⊢ E   (rule r1 on 2)
4) E ⊢ E   (rule r1 on 3)
5) Done!   (rule rgoal on 4)

There are a limited number of goal sets that can be derived in this way - (E, P, N ⊢ E) is 
the only one we didn’t mention here.

Inverse method (bad idea?) 

1) E ⊢ E   (rgoal)
2) E, P, E ⊢ E   (rule r2 on 1)
3) N, P, E ⊢ E   (rule r1 on 2)
4) N, P, N ⊢ E   (rule r1 on 2 - done!)

There are a seemingly infi nite number of goal sets that can be derived in this way - unless 
some pretty strong intelligence about subformulas is applied, (N, P, E, P, E ⊢ E) seems to 
be derivable by rule r2 on 2.



All atoms negative

Here we had to make a decision: since we knew we had contractive rules we didn’t add any 
shifts at the head, but if we wanted to generalize this then we would have rules like (↓N 
-• ↑(↓N)) instead.

↓N  -•  E
↓E • ↓P • ↓E  -•  E
Goal : ↓N • ↓P • ↓N  -•  E

Synthetic rules:

Ω ⊢ N
------ r1
Ω ⊢ E

Ω₁ ⊢ E     Ω₂ ⊢ P     Ω₃ ⊢ E   
------------------------------- r2
Ω₁, Ω₂, Ω₃ ⊢ E

------ rN
N ⊢ N

------ rP
P ⊢ P

(I don’t *think* that E ⊢ E is a derived initial sequent! Not certain.)

Synthetic proof:

------ rN             ------ rN
N ⊢ N                 N ⊢ N
------ r1  ------ rP  ------ r1
N ⊢ E      P ⊢ P      N ⊢ E   
---------------------------- r2
N, P, N ⊢ E

Backward chaining will need to use resource management in a clever way, but because 
it is forced to split up the context will be able to explore only a limited number of 
possibilities. 

The inverse method will need similar intelligence to before in order to avoid coming up 
with arbitrarily large contexts.

3 References
[CPP] K. Chaudhuri, F. Pfenning, and G. Price, “A logical characterization of forward and 
backward chaining in the inverse method,” Journal of Automated Reasoning, vol. 40, no. 2, 
pp. 133-177, March 2008. [Online]. Available: http://dx.doi.org/10.1007/s10817-007-9091-0 


