
Encoding Substructural Logics in a Hybrid Framework
Request For Logic (RFL) #3
Robert J. Simmons
November 22, 2009
In this note, I take a page out of Reed and Pfenning’s “constructive approach to the
resource semantics of substructural logics” and make a simpler observation than the
one they made; that a hybrid logical framework with fl exible equations on worlds can
be used to encode a large number of substructural logics.

1 Sketching the necessary hybrid logical framework
I must stress that this is a sketch; without the metatheory of this system worked
out, it is likely that there would be substantial surprises, and even without
surprises there are substantial implementation issues to consider. However, the logic
I am considering here is quite similar both to Reed and Pfenning’s FF [RP] and Reed’s
HLF [JR], so there is some hope that this is a reasonable approach.

It’s also worth making clear that I have a vastly less ambitious goal than Reed and
Pfenning’s constructive resource semantics for substructural logics [RP]. We want to
explore the properties of a hybrid logic where we can *encode* various substructural
logics. Reed and Pfenning were *embedding* substructural logics in a hybrid logic,
which is a substantially different enterprise and the topic of another note. Another
way to explain the difference is that Reed encodes logics and deductive systems in
the linear logical framework LLF and then uses HLF to reason about it; I’m just using
a variant of HLF to encode some logics.

Types are similar to what we would expect in any fi rst-order logical framework,
except that atomic propositions are always annotated with a world, i.e. “Q @ p.”
Intuitively, we will use the world “p” to tell us about the structure of the
context that the atomic type makes sense within. There are three sorts of things:
types/propositions, individuals, and worlds; just as we have different sorts of
individuals, we will allow different sorts of worlds when helpful. Individual
variables are “x₁,x₂,…” and world variables are “α,β,…”

 A ::= ∀α.A | ∀x.A | A → A | Q@w

Worlds “p,q,…” will be defi ned in each signature; if there are no constant worlds
then the only way to create them is to assume them. In other words, in the signature
containing only the type declaration “a : type,” there are no closed atomic types,
since there aren’t any worlds that can be associated with them. However, there is a
type “∀α. a@α → a@α” whose sole inhabitant is “λα.λx.x.” The “non-hybrid” version of
the logic should be recoverable by having a single constant “ε : w” defi ned in the
signature and annotating every atomic type with “@ε”.

1.1 Worlds: “tacking on” and “framing off”
I want to make the argument that there are two fundamental and complementary
operations on worlds: “tacking on” and “framing off.” The “tacking on” operation
describes how a new world “α” can be combined with an existing world “p.” In the
linear logic formulation of Reed’s thesis [JR], this was exclusively done with the
associative, commutative operation “∗” (with unit “ε”). For instance, the encoding of
the implication-right rule is as follows:

 ⊸R : (∀α. hyp(A)@α → conc(C)@(p∗α)) → conc(A ⊸ C)@p

The notion of “framing off” was done very explicitly in [RP], where explicit frames
were introduced that, combined with axioms like “(f ⊛ p) ◁ q ≡ f ◁ (p ∗ q)” ensured
that the frames “f” acted like one of Huet’s zippers over the structure of the world
[GH]. I’ll take the arguably less formal approach taken by [NB], where frames “p[-]”
are just worlds p with a distinguished variable that come with an obvious notion of
fi lling the hole “p[q]” that is implemented by substituting “q” for the distinguished
variable in “p.”

This informal simplifi cation is not without cost. In particular, we would seem to
need to require that the equivalence relation be such that if “p ≡ q,” and “p” has
a single distinguished variable, then “q” also has a single distinguished variable.
This means that it’s generally going to be impossible to use equalities on worlds
to describe weakening rules like “p⊑p∗q” that Reed and Pfenning explored in their
discussion of bunched logic.

2 Linear logic and queue logic
2.1 HLF-style linear logic
What are the fundamental “tacking on” and “framing off” operations of linear logic?
Well, Reed’s thesis certainly provides one extremely reasonable answer. The “tacking
on” operation is the resource combination operation “∗.”

 p ::= ε | α | p ∗ q
 ε ∗ p ≡ p
 p ∗ q ≡ q ∗ p
 p ∗ (q ∗ r) ≡ (p ∗ q) ∗ r

Because of the associative and commutative nature of ∗, it is always the case that
p[q] ≡ p[ε] ∗ q, so we get to use ∗ for both the “framing off” and the “tacking on”
operations, a substantial simplifi cation. Reed gives a sequent calculus defi nition in
his thesis, but it is given as if it was written in LLF (he has license to do this
because LLF is embedded in

HLF!) We can also write the sequent calculus presentation of linear logic directly
into hybrid logic.

 lol-r : (∀α. hyp(A)@α → conc(C)@(p∗α)) →
 conc(A ⊸ B)@p.
 lol-l : (∀β. hyp(B)@β → conc(C)@(p∗β)) →
 (conc(A)@q) →
 (hyp(A ⊸ B)@r → conc(C)@(p∗q∗r)).

 wth-r : conc(A)@p → conc(B)@p →
 conc(A & B)@p.
 wth-l1: (∀α. hyp(A)@α → conc(C)@(p∗α)) →
 (hyp(A & B)@q → conc(C)@(p∗q)).
 wth-l2: (∀α. hyp(B)@β → conc(C)@(p∗α)) →
 (hyp(A & B)@q → conc(C)@(p∗q)).

 ten-r : conc(A)@p → conc(B)@q →
 conc(A ⊗ B)@(p∗q).
 ten-l : (∀α.∀β. hyp(A)@α → hyp(B)@β → conc(C)@(p∗α∗β)) →
 (hyp(A ⊗ B)@q → conc(C)@(p∗q)).

 or-r1 : conc(A)@p → conc(A ⊕ B)@p.
 or-r2 : conc(B)@p → conc(A ⊕ B)@p.
 or-l : (∀α. hyp(A)@α → conc(C)@(p∗α)) →
 (∀β. hyp(B)@β → conc(C)@(p∗β)) →
 (hyp(A ⊕ B)@q → conc(C)@(p∗r)).

To be explicit about the “framing off” concept, we can rewrite the above rules to
use “p∗q” when we are talking about “tacking on” the world q to the world p and using
“p[q]” when we are talking about framing off the world q from the larger surrounding
context p.

 lol-r : (∀α. hyp(A)@α → conc(C)@(p∗α)) →
 conc(A ⊸ B)@p.
 lol-l : (∀β. hyp(B)@β → conc(C)@(p[β])) →
 (conc(A)@q) →
 (hyp(A ⊸ B)@r → conc(C)@(p[q∗r])).

 wth-r : conc(A)@p → conc(B)@p →
 conc(A & B)@p.
 wth-l1: (∀α. hyp(A)@α → conc(C)@(p∗α)) →
 (hyp(A & B)@q → conc(C)@(p[q])).
 wth-l2: (∀α. hyp(B)@β → conc(C)@(p[α])) →
 (hyp(A & B)@q → conc(C)@(p[q])).

 ten-r : conc(A)@p → conc(B)@q →
 conc(A ⊗ B)@(p∗q).
 ten-l : (∀α.∀β. hyp(A)@α → hyp(B)@β → conc(C)@(p[α∗β])) →
 (hyp(A ⊗ B)@q → conc(C)@(p[q])).

 or-r1 : conc(A)@p → conc(A ⊕ B)@p.
 or-r2 : conc(B)@p → conc(A ⊕ B)@p.
 or-l : (∀α. hyp(A)@α → conc(C)@(p[α])) →
 (∀β. hyp(B)@β → conc(C)@(p[β])) →
 (hyp(A ⊕ B)@q → conc(C)@(p[r])).

In this rewriting, every left rule uses the framing-off operation in a fairly uniform
manner. There are four rules that still use ∗ in this formulation, corresponding to
the two multiplicative connectives ⊸ and ⊗.

 lol-r: used in the premise to point out that we’ve tacked on a new thing
 lol-l: used in the conclusion to point out that the framed-off part has two
different parts
 ten-r: used in the conclusion to point out that we need two distinct parts of the
context
 ten-l: used in the premise to point out that the framed-off part is being replaced
with two different parts.

2.2 An alternate formulation of linear logic
In this section, we will make an odd proposal for linear logic based on the fact that
linear implication ⊸, not conjunction ⊗, is the fundamental way of “tacking things
on” to linear logic contexts.

This suggests that, instead of having a symmetric conjunction, we can defi ne worlds
like this:

 p ::= ε | α::p
 α::β::p ≡ β::α::p

Now, instead of worlds being a “tree-structured” syntactic object that is made
into a multiset soup by the equalities imposed on it, it is a “list-structured”
syntactic object that is made a multiset soup by the equalities imposed on it. The
point I wanted to make, though, is that it now exactly captures context formation
as suggested both by the inference rule and the encoded inference rule for linear
implication:

 A,Δ ⊢ B

 Δ ⊢ A ⊸ B

 lol-r : (∀α. hyp(A)@α → conc(B)@(α::p)) →
 conc(A ⊸ B)@p.

The left rule, on the other hand, uses the implicit “framing off” operation.
Remember, this rule has to “frame off” a world p, and α is no longer a world p,
though the singleton list α::ε is.

 lol-l : (∀β. hyp(B)@β → conc(C)@(p[β::ε])) →
 (conc(A)@q) →
 (hyp(A ⊸ B)@h → conc(C)@(p[h::q])).

Since “h” is attached to a hypothesis, it actually belongs to the same syntactic
class as α and β, which is why “h::q” makes sense (we used “h” instead of “r” in the
previous examples to emphasize this just a bit). So, reading from bottom to top:

 - A context “h::q” is framed off
 - The head “h,” associated with the proposition A ⊸ B, is consumed
 - The tail “q” is used to prove the premise A.
 - The hole is fi lled in by the singleton context associated (via the freshly-
introduced world variable β) with our newly-derived fact B.

The right rule for tensor is awkwardly asymmetric - we really want to split the
context into two parts, and it happens that we can do that by framing off one part
of the context. This won’t scale to ordered logic, but it still works here so I’ll
mention it.

 ten-r : conc(A)@p[ε] → conc(B)@q →
 conc(A ⊗ B)@p[q].
 ten-l : (∀α. hyp(A)@α → ∀β. hyp(B)@β → conc(C)@p[α::β::ε])
 (hyp(A ⊗ B)@h → conc(C)@p[h::ε]).

2.3 Queue logic
The payoff of this unusual formulation of linear logic is that, if we remove all
equations on worlds, we end up with the queue logic proposed by Reed [JRQ]. Queue
logic as presented by Reed has an ordered context, a linear implication that
allows propositions to be tacked on to the right-hand side of the context but only
decomposed when on the left-hand side of the context. Our presentation is the “other
way around” to match the way a list works - conceptually, we are used to tacking
things on to the left-hand side of a list, and the way we use “framing off p[q]
naturally forces us to decompose only the hypothesis on the right-hand side of the
list.

 init : hyp(A)@h → conc(A)@(h::ε).

 one-r : conc(1)@ε.
 one-l : conc(C)@p[ε] →
 (hyp(1)@h → conc(C)@p[h :: ε]).

 imp-r : (∀α. hyp(A)@α → conc(B)@(α::p)) →
 conc(A ↣ B)@p.
 imp-l : (∀β. hyp(B)@β → conc(C)@(p[β::ε])) →
 (conc(A)@q[ε]) →
 (hyp(A ↣ B)@h → conc(C)@(p[q[h :: ε]])).

 and-r : conc(A)@p[ε] → conc(B)@q →
 conc(A • B)@p[q].
 and-l : (∀α. hyp(A)@α → ∀β. hyp(B)@β → conc(C)@p[α :: β :: ε]) →
 (hyp(A • B)@h → conc(C)@p[h :: ε]).

3 Ordered logic
We can pull the same trick with ordered logic that we did for linear logic, either
making an implication-looking thing the primary way of manipulating the context or
making a conjunction-looking thing the primary way of manipulating the context. Chris
Martens’ undergraduate thesis works through much of the process of putting an ordered
hybrid framework together in the conjunction-ey style:

 p ::= α | ε | p · q
 ε · a ≡ a ≡ a · ε
 a · (b · c) ≡ (a · b) · c

 limp-r : (∀α. hyp(A)@α → conc(B)@(α·p)) →
 conc(A ↣ B)@p.
 limp-l : (∀β. hyp(B)@β → conc(C)@(p·β·r)) →
 (conc(A)@q) →
 (hyp(A ↣ B)@h → conc(C)@(p·(q·h)·r)).

 rimp-r : (∀α. hyp(A)@α → conc(B)@(p·α)) →
 conc(A ↠ B)@p.
 rimp-l : (∀β. hyp(B)@β → conc(C)@(p·β·r)) →
 (conc(A)@q) →
 (hyp(A ↠ B)@h → conc(C)@(p·(h·q)·r)).

 fuse-r : conc(A)@p → conc(B)@r → conc(A • B)@(p·r).
 fuse-l : (∀α. hyp(A)@α → ∀β. hyp(B)@β → conc(C)@(p·(α·β)·r)) →
 (hyp(A • B)@h → conc(C)@(p·h·r)).

Here, as in linear logic, we can just as easily give the left rules using the
“framed-off” style. This is kind of nice, instead of saying “h exists somewhere in
the middle of the context” as “p·h·r” we can write it as “p[h].”

 limp-r : (∀α. hyp(A)@α → conc(B)@(α·p)) →
 conc(A ↣ B)@p.
 limp-l : (∀β. hyp(B)@β → conc(C)@(p[β])) →
 (conc(A)@q) →
 (hyp(A ↣ B)@h → conc(C)@(p[q·h])).

 rimp-r : (∀α. hyp(A)@α → conc(B)@(p·α)) →
 conc(A ↠ B)@p.
 rimp-l : (∀β. hyp(B)@β → conc(C)@(p[β])) →
 (conc(A)@q) →
 (hyp(A ↠ B)@h → conc(C)@(p[h·q])).

 fuse-r : conc(A)@p → conc(B)@r → conc(A • B)@(p·r).
 fuse-l : (∀α. hyp(A)@α → ∀β. hyp(B)@β → conc(C)@(p[α·β])) →
 (hyp(A • B)@h → conc(C)@(p[h])).

As a fi nal point, we can encode the negative fragment of ordered logic in an
implication-centric style - there are two “tacking on” operations corresponding to
left and right implication.

 p ::= ε | α ▷ p | p ◁ α

 ε ◁ α ≡ α ▷ ε
 α ▷ (p ◁ β) ≡ (α ▷ p) ◁ β

Let’s see how we can re-associate a context from “right” to “left” using these rules:

 α ▷ (β ▷ (γ ▷ ε))
 ≡ α ▷ (β ▷ (ε ◁ γ))
 ≡ α ▷ ((β ▷ ε) ◁ γ)
 ≡ α ▷ ((β ▷ ε) ◁ γ)
 ≡ (α ▷ (β ▷ ε)) ◁ γ
 ≡ (α ▷ (ε ◁ β)) ◁ γ
 ≡ ((α ▷ ε) ◁ β) ◁ γ
 ≡ ((ε ◁ α) ◁ β) ◁ γ

The biggest issue is that we cannot encode fuse-r in this setting. In ordered logic,
p[q] means (roughly) “a string p with a q somewhere in the middle.” But fuse-r above
needs to be able to express p·q, a string composed of p concatenated with string
q. Some different kind of notation (or a different understanding of our current
notation) would be needed.

That said, we’re often interested in the fragment of a language without conjunction,
so it’s still worth describing what the rules for the two forms of implication look
like.

 limp-r : (∀α. hyp(A)@α → conc(B)@(α ▷ p)) →
 conc(A ↣ B)@p.
 limp-l : (∀β. hyp(B)@β → conc(C)@(p[ε ◁ β])) →
 (conc(A)@q) →
 (hyp(A ↣ B)@h → conc(C)@(p[q ◁ h])).

 rimp-r : (∀α. hyp(A)@α → conc(B)@(p ◁ α)) →
 conc(A ↠ B)@p.
 rimp-l : (∀β. hyp(B)@β → conc(C)@(p[β ▷ ε])) →
 (conc(A)@q) →
 (hyp(A ↠ B)@h → conc(C)@(p[h ▷ q])).

It’s curious that limp-r uses ▷ and limp-l uses ◁, isn’t it? It would also be
interesting to explore what kind of logic happens when one or both of the equalities
described above is removed. Is it even still a sensible logic?

4 Bunched logic
Bunched logic is where we most need our concept of a separate “framing off” operator.
Bunched contexts are inherently tree-structured, so we cannot use the conjunctive
tacking-on operator to simulate framing off as we could in ordered and linear logic.
The worlds for bunched logic are formed from two commutative monoids that have their
own units but no distributivity or cancellation properties.

p ::= α | εa | p ⊚ q | εm | p ⊛ q |

 εm ⊛ p ≡ p ≡ p ⊛ εm
 p ⊛ (q ⊛ r) ≡ (p ⊛ q) ⊛ r
 p ⊛ q ≡ q ⊛ p

 εa ⊚ p ≡ p ≡ εa ⊚ p
 p ⊚ (q ⊚ r) ≡ (p ⊚ q) ⊚ r
 p ⊚ q ≡ q ⊚ p

We can’t directly represent weakening and contraction as equalities, but we can
represent them as rules.

 weakening : conc(A)@p[q] → conc(B)@p[q⊚r].
 contraction : conc(A)@p[q⊚q] → conc(A)@p[q].

The “context equality” rule:

 Δ ≡ Γ Γ ⊢ A
 ------------- E
 Δ ⊢ A

is inherent in the equations above. The rest of the rules follow naturally, using the
framing off operation in a now-familiar style.

 init : hyp(A)@h → conc(A)@h

 mwand-r : (∀α. hyp(A)@α → hyp(B)@(p⊛α)) →
 conc(A -∗ B)@p.
 mwand-l : (∀β. hyp(B)@β → conc(C)@p[β])
 conc(A)@q
 (hyp(A -∗ B)@h → conc(C)@p[h⊛q]).

 impl-r : (∀α. hyp(A)@α → hyp(B)@(p⊚α)) →
 conc(A ⇒ B)@p.
 impl-l : (∀β. hyp(B)@β → conc(C)@p[β])
 conc(A)@q
 (hyp(A ⇒ B)@h → conc(C)@p[h⊚q]).

 mconj-r : conc(A)@p → conc(B)@q → conc(A ∗ B)@(p⊛q) .
 mconj-l : (∀α. hyp(A)@α → ∀β. hyp(B)@β → conc(C)@p[α⊛β]) →
 (hyp(A ∗ B)@h → conc(C)@p[h]).

 aconj-r : conc(A)@p → conc(B)@q → conc(A ∧ B)@(p⊚q) .
 aconj-l : ∀α. hyp(A)@α → ∀β. hyp(B)@β → conc(C)@p[α⊚β] →
 (hyp(A ∧ B)@h → conc(C)@p[h]).

5 References
[GH] G. G. Huet, “The zipper,” Journal of Functional Programming, vol. 7, no.
05, pp. 549-554, September 1997. [Online]. Available: http://dx.doi.org/10.1017/
S0956796897002864

[JRQ] J. Reed, “Queue logic: An undisplayable logic?” April 2009. [Online].
Available: http://www.cs.cmu.edu/~jcreed/papers/queuelogic.pdf

[JR] J. Reed, “A hybrid logical framework,” Ph.D. dissertation, Carnegie Mellon
University, July 2009. [Online]. Available: http://reports-archive.adm.cs.cmu.edu/
anon/2009/abstracts/09-155.html

[NB] N. Berregeb, A. Bouhoula, and M. Rusinowitch, “Observational proofs with
critical contexts,” 1998, pp. 38+. [Online]. Available: http://www.springerlink.com/
content/79j071j4hk36w82x

[RP] J. Reed and F. Pfenning, “A constructive approach to the resource semantics of
substructural logics.”

