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Abstract

Substructural logics, such as linear logic and ordered logic, have an inherent notion of state
and state change. This makes them a natural choice for developing logical frameworks that
specify evolving stateful systems. Our previous work has shown that the so-called forward
reasoning fragment of ordered linear logic can be used to give clear, concise, and modular
specifications of stateful and concurrent features of programming languages. I propose to show
that a logical framework based on forward reasoning in ordered linear logic can also be used
to formally reason about properties of programming languages in ways that can be verified by
both human readers and mechanized proof assistants.

1 Introduction
Robust and flexible frameworks for specifying and reasoning about programming languages form the
bedrock of programming languages research. In part, this is because they provide a common con-
vention: historically, the most successful specification framework, Structural Operational Semantics
(i.e. SOS), is the lingua franca of PL research. Even more critical is the ability of a framework to
permit reasoning about properties of programming languages; in the case of SOS, the traditionally
interrelated notion of “Safety = Progress + Preservation” has essentially come to define what it
means for a programming language to make sense.

One problem with SOS specifications of programming languages is that they are non-modular:
especially when dealing with imperative and concurrent programming language features, the natural
specification of language parts cannot, in general, be combined to give a natural specification of
the language whole. This makes it difficult to straightforwardly extend a pure “toy” programming
language with a feature like imperative references without a complete overhaul of the language’s
definition and type safety proof; a similar overhaul is necessary to extend the definition of a large
sequential language to handle concurrency. This has troubling practical consequences: it means that
it is more difficult to scale from a small language formalization to a large one, and it means that
existing language specifications may be difficult to augment with new features.

The solution at the heart of this thesis involves two interconnected ideas. One idea is a specifica-
tion style, Substructural Operational Semantics (i.e. SSOS). SSOS specifications generalize abstract
machine specifications and permit clear and modular specification of programming language features
that involve state and concurrency. The other idea is a logical framework based on forward reasoning
in ordered linear logic. The framework I present can adequately encode both the static and dynamic
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semantics of SSOS specifications, and the framework also facilitates formal reasoning about prop-
erties of specified programming languages. Furthermore, a logic programming interpretation of the
logical framework can be used to simulate the dynamic semantics of SSOS specifications.

Proposed work
My thesis work will defend the following statement:

Thesis Statement: Logical frameworks based on forward reasoning in substructural log-
ics are suitable for modular specification of programming languages and formal reasoning
about their properties.

The overall structure of this proposal is as follows: Section 2 discusses the problem of non-modular
programming language specification. Section 3 motivates a logical basis for evolving systems, and
Section 4 sketches a logical framework based on these principles. Section 5 returns to the specifi-
cation problem motivated in Section 2, presenting modular SSOS specifications in this new logical
framework and reasoning about type safety via progress and preservation proofs. Section 6 discusses
a number of other applications of the framework and specification style; these applications generally
fall under the umbrella of applying logical transformations to SSOS specifications.

In the remainder of this section, I outline my existing and expected contributions in more detail.

A logical framework for evolving systems The logical framework that I plan to develop and
use is organized around a presentation of logic as a state transition system. This is outlined in
Section 3, and a complete account of intuitionistic linear logic as a state transition system is an
expected contributions of my thesis work. When we want to specify a system with a notion of
evolution or state transition — such as a programming language’s dynamic semantics — we can
encode transitions in the specified system as transitions in the logical framework. Embedded within
this state-transition-based logic is a more traditional logical framework organized around a canonical-
forms-based presentation of logic. When we want to specify a deductive system that is defined by
inference rules — such as the typing rules of a programming language — we can encode derivations
in the specified system as canonical proof terms in the logical framework.

The logical framework discussed in Section 4 is in many ways quite similar to existing systems,
especially CLF [WCPW02]. The critical difference is that the framework I present is based upon the
presentation of substructural logic as a state transition system; this change of perspective becomes
critical when describing and verifying properties of these programming languages. There are a
number of other differences, most notably the generalization from linear logic to ordered logic and
the strong separation between transitions and deductions, though I see these differences as somewhat
less fundamental. As part of my thesis work I will present a full development of the standard
metatheory of this new logical framework; I anticipate that this will be straightforward, as many of
the details of the framework are familiar.

Canonical-forms-based presentations of logic are usually given a logic programming semantics
that is backward chaining (or “top-down”). The state transition-based logic, on the other hand,
naturally corresponds to a forward chaining (or “bottom-up”) logic programming semantics. The
particular relationship between the state-transition-based fragment of the logic and the canonical-
forms-based fragment of the logic, then, corresponds to a particular way of understanding the inte-
gration of forward and backward chaining in a logic programming language. This logic programming
interpretation is useful for our purposes, because it allows a SSOS specification of a programming
language to be directly executed as an interpreter for the specified programming language. An
existing contribution is Ollibot, an implementation of the forward chaining fragment of the logical
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framework given in Section 4.1 I expect to extend Ollibot with facilities for backwards chaining in
the course of this thesis; I also plan to explore efficient and distributed execution of Ollibot programs.

Substructural Operational Semantics (SSOS) specifications While I am interested gener-
ally in the specification of evolving systems in substructural logics, my focus will be on the aforemen-
tioned SSOS specifications. SSOS specifications are similar to specifications of abstract machines
for control, but the specifications are local: transition rules do not describe the entire state, just the
parts that change. The particular style of SSOS specifications that I plan to focus on, originally
presented in [PS09], is outlined in Section 5. The style of specification considered in this section
gives clean and modular specifications of stateful and concurrent programming language features;
its most significant limitation is that it does not handle non-local control features like first-class
continuations in a modular way.

In Section 5, I also outline a methodology for describing the static semantics of SSOS specifi-
cations and reasoning about their safety, which is an original contribution of this thesis proposal.
As demonstrated in Section 5.6 and the appendix, this methodology is still incomplete; however, I
expect to show that the techniques in this section can be adapted to allow for both modular specifi-
cations of a language’s semantics and modular proofs of a language’s safety. I also expect to develop
a tool to facilitate the mechanical verification of these type safety properties.

In Section 6, I discuss a number of further applications, all of which fall under the general theme
of transforming SSOS specifications. My previous work in this area has been primarily focused on
applying logical transformations to derive manifestly correct program analyses from the operational
semantics of a programming language specified in SSOS [SP09, SP10]. I also plan to consider the
use of logical transformations for other of other purposes, including enhancing the modularity of
specifications, introducing alternative evaluation strategies, and connecting high-level and low-level
specifications.

2 Modular and non-modular specification
In the introduction and thesis statement, the phrase modular specification was used but not defined.
Modularity means different things in different settings; in this section, we will motivate the problem
by considering modular and non-modular extensions to a very simple programming language. We
start by assuming that we have natural numbers n and some operations (such as addition) on those
natural numbers; expressions e can then be defined by giving a BNF specification:

e ::= num(n) | e1 + e2

Call this language of numbers and addition L0; we next give a small-step structural operational
semantics for L0 that specifies a left-to-right evaluation order. We also adopt the standard convention
of writing expressions that are known to be values as v, not e:

num(n1) value

e1 7→ e′1
e1 + e2 7→ e′1 + e2

v1 value e2 7→ e′2
v1 + e2 7→ v1 + e′2

n1 + n2 = n3

num(n1) + num(n2) 7→ num(n3)

The extension of L0 with eager pairs (e ::= . . . | π1e | π2e | 〈e1, e2〉) is an example of a
modular extension. We can take the following natural small-step SOS specification of eager pairs
and concatenate it together with the L0 specification to form a coherent (and, with a suitable type
system, provably type-safe) specification of a language that has both features.

v1 value v2 value

〈v1, v2〉 value

e1 7→ e′1
〈e1, e2〉 7→ 〈e′1, e2〉

v1 value e2 7→ e′2
〈v1, e2〉 7→ 〈v1, e

′
2〉

1http://ollibot.hyperkind.org/examples-0.1/
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e 7→ e′

π1e 7→ π1e
′
〈v1, v2〉 value

π1〈v1, v2〉 7→ v1

e 7→ e′

π2e 7→ π2e
′
〈v1, v2〉 value

π2〈v1, v2〉 7→ v2

In contrast, the extension of L0 with ML-style imperative references is an obvious example of
a non-modular extension. The extended syntax is (e ::= . . . | ref e | loc[l] | !e | e1 gets e2) — the
expression ref e creates a reference, !e dereferences a reference, e1 gets e2 assigns the value of e2 to
the location represented by e1, and loc[l] is a value, which only exists at runtime, referencing the
abstract heap location l where some value is stored). In order to give a small-step SOS specification
for the extended language, we must mention a store σ in every rule:

loc[l] value

(σ, e) 7→ (σ′, e′)

(σ, ref e) 7→ (σ′, ref e′)

v value l 6∈ dom(σ)

(σ, ref v) 7→ (σ[l := v], loc[l])

(σ, e) 7→ (σ′, e′)

(σ, !e) 7→ (σ′, !e′)

σ(l) = v

(σ, ! loc[l]) 7→ (σ, v)

(σ, e1) 7→ (σ′, e′1)

(σ, e1 gets e2) 7→ (σ′, e′1 gets e2)

v1 value (σ, e2) 7→ (σ′, e′2)

(σ, v1 gets e2) 7→ (σ′, v1 gets e′2)

v2 value

(σ, loc[l] gets v2) 7→ (σ[l := v2], v2)

The non-modularity of this extension comes from the fact that it forces us to rewrite the rules
describing addition as well:

(σ, e1) 7→ (σ′, e′1)

(σ, e1 + e2) 7→ (σ′, e′1 + e2)

v1 value (σ, e2) 7→ (σ, e′2)

(σ, v1 + e2) 7→ (σ′, v1 + e′2)

n1 + n2 = n3

(σ, num(n1) + num(n2)) 7→ (σ, num(n3))

Modularity and specification styles Another interesting loss of modularity in SOS specifica-
tions appears when we introduce exceptions and exception handling (e ::= . . . | error | try e1 ow e2).

e1 7→ e2

try e1 ow e2 7→ try e′1 ow e2

v1 value

try v1 ow e2 7→ v1 try error ow e2 7→ e2

Our rules for addition do not need to be revised to be compatible with this extension, but in order
to preserve type safety, we must provide a way for errors to “bubble up” through additions.

error + e2 7→ error

v1 value

v1 + error 7→ error

We can avoid this particular form of non-modularity while technically staying within the SOS
framework. This is possible if we use an abstract machine style of specification. Abstract machine-
style specifications have an explicit control stack (or continuation), usually denoted k, that represents
unfinished parts of the computation; a control stack is a list of frames, which we describe below.
Basic abstract machine specifications have two kinds of states: an expression being evaluated on a
stack (k � e) and a value being returned to the stack (k � v). We introduce two frames f in order
to specify L0:

• ((−) + e2) is a frame waiting on the first argument to be evaluated to a value so that the
evaluation of e2 can begin, and
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• (v1 + (−)) is a frame holding the already-evaluated value v1 waiting on the second argument
to be evaluated to a value.

The abstract machine specification of the operational semantics of L0 has four rules:

k � num(n) 7→ k � num(n)

k � (e1 + e2) 7→ (k, (−) + e2)� e1

(k, (−) + e2)� v1 7→ (k, v1 + (−))� e2

(k, num(n1) + (−))� num(n2) 7→ k � num(n3) (if n1 + n2 = n3)

Given this specification, we can define the behavior of exceptions by adding a new frame (try (−) ow e2)
and a new kind of state — (k�), a stack dealing with an error.

k � try e1 ow e2 7→ (k, try (−) ow e2)� e1

(k, try (−) ow e2)� v1 7→ k � v1

k � error 7→ k�

(k, try (−) ow e2)� 7→ k � e2

(k, f)� 7→ k � (if f 6= try (−) ow e2)

When it comes to control features like exceptions, abstract machine specifications are more modular.
We did not have to specifically consider or modify the stack frames for addition (or for multiplication,
or function application. . . ) in order to introduce exceptions and exception handling; one rule (the
last one above) interacts modularly with essentially any “pure” language features. Both the SOS
specification and the abstract machine specification were reasonable ways of specifying pure fea-
tures like addition, but the abstract machine specification better anticipates the addition of control
features.

Observation 1. Different styles of specification can allow different varieties of programming lan-
guage features to be specified in a modular style.

Another way of stating this observation is that we must precisely anticipate the language features
dealing with state and control if SOS-style specifications are our only option. When we pull back
and look at a choice between these two specification styles, we only need to generally anticipate
whether we might need control features like exceptions or first-class continuations; if so, we should
use an abstract machine specification.

Modularity and ambient state Of course, an abstract-machine-style presentation does not solve
the problem with mutable references that we discussed at first! Various attempts have been made
to address this problem. The Definition of Standard ML used an ad-hoc convention that, applied
to our example, would allow us to write the original L0 rules while actually meaning that we were
writing the state-annotated version of the rules [MTHM97, p. 40]. In this case, the convention is less
about modular specification and more about not writing hundreds and hundreds of basically-obvious
symbols in the language definition.

Mosses’s Modular Structural Operational Semantics (MSOS) attempts to formalize and stan-
dardize this sort of convention [Mos04]. A transition in MSOS is written as (e1

X−−→ e2), where X is
an open-ended description of the ambient state. By annotating congruence rules with X = {...}, the
MSOS specification of L0 specifies that the congruence rules simply pass on whatever effects happen
in subexpressions. The reduction rule is annotated with X = {—} to indicate that it has no effect
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on the ambient state.

v1 value e2
{...}
−−−−→ e′2

v1 + e2
{...}
−−−−→ v1 + e′2

n1 + n2 = n3

num(n1) + num(n2)
{—}
−−−−→ num(n3)

Reduction rules that actually access some part of the ambient state, such as reduction rules for
referencing the store, can mention and manipulate the store as necessary:

σ(l) = v

! loc(l)
{σ, —}
−−−−−−−→ v

v2 value

loc(l) gets v2
{σ, σ’=σ[l := v2], —}
−−−−−−−−−−−−−−−−−→ v2

There is a good bit of related work along the lines of MSOS; for example, Implicitly-Modular
Structural Operational Semantics (I-MSOS) is an extension of MSOS that partially removes the
need for the explicit annotations X [MN09]. In all cases, however, the goal is to provide a regular
notion of ambient state that allows each part of a language specification to leave irrelevant parts of
the state implicit and open-ended.

Observation 2. A framework that provides an open-ended notion of ambient state assists in writing
modular programming language specifications.

Modularity and the LF context Logical frameworks in the LF family (such as LF [HHP93],
LLF [CP02], OLF [Pol01], CLF [WCPW02], and HLF [Ree09a]) have an inherent notion of am-
bient information provided by the framework’s context. As an example, consider the following LF
specification of the static semantics of L0 (we use the usual convention in which capital letters are
understood to be universally quantified):

of : exp → tp → type.
of/num : of (num N) int.
of/plus : of E1 int → of E2 int → of (plus E1 E2) int.

The contents of the LF context are specified independently from the specification of the inference
rules. If we declare the LF context to be empty, our specification corresponds to an “on-paper”
specification of the language’s static semantics that looks like this:

num(N) : int

e1 : int e2 : int

e1 + e2 : int

This assumption that there is nothing interesting in the context, frequently called a closed world
assumption, is not the only option. Another option is to declare that the LF context may include
free expression variables x in tandem with an assumption that x:τ for some type τ . In this case, the
LF specification written above corresponds to the following on-paper specification:

Γ, x:τ ` x : τ Γ ` num(n) : int

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 + e2 : int

Language features that incorporate binding require a variable context in the specification of their
static semantics; as a result, our original on-paper static semantics could not be composed with
an on-paper static semantics of language features like let-expressions and first-class functions. But
because the contents of the LF context are open-ended, we can combine the LF specifications of the
static semantics. The specification we wrote down in LF is open-ended in precisely the way we need
it to be, even though the on-paper version is not.
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Observation 3. The LF context provides an open-ended notion of ambient information that en-
hances the modularity of certain specifications.

Unfortunately, the open-endedness we describe here is useful for capturing ambient information
in a static semantics; it is not useful for capturing ambient state in a dynamic semantics. The
LF context only supports the addition of new assumptions that are persistent and unchanging,
but capturing the dynamic semantics of stateful features like mutable references requires adding,
modifying, and removing information about the state of the specified system. The solution is, in
principle, well understood: logical frameworks based on substructural logics (especially linear logic)
can capture stateful change — it is possible to remove facts from a linear logic context. Therefore,
assumptions in a linear logic context can be thought of as representing ephemeral facts about the
state of a system, facts which might change, as opposed to persistent assumptions which can never be
removed or modified. Examples of logical frameworks that provide an open-ended notion of ambient
state through the use of a linear context include Forum [Mil96], Lolli [HM94], LLF [CP02], and CLF
[WCPW02]. Furthermore, all of these frameworks have been given an operational interpretation as
logic programming languages, so specifications are, at least in theory, executable.

Previewing SSOS specifications These observations motivate the design of substructural op-
erational semantics and, in turn, the design of the logical framework. We can give a basic picture of
SSOS specifications at this point by thinking describing them as collections of string rewriting rules
where, for instance, the rewrite rule a · b� c allows the string a · a · b · b to transition to the string
a · c · b.

SSOS specifications resemble the abstract machine-style specifications above, but instead of cap-
turing the entire control stack k as a single piece of syntax, each frame f is captured by a token
cont(f) in the string. The token eval(e) represents an evaluating expression e, and is analogous to the
state (k � e) in the abstract machine specification, whereas the token retn(v) represents a returned
value and is analogous to the state (k� v) in the abstract machine specification. The resulting rules
are quite similar to the abstract machine rules:

eval(num(n))� retn(num(n))

eval(e1 + e2)� cont((−) + e2) · eval(e1)

cont((−) + e2) · retn(v1)� cont(v1 + (−)) · eval(e2)

cont(num(n1) + (−)) · retn(num(n2))� retn(num(n3)) (if n1 + n2 = n3)

We can then give modular specifications of exceptions and exception handling much as we did in the
abstract machine for control, and the non-local nature of the specifications also means that we can
add state. To give a very simple example that does not generalize well, we can modularly extend the
language with a single counter; evaluating the expression get gets the current value of the counter,
and evaluating the expression inc gets the current value of the counter and then increments it by
one. The value of the counter is stored in a token counter(n) that appears to the right of the eval(e)
or retn(v) tokens (whereas the stack grows off to the left).

eval(get) · counter(n)� retn(num(n)) · counter(n)

eval(inc) · counter(n)� retn(num(n)) · counter(n+ 1)

Just as the rules need only reference the parts of the control stack that they modify, the rules only
need to mention the counter if they access or modify that counter in some way. Again, this is a
terrifically non-generalizable way of extending the system with state, because the use of ambient state
is not “open-ended” — where would we put the second counter? Nevertheless, it is a specification of
a stateful feature that can be composed modularly with the specification of addition.
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After we motivate and present the logical framework we plan to use in the next two sections, we
will return to this style of specification and see how it can be used to give modular specifications
of both exceptions and parallel evaluation. A more general way of introducing state in the form of
ML-style references is also possible, as discussed in Appendix A.1.

Rewriting logic The reader familiar with rewriting logic will surely notice that the specifications
above are can be essentially understood as string rewriting rules. Before we proceed, it is worth
discussing this connection further; more detail is considered in the conclusion.

In this proposal, SSOS specifications are closely linked to the particular ordered logical framework
that I will outline in the next two sections. However, SSOS specifications need not be so closely tied
to a particular framework; the specifications above are representable in either an implementation
of forward chaining in ordered logic (like Ollibot) or in a rewriting logic engine (like Maude). The
reason we are not exploring SSOS specifications in rewriting logic is that essential elements of
our approach cannot be specified in rewriting logic — in particular, rewriting logic as it is usually
understood does not support higher-order abstract syntax, nor does it support LF-style specifications
of a programming language’s typing judgments as presented above. Designing a common framework
that unifies and generalizes both rewriting logic and the logical framework described in this proposal
is a desirable goal, but it is a goal that is likely outside the scope of this thesis.

There is also a line of work on representing the semantics of programming languages within
rewriting logic; the two most notable projects along these lines are the rewriting logic semantics
project [MR07], and the K framework for language specifications [ŞR10]. Modulo particulars of
syntax and aforementioned issues like the absence of higher-order abstract syntax, specifications
in the K framework bear a resemblance to SSOS specifications, and both projects have a similar
goal: using an ambient notion of state to assist in the formalization of stateful and concurrent
programming language features. However, beyond that similarity the approaches differ substantially
in emphasis, and I believe they can best be seen as compatible efforts: it is likely that the model
checking capabilities developed in the rewriting logic semantics project can be productively applied
to SSOS specifications, and likewise the techniques for logically transforming SSOS specifications
and mechanically verifying their properties that I am proposing to develop should be applicable to
the rewriting logic semantics project.

3 Logics of deduction and transition
The aforementioned logical frameworks that provide an open-ended notion of ambient state through
the use of substructural logics — Forum, CLF, etc. — can be difficult to use for certain types of
reasoning about properties of systems specified in the framework. One source of difficulty is that
many properties of specified systems are naturally described as properties of the partial proofs that
arise during proof search, but in all of these frameworks it is more natural to reason about properties
of complete proofs. In this section, we discuss a solution to this mismatch: we define linear logic as
a state transition system, at which point it is natural to talk about sequences of transitions (which
do, in fact, correspond to partial proofs in a sequent calculus) as first-class entities. The only other
solutions that I am aware of are based on Ludics, a presentation of logic that treats proofs with
missing “leaves” as objects of consideration [Gir01].

Underlying logical frameworks like LF and LLF is a particular justification of logic, dating back to
Martin-Löf’s 1983 Siena Lectures [ML96], which holds that the meaning of a proposition is captured
by what counts as a verification of that proposition. In Section 3.1 I briefly revisit Martin-Löf’s
verificationist meaning-theory and how it relates to the use of canonical forms to adequately capture
deductive systems.
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There is another presentation of logic — first outlined by Pfenning [Pfe08] and developed further
in Section 3.2 — which underlies a line of work on using forward-chaining in substructural logics for
logic programming and logical specification [SP08, SP09, PS09]. Substructural contexts are treated
as descriptions of the ephemeral state of a system, and the meaning of a proposition is captured by
the state transitions it generates.

The integration of these two ways of understanding logic requires care, as a naïve approach
for combining the two paradigms will destroy desirable properties of both the canonical-forms-
based framework and the state-transition-based framework. In Section 3.3, I explain my proposed
approach, which is based on the observations of adjoint logic [Ree09b].

3.1 A canonical-forms-based view of logic
Existing work on the proof theory of logical frameworks, including the LF family of logical frame-
works [HHP93], is based in part on a verificationist philosophy described in Martin-Löf’s Siena
Lectures [ML96]. A verificationist meaning-theory provides that the meaning of a proposition is
precisely captured by its introduction rules — that is, by the ways in which it may be verified. A
proposition A∧B is true, then, precisely if A is true and B is true, and a proposition A ⊃ B is true
precisely if we can verify B given an additional assumption that A is true.

The elimination rules, on the other hand, must be justified with respect to the introduction
rules. We justify the elimination rules for a connective in part by checking their local soundness and
local completeness [PD01]. Local soundness ensures that the elimination rules are not too strong:
if an introduction rule is immediately followed by an elimination rule, the premise gives us all the
necessary evidence for the conclusion.

D1

A true
D2

B true

A ∧B true
∧I

A true
∧E1

⇒R
D1

A true

Local completeness, on the other hand, ensures that the elimination rules are not too weak: given a
derivation of the compound connective, we can use elimination rules to get all the evidence necessary
to reapply the introduction rule:

D
A ∧B true

⇒R

D
A ∧B true

A true
∧E1

D
A ∧B true

B true
∧E2

A ∧B true
∧I

3.1.1 Verifications and canonical forms

An examination of the requirement that introduction rules precisely define the connectives leads to
a restricted set of proofs called verifications. If there is a proof of the truth of A∧B, then we don’t
know a great deal about its proof. Maybe it looks like this!

...
D ∧ (A ∧B) true

A ∧B true
∧E2

...
C true

(A ∧B) ∧ C true
∧I

A ∧B true
∧E1
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On the other hand, if we have a verification of A ∧ B then we know that the last step in its proof
combines two (smaller) verifications, one of which is a verification of A and the other of which is a
verification of B. We consider the verifications to be the canonical proofs of a proposition — when
we introduce proof terms, verifications correspond to a restricted set of proofs called the canonical
forms.

3.1.2 Definitions, atomic propositions, and adequacy

The canonical forms are interesting from the point of view of logical frameworks because they allow
us to capture a representative of a derivation as a proof term within the logic. To use a standard
example, we can introduce a new atomic proposition (addNMP) that is defined by the two constants
add/z and add/s. We continue to use the convention that identifiers beginning with capital letters
represent variables that are implicitly universally quantified.

z : nat.
s : nat → nat.

add : nat → nat → nat → type.
add/z : add z N N.
add/s : add N M P → add (s N) M (s P).

Given this signature, we would like to say that we also know what counts as a verification of
the proposition add (s z) (s z) (s(s z)) — in particular, that only one thing will do: a use of add/s
and a verification of add z (s z) (s z). But this is not the case! We can also verify a proposition
add (s z) (s z) (s(s z)) by using an assumption of the same proposition, or by using an assumption of
the form addNMP→ addNMP and a verification of add (s z) (s z) (s(s z)), or by using an assumption
of the form addN (sM)P → addNMP and a verification of add (s z) (s(s z)) (s(s z)). . . The point is
that the very open-endedness of the LF context that we pointed out in Observation 3 is preventing
us from making the claim that we know something specific about what counts as a verification of
the proposition add (s z) (s z) (s(s z)).

However, it is intuitively reasonable enough to require that our current assumptions include
neither assumptions of the form addNMP nor assumptions that can be immediately used to prove
addNMP (which is effectively a closed world assumption). Under this requirement, our intuition
for what counts as a verification of the proposition add (s z) (s z) (s(s z)) is correct. Considerations
such as these lead to a formal notion of adequate encodings, which in this case means that there is
a bijection between terms of the type addNMP and derivations of N + M = P as defined by the
following deductive system:

N + M = P

s N + M = s P
add/s

z + N = N
add/z

There is, as the example of a static semantics from Section 2 illustrates, tension between con-
siderations of modularity (which dictate that the form of the context should be as open-ended as
possible) and adequacy (which dictate that the form of the context should be as fully specified as
possible). However, experience shows that, by incorporating concepts such as subordination [Vir99],
this tension is unproblematic in practice.

The above discussion is informal, and adequacy is given a much more careful treatment elsewhere
[HHP93, HL07]. The point of the preceding discussion is to introduce the use of canonical forms
for specifying inductively defined systems and to underscore the necessity of imposing some sort of
regularity constraint on the context.
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3.2 A state-transition-based view of logic
The presentation of logic as verifications and canonical forms treats atomic propositions and their
proofs as the primary objects of consideration. We are interested in treating the state of a system and
transitions between states as the primary objects of consideration. The result has strong similarities
to sequent calculus presentations of linear logic, which is unsurprising: previous work has universally
started with a sequent presentation of logic and then “read off” a state transition system. Cervesato
and Scedrov’s multiset rewriting language ω is a prime example of this process; an introduction to
ω and a review of related work in the area can be found in their article [CS09].

We will treat the state of a specified system as being defined by a set of ephemeral facts about that
state; we think of these ephemeral facts as resources. Therefore, states are multisets of ephemeral
facts (A res); the empty multiset is written as (·) and multiset union is written as (∆1,∆2). We define
the meaning of propositions by the effect they have on resources. The proposition A&B represents
a resource that can provide either a resource A or a resource B, and > is an unusable resource,
so the resource (> res) will always stick around uselessly. The proposition ∀x:τ.A(x) represents a
resource that can provide the resource A(t) for any term t with type τ (we assume there is some
signature Σ defining base types and constants).

A&B res ; A res (&T1)
A&B res ; B res (&T2)

(no rule for >)
∀x:τ.A(x) res ; A(t) res if Σ ` t : τ (∀T )

Linear implication represents a sort of test. It simplifies matters if, initially, we only consider linear
implication (Q( A) where Q is an atomic proposition; it means that we can consume Q to produce
A.

Q res, Q( A res ; A res ((T1)

The transition relation is, in general, ∆1 ; ∆2, and there is a congruence or frame property that
says a transition can happen to any part of the state.

∆1 ; ∆′1
∆1,∆2 ; ∆′1,∆2

frame

We also may allow the signature Σ to mention certain resources as being valid or unrestrictedly
available; in this case we can spontaneously generate new copies of the resource:

·; A res if (A valid) ∈ Σ (copy)

This is a very brief version of this story, and in its current telling it can be understood as a subset
of Cervesato and Scedrov’s ω multiset rewriting language [CS09]. However, that language and other
similar languages take the notion of derivability in a linear logic sequent calculus as primary and
derive a transition semantics from open proofs. The story we have told here starts with transitions
and generalizes to all of first-order linear logic save for additive disjunction (A⊕B) and its unit 0.2
I believe there is an inherent value in reducing the gap between the specification of linear logic and
the specification of systems within that logic, and having transitions as a first-class notion within
the logical framework appears to clarify many issues related to reasoning about specifications.

2Furthermore, I have made substantial, though unfinished, progress on incorporating these connectives into a
transition-based presentations as well.
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3.2.1 Canonical transitions

Our motivation for describing logic as a transition system is to make it more natural to use logic
for the specification of transition systems. An example of a very simple transition system that we
would hope to represent is the following bare-bones asynchronous pi-calculus represented by the
usual structural congruences and the following reduction rule:

c(x).p ‖ c〈v〉 7→ p[v/x]

To represent this system in logic, we can show that the above transition system corresponds
exactly to the following signature where there are two sorts of terms, channels chan and processes
process. A process can be either asynchronous send along a channel (send C V, i.e. c〈v〉) or a receive
along a channel (recv C (λx. P x), i.e. c(x).p). The resource (proc P) represents the active process P.

send : chan → chan → process.
recv : chan → (chan → process) → process.

proc : process → type.

synch : proc(recv C (λx. P x))( proc(send C V)( proc(P V).

What do we mean by corresponds exactly? Perhaps something like weak bisimulation or strong
bisimulation would do, but we really want something akin to the adequacy properties discussed
earlier. Adequacy in this setting means that there should be a bijective correspondence between
states in linear logic and states in the simple process calculus; furthermore, transitions in both
systems must respect this correspondence — any single transition that is made in the logic can be
mapped onto a single transition in the process calculus, and vice-versa.

This, certainly, is not the case in system we have described so far. Take the synchronization
transition (a(x).x〈x〉 ‖ a〈b〉) 7→ b〈b〉 in the simple process calculus. We can say that a(x).x〈x〉 is
represented as the atomic proposition proc(recv aλx. sendxx) and that a〈b〉 is represented as the
atomic proposition proc(send a b). However, because the synch rule has two premises, fully applying
it will take at least two transitions in linear logic (five if we count the three transitions necessary
due to the implicit quantification of C, P, and V in the synch rule).

The analogue to canonical forms and verifications in this setting addresses this problem. A
focused presentation of our linear logic allows us to restrict attention to transitions that atomically
copy a proposition from the signature, instantiate all of its variables, and satisfy all of its premises.
Then we can say that the synch rule defined in the signature corresponds to the following synthetic
transition:

proc(send C V) res, proc(recv Cλx.Px) res ; proc(P V) res (synch)

The synthetic transition associated with synch precisely captures the transition c(x).p ‖ c〈v〉 7→
p[v/x] in the process calculus, so transitions in the encoded system are adequately represented by
transitions in the logical framework. In order to ensure that states are adequately represented in
the framework, we again must impose a constraint on the regular structure of the context, namely
that it only consists of atomic resources of the form (proc P).

3.3 Combining transitions and canonical forms
In Section 3.1, we saw that deductive systems, such as the addition of unary natural numbers,
can be adequately represented in a logical framework based on verifications and canonical forms.
In Section 3.2 we saw that transition systems can be characterized by an interpretation of linear
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logic that treats the logic as a transition system. However, a transition system frequently needs to
refer to some notion of inductive definition. As a slightly contrived example, consider a transition
system where each resource contains a natural number and where two distinct numbers can be added
together:

num N1 res, num N2 res ; num(N1 + N2) res

If natural numbers are defined using the unary notion given above, then addition N1 + N2 is not
a primitive operation. Instead, we need to explain the addition part of this transition by using an
inductive definition, writing a rule that looks something like this:

merge : num N1 ( num N2 ( add N1 N2 N3 ( num N3.

There have been few satisfying solutions that allow the combination of a system based on canon-
ical forms and a system based on forward chaining, and the culprit is the fact that verifications
“pause” when they reach an atomic proposition. In a system that tries to straightforwardly combine
transitions and canonical forms, transitions can occur during each one of these pauses. The result
is a system that does a good job of representing neither transition systems nor canonical forms.

There are a number of exceptions. One is Miller et al.’s work on logics like µLJ− that allow
inductive definitions to be directly represented in the logic. Used in place of an atomic proposi-
tion, an inductive definition allows an arbitrarily long chain of reasoning to be captured as a single
uninterrupted verification, removing any pause entirely [BM07, NM09]. A serious drawback of this
approach is that inductive definitions cannot extend the context of assumptions with new informa-
tion. Because representing typing derivations for programming languages requires this ability, this
approach is not suitable for our purposes.

Another general solution for combining transitions and canonical forms comes from the concur-
rent logical framework CLF [WCPW02]. In CLF, transitions are captured by a lax monad that can
effectively be used to segregate transitions and canonical forms. Our particular solution is very close
to the design of CLF, particularly the semantic effects fragment of CLF that requires the canonical
forms-based fragment of the language to forgo any reference to the state-transition-based fragment
[DP09].

3.3.1 Introduction to adjoint logic

In the next section, we will take a fragment of LF — a canonical forms-based logic for representing
syntax and derivations — with a transition-based presentation of ordered linear logic that is used
to represent evolving systems. The basis for this combination is adopted from Reed’s adjoint logic
[Ree09b], in which two syntactically distinct logics can be connected through unary connectives U
and F . In the logical framework presented in the next section, these two logics will be a fragment
of LF and a transition-based ordered linear logic, but in this section, we will consider a logic that
combines persistent and linear logic:

Persistent propositions P,Q,R ::= p | UA | P ⊃ Q
Linear/ephemeral propositions A,B,C ::= a | FP | A( B

Following Reed (and in order to match up with the naturally sequent-calculus-oriented state
transition presentation of logic) we will consider adjoint logic as a sequent calculus. Persistent
contexts Γ hold persistent facts and linear contexts ∆ hold ephemeral resources; the sequent Γ ` P
characterizes proofs of persistent propositions and the sequent Γ; ∆ ` A characterizes proofs of linear
(ephemeral) propositions. The linear goal FP is only true if there are no linear hypotheses and the
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persistent proposition P is provable; the linear hypothesis FP can be replaced by the persistent
hypothesis P .

Γ; a ` a
Γ ` P

Γ; · ` FP
Γ, P ; ∆ ` C

Γ; ∆, FP ` C
Γ; ∆, A ` B

Γ; ∆ ` A( B

Γ; ∆A ` A Γ; ∆, B ` C
Γ; ∆,∆A, A( B ` C

The description of persistent connectives below has one quirk: there are two left rules for (P ⊃ Q),
one where the ultimate goal is to prove a persistent proposition and one where the ultimate goal is
to prove a linear proposition. This is not a quirk that is unique to adjoint logic; it is the same issue
that requires Pfenning and Davies’ judgmental S4 to have two elimination rules for 2A [PD01], for
instance.3

p ∈ Γ

Γ ` p
Γ; · ` A
Γ ` UA

(UA) ∈ Γ Γ; ∆, A ` C
Γ; ∆ ` C

Γ, P ` Q
Γ ` P ⊃ Q

(P ⊃ Q) ∈ Γ Γ ` P Γ, Q ` R
Γ ` R

(P ⊃ Q) ∈ Γ Γ ` P Γ, Q; ∆ ` C
Γ; ∆ ` C

As Reed notes, if we erase every persistent proposition save for UA, the resulting logic is equiva-
lent to linear logic with exponentials, where !A ≡ FUA. Similarly, if we erase every linear proposition
save for FP , the resulting logic is equivalent to the Pfenning-Davies reconstruction of lax logic where
#P ≡ UFP .

3.3.2 Combining transitions and canonical forms with adjoint logic

My approach in this thesis will be to use adjoint logic to present a framework that connects a
persistent logical framework of canonical forms and a substructural logical framework of transitions.
The result, as we have just seen, combines elements of substructural logic with elements of lax logic,
so it is not surprising that the end result turns out to be very similar to the CLF logical framework
that (in a rather different way) also segregates transitions and deductions using a combination of
lax and substructural logic.4

The role of UA in the framework has a somewhat uncertain status. Practically, its presence in
the logic allows canonical forms to contain stateful transitions in a controlled fashion: this is not a
bad thing and is a mode of specification that CLF specifically supports. It is also precisely what the
framework of semantic effects disallows. Because the framework of semantic effects is the fragment
of CLF that I am most interested in representing and reasoning about, the framework I present in
the next section has no way of incorporating transitions within canonical forms.5 The connective F
is then the only connection between the two systems, and since it retains much of the character of
the linear logic exponential, it is written as !P even though it actually acts only as the “first half”
of the exponential.

3Another way to look at this “quirk” is that the real rule is parametric in the conclusion, able to prove either A res
or P valid , and we just give the two instances of the real rule here.

4I believe that adjoint logic provides a better explanation than lax logic for how CLF is actually used and thought
about, but I should re-emphasize that the critical difference between CLF and the framework presented in the next
section — the reason I cannot use CLF directly — is that CLF does not treat individual state transitions and sequences
of state transitions as objects of consideration.

5This is by no means a settled point! A good example of a language that challenges the exclusion of UA can be found
in Section A.3 of the appendix, where I give an SSOS-like specification of the language from Davies’ temporal-logic
approach to binding-time analysis [Dav96].
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4 A logical framework for evolving systems
In the previous section, we considered the use of logic to describe both deductive systems and state-
transition systems, and our immediate goal is to use a logical framework based on these principles
to specify the operational semantics of programming languages with state and concurrency. In this
section we will present that logical framework, which based on a substructural logic that includes
both ordered and linear propositions.

In addition to CLF, the design synthesizes ideas from Polakow et al.’s ordered logic framework
[Pol01], Reed’s adjoint logic [Ree09b], and Zeilberger’s polarized higher-order focusing [Zei09]. There
is no fundamental reason why the canonical forms fragment of the framework described here cannot
be the full dependently typed logical framework LF [HHP93, HL07]; however, it is convenient for
the purposes of this proposal to just consider a restricted fragment of LF.

4.1 Representing terms
We have already been using LF-like representations of terms: both natural numbers and process-
calculus terms can be adequately represented as canonical forms in a simply-typed lambda calculus
under the following signature.

nat : type. process : type.
z : nat. chan : type.
s : nat → nat. send : chan → chan → process.

recv : chan → (chan → process) → process.

A term type τ is either an atomic term type a defined by the signature (like nat, process, and chan)
or an implication τ → τ . The signature also defines term constants (like z, s, send, and recv) which
are defined to have some type τ . Canonical terms are the η-long, β-normal terms of the simply-typed
lambda calculus using constants drawn from the signature: the natural number 3 is represented as
s(s(s z)) and the process a(x).x〈x〉 is represented as the canonical term (recv aλx. send x x).

4.2 Judgments as types
An organizing principle of LF-like frameworks is the representation of judgments as types — in
the case of the aforementioned example of addition, the three-place judgment n1 + n2 = n3 is
represented by the type family add of kind nat → nat → nat → type, and for any specific n1, n2,
and n3 we represent derivations of n1 + n2 = n3 as canonical proof terms of type (add n1 n2 n3) in the
following signature:

add : nat → nat → nat → type.
add/z : ΠN:nat. add z N N.
add/s : ΠN:nat. ΠM:nat. ΠP:nat. add N M P → add (s N) M (s P).

In this signature, the proof term (add/s z (s z) (s z) (add/z (s z))) acts as a representative of this deriva-
tion:

z + s z = s z
add/z

s z + s z = s(s z)
add/s

More generally, type families are declared as (a : τ1 → . . . → τn → type) in the signature;
atomic types in the type family a are written as a t1 . . . tn, where each of the arguments ti has type
τi. Types A are either atomic types, implications A → B, or universal quantifications over terms
Πx:τ.A. We usually leave universal quantification implicit in the signature, which allows us to write
rules as we did earlier in this proposal:
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add/z : add z N N.
add/s : add N M P → add (s N) M (s P).

Furthermore, we leave the instantiation of implicit quantifiers implicit as well, which allows us to
write the proof term corresponding to the above derivation more concisely as (add/s add/z).

4.3 States as contexts
In the transition-based fragment of the logic, the states of the systems we intend to specify are
represented as collections of atomic propositions. In sequent calculus-based logical frameworks,
these collections correspond to contexts; we adopt this terminology.

Ephemeral contexts Linear logic and other substructural logics are useful for describing systems
that change over time; part of the reason for this is that a linear resource is effectively an ephemeral
fact about the state of a system — it describes something that is true in the current state of the
system but which may not be true in a future state of the system. Our framework considers two
kinds of ephemeral facts: linear facts (insensitive to their position relative to other facts) and ordered
facts (sensitive to their position relative to other ordered facts).

We incorporate ephemeral facts into our framework by introducing two different kinds of type
family: linear type families (where we write typel — l for linear — instead of type in the type
family declaration) and ordered type families (where we write typeo — o for ordered — instead of
type in the type family declaration). This effectively enforces a syntactic separation between those
persistent, linear, and ordered atomic propositions; the need for this syntactic separation has been
noted in previous work [SP08, SP09] but was only given a logical interpretation in [PS09].

An ephemeral context (written ∆) is syntactically a list of linear and ordered types, but we
consider contexts to be equivalent if they can be made syntactically equal by reordering linear
propositions. As an example, if al and bl are linear atomic propositions and co and do are ordered
atomic propositions, then the contexts (al, bl, co, do), (co, do, bl, al), and (co, al, do, bl) are all
equivalent, but they are not equivalent to (al, bl, do, co) because the ordered propositions co and do

appear in a different order. We write this equivalence on contexts as ∆ ≈ ∆′.
We can use ordered resources to represent the concrete syntax of the language L0 from Section 2

by defining an ordered atomic proposition for each syntactic token:

+ : typeo .
num : nat → typeo .

The proposition + represents the addition token, and num N (where N is a term of type nat)
represents a token for the natural number N. While we cannot yet actually describe parsing, we
can intuitively say that the ephemeral context (num(s z)),+, (num z) corresponds to the L0 program
1 + 0, the ephemeral context (num(s z)),+, (num z),+, (num(s(s z))) is ambiguous and corresponds
to either the L0 program (1 + 0) + 2 or the L0 program 1 + (0 + 2), and the ephemeral context
+,+, (num(s z)) is not syntactically well-formed and does not correspond to any L0 program.

As in sequent calculus presentations of a logic, we annotate the propositions in a context with
unique variable names. Therefore, the context corresponding to the first L0 program above could
also have been been written as (x1 : num(s z), x2 :+, x3 : num z). We further follow the convention
of sequent calculus presentations of logic by often not mentioning these variable names when it is
possible to reconstruct them.

Persistent contexts In addition to ephemeral state, is important to allow systems to have per-
sistent state, which includes both dynamically introduced parameters and facts that, once true,
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necessarily stay true.6 We write free term parameters as x : τ and persistent assumptions as x :A,
where A is a persistent type. A collection of these assumptions is a persistent context, written as
Γ, and we treat all contexts containing the same terms and assumptions as equivalent, writing this
equivalence as Γ ≈ Γ′.

4.4 Substitutions
The connection point between contexts and terms is the definition of substitutions. A substitution
σ is a term which gives evidence that, given the persistent facts Γ and ephemeral resources ∆,
we can model or represent the state described by the persistent facts Γ′ and ephemeral facts ∆′.
Alternatively, we can think of Γ′ and ∆′ as “context-shaped holes,” in which case a substitution is
evidence that Γ and ∆ “fit in the holes.”

The way a substitution gives this evidence is by providing a resource (designated by its label
y) for every for every resource in ∆′, providing a proof term D that is defined in the context Γ for
every fact x :A in Γ′, and providing a term t that is defined in the context Γ for every x : τ in Γ′.7
Syntactically, a substitution is described by the following grammar:

σ ::= [] | σ, t/x | σ,D/x | σ, y/x

The definition of substitution typing — Γ; ∆ `Σ σ : Γ′; ∆′ — captures the judgment that σ is a
witness to the fact that the state Γ; ∆ can model or represent the state Γ′,∆′ (under the signature
Σ). The definition relies on two other judgments, Γ `Σ t : τ and Γ `Σ D : A, which describe
well-typed terms and well-typed proof terms, respectively. It also relies on the operation A[σ], the
application of a substitution to a type. Because we are using only a restricted fragment of LF, only
the term components (t/x) of substitutions actually matter for this substitution.

Γ; · `Σ [] : ·; ·
Γ; · `Σ σ : Γ′; · Γ `Σ t : τ

Γ; · `Σ (σ, t/x) : (Γ′, x : τ); ·
Γ; · `Σ σ : Γ′; · Γ `Σ D : A[σ]

Γ; · `Σ (σ,D/x) : (Γ′, x :A); ·
∆ ≈ (∆′′, y :Q′) Q′ = Q[σ] Γ; ∆′′ `Σ σ : Γ′; ∆′

Γ; ∆ `Σ (σ, y/x) : Γ′; (∆′, x :Q)

4.5 Positive types as patterns
In the discussion of a transition-based view of logic in Section 3.2, the only connectives we discussed
were those that were defined in terms of their effect on the context; these are the connectives that
make up the so-called negative propositions. Another family of connectives, which make up the
so-called positive connectives, are more naturally defined by the contexts they describe. The pattern
judgment — Γ; ∆ 
 p :: A+ — expresses that p is the evidence that A+ describes the context Γ; ∆.
The most natural way to think about Γ and ∆, which should appropriately be seen as an output of
the judgment, is that it is describing a context-shaped hole that will be filled by a substitution in
order to prove A+.

Ordered conjunction (A+ ·B+) describes a context containing, to the left, the context described
by A+ and then, to the right, the context described by B+.

Γ1; ∆1 
 p1 :: A+ Γ2; ∆2 
 p2 :: B+

Γ1,Γ2; ∆1,∆2 
 (p1 · p2) :: (A+ ·B+)

6Parameters can be used to model the channels in the process calculus from the previous section, and they also
model abstract heap locations in the specification of ML-style references in Appendix A.1. We need to be able to
dynamically introduce new parameters in order to represent producing a new channel or allocating a new location on
the heap.

7In an appropriate dependently-typed setting, term types τ and types A are members of the same syntactic class,
as are terms t and proof terms D.
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Existential quantification (∃x:τ.A+) describes a context described by A+, plus a variable x : τ . If we
are thinking of the output contexts as context-shaped holes, then x is a hole that must be filled by
a term of type τ . The rule below should make it clear that pattern judgments are fundamentally
different from typing judgments, where we would expect the x to appear in the premise, not in the
conclusion.

Γ; ∆ 
 p :: A+

x : τ,Γ; ∆ 
 (x.p) :: (∃x:τ.A+)

Finally, 1 describes a context containing no ephemeral propositions, and we treat atomic propositions
as positive as well: Q (where Q is an ordered atomic proposition) describes a context with just one
ordered atomic proposition Q, ¡Q (where Q is a linear atomic proposition) describes a context with
just one linear atomic proposition Q, and !A (where A is a persistent proposition) describes a context
with no ephemeral propositions where A is true.

·; · 
 () :: 1 x :A; · 
 x :: !A ·;x :Q 
 x :: ¡Q ·;x :Q 
 x :: Q

Example. Because we may think of the pattern judgment Γ; ∆ 
 p :: A+ as producing context-
shape holes Γ and ∆, looking at a pattern (which produces context-shape holes) together with a
substitution (which provides evidence that those holes can be filled) is illustrative. If we want to show
that the ephemeral context (x1 : num(s z), x2 :+, x3 : num z) is described by the positive proposition
∃n. (numn·+)·(num z·!addnn (s(s z))), then we first find the pattern associated with that proposition
(we write n instead of num for brevity):

·; y1 : nn 
 y1 :: nn ·; y2 :+ 
 y2 :: +
·; y1 : nn, y2 :+ 
 y1 · y2 :: (nn ·+)

·; y3 : n z 
 y3 :: n z y4 : addnn (s(s z)); · 
 y4 :: !addnn (s(s z))

y4 : addnn (s(s z)); y3 : n z 
 (y3 · y4) :: (n z · !addnn (s(s z)))

y4 : addnn (s(s z)); y1 : nn, y2 :+, y3 : n z 
 (y1 · y2) · (y3 · y4) :: (nn ·+) · (n z · !addnn (s(s z)))

n : nat, y4 : addnn (s(s z)); y1 : nn, y2 :+, y3 : n z 
 (n.(y1 · y2) · (y3 · y4)) :: ∃n. (nn ·+) · (n z · !addnn (s(s z)))

Then, we find a substitution σ such that we can derive the following:

·; (x1 : num(s z), x2 :+, x3 : num z) ` σ : (n : nat, y4 : addnn (s(s z))); (y1 : numn, y2 :+, y3 : num z)

The substitution σ = [], (s z)/n, (add/s add/z)/y4, x1/y1, x2/y2, x3/y3 works in this case.
In future examples, we will use a derived notation of a filled pattern, a substitution applied to a

pattern. For example, rather than first deriving a pattern and then a substitution in the preceding
example, we will simply say that the filled pattern ((s z). (x1 · x2) · (x3 · (add/s add/z))) is a proof
term showing that the ephemeral context (x1 : num(s z), x2 :+, x3 : num z) is described by the positive
proposition ∃n. (numn ·+) · (num z · !addnn (s(s z))).

4.6 Negative types as transition rules
Negative types were introduced in Section 3.2 as describing ways in which contexts can change. The
proposition b · c� ↑e, for example, is essentially a rewriting rule that allows an ephemeral context
such as (a b c d) to be rewritten as an ephemeral context (a e d).

The judgment associated with negative propositions is (Γ; ∆ 
 g :: A− � Γ′; ∆′ 
 p′). This
judgment expresses that, if the premises of A− — the context-shaped holes Γ and ∆ — can be filled
by consuming some number of ephemeral resources, then the consumed ephemeral resources can be
replaced with the conclusion of A− — the resources described by ∆′ and the new facts described by
Γ′. The goal g captures the premises, and the pattern p describes the conclusion; together, a goal g
and a pattern p are the proof term associated with a negative proposition.
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The simplest negative proposition is ↑A+, which consumes no resources and produces the re-
sources described by A+:

Γ′; ∆′ 
 p′ :: A+

·; · 
 () :: ↑A+ � Γ′; ∆′ 
 p′

The proposition A−&B− can represent either the transition described by A− or the transition
described by B−:

Γ; ∆ 
 p :: A− � Γ′; ∆′ 
 p′

Γ; ∆ 
 (π1p) :: (A−&B−)� Γ′; ∆′ 
 p′
Γ; ∆ 
 p :: B− � Γ′; ∆′ 
 p′

Γ; ∆ 
 (π2p) :: (A−&B−)� Γ′; ∆′ 
 p′

Transitions have to be located at a particular point in the ephemeral context; ordered implication
(A+ � B−) is a transition that consumes a part of the context described by A+ to the right of its
initial position and then proceeds with the transition described by B−.8

Γ1; ∆1 
 p :: A+ Γ2; ∆2 
 g :: B− � Γ′; ∆′ 
 p′

Γ1,Γ2; ∆1,∆2 
 (p; g) :: (A+ � B−)� Γ′; ∆′ 
 p′

Finally, universal quantification ∀x:τ.A− can behave like A−[t/x] for any t : τ ; therefore, its pattern
introduces a new

Γ; ∆ 
 g :: A− � Γ′; ∆′ 
 p′

x : τ,Γ; ∆ 
 (x.g) :: (∀x:τ.A−)� Γ′; ∆′ 
 p′

When the placement of the shift operator ↑ can be inferred from the context, we will leave it
implicit, writing A+ � B+ instead of A� ↑B+.

4.7 Transitions and expressions
We now can actually describe parsing the concrete syntax of L0 using transition rules. First, we
describe the abstract syntax of L0 as canonical terms of type exp; then we describe an ordered type
family parsed E and two rewriting rules describing how the concrete syntax can be parsed.

exp : type.
n : nat → exp.
plus : exp → exp → exp.

parsed : exp → typeo .
parse/num : num N � parsed(n N).
parse/plus : parsed E1 · + · parsed E2 � parsed(plus E1 E2).

Intuitively, parse/num is a rewriting rule that allows us to transition from the ephemeral context
(num(s z)),+, (num z) to the ephemeral context (parsed(n(s z))), +, (num z). To describe the proof
term capturing this transition, we first discover the goal and pattern associated with the type of
parse/num (note that the implicit quantification and the implicit shift operator ↑ are both made
explicit):

(·; y : numn) 
 y :: numn

(·; y1 : parsed(nn)) 
 y1 :: parsed(nn)

(·; ·) 
 () ::↑ parsed(nn)� (·; y1 : parsed(nn)) 
 y1

(·; y : numn) 
 (y; ()) :: (numn�↑ parsed(nn))� (·; y1 : parsed(nn)) 
 y1

(n : nat; y : numn) 
 (n.y; ()) :: (∀n. numn�↑ parsed(nn))� (·; y1 : parsed(nn)) 
 y1

8In ordered logic there are actually two distinct implications, right ordered implication A+ � B− and left ordered
implication A+ � B−. Either one or the other is usually sufficient for the logical fragment we are considering, and
I conjecture that as long as the ephemeral context only contains atomic propositions, the addition of left ordered
implication does not actually add any expressiveness.
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If x1 is the variable marking the ordered resource (parsed(n(s z))), we can fill this goal with
the substitution ([], s z/n, x1/y); the resulting filled pattern is (s z. x1; ()). The proof term corre-
sponding to the transition can be written in a CLF-like notation as the let-expression (let (y1) =
parse/num(s z. x1; ()) in). However, I prefer a more “directional” notation for transitions that looks
like this: (parse/num(s z. x1; ()) � (y1)). In addition, we will leave universal quantification implicit
and omit the trailing () in a goal; the final result is a proof term for the aforementioned transition
that looks like this:

parse/num(x1)� (y1)
: (x1 : num(s z), x2 :+, x3 : num z) ;Σparse (y1 : parsed(n(s z)), x2 :+, x3 : num z)

We’ll return to the Σparse annotation in the next section; in the meantime, the typing rule for a
transition T : (Γ; ∆ ;Σ Γ′; ∆′) is as follows:

c : A− ∈ Σ Γin ; ∆in 
 g :: A− � Γout ; ∆out 
 p ∆ ≈ ∆L,∆
′,∆R Γ; ∆′ `Σ σ : Γin ; ∆in

c(g[σ])� p : Γ; ∆ ;Σ Γ,Γout ; ∆L,∆out ,∆R

This transition can be read like this:

• Starting from the state Γ; ∆,

• Pick a rule A− from the signature Σ (this is the constant c),

• Determine the input context Γin ; ∆in (this is the goal g) and the output context Γout ; ∆out

(this is the pattern p) associated with A−,

• Split the ephemeral context ∆ into three parts, ∆L, ∆′, and ∆R,

• Show that, using the persistent facts Γ and the ephemeral resources ∆′ you can fulfill the
demands represented by the input pattern (this is the substitution σ), and

• Extend the persistent context with Γout and replace ∆′ in the context with ∆out to get the
result of the transition.

4.8 Expressions
A sequence of one or more transitions T is an expression E : (Γ; ∆ ;∗Σ Γ′; ∆′). An expression
is either a single transition T , the sequential composition of two expressions E1; E2, or the empty
expression �. We treat sequential composition as an associative operation with unit �.

The following expression represents a complete parse of an L0 program:

parse/num(x1)� (y1); parse/num(x3)� (y3); parse/plus(y1 · x2 · y3)� (y)
: (x1 : num(s z), x2 :+, x3 : num z) ;∗Σparse (y : parsed(plus (n(s z)) (n z)))

The annotation of a signature Σparse on the transition T : (Γ; ∆ ;Σ Γ′; ∆′) will be critical
in practice. We frequently want to define multiple families of transitions that can act on a single
proposition. For instance, consider the following rules which describe the direct calculation of a
number from the concrete syntax of L0:

calc : nat → typeo .
calc/num : num N � calc N.
calc/plus : calc N1 · + · calc N2 · !add N1 N2 N3 � calc N3.
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Then we can talk about the transitions and expressions where we refer only to the transition rules
beginning with calc.

calc/num(x1)� (y1) : (x1 : num(s z), x2 :+, x3 : num z) ;Σcalc (y1 : calc(s z), x2 :+, x3 : num z)

calc/num(x1)� (y1); calc/num(x3)� (y3); calc/plus(y1 · x2 · y3 · (add/s add/z))� (y)
: (x1 : num(s z), x2 :+, x3 : num z) ;∗Σcalc (y : calc(s z)))

We use these annotations to specify theorems about the relationship between two different tran-
sitions or expressions. For instance, if Σe describes the (not-yet-specified) SSOS specification of L0,
then we can write the following conjecture about the relationship between the rules starting with
calc/. . . and the rules starting with parse/. . .

Conjecture 1. If (∆ ;∗Σcalc y : calc N) and such that (∆ ;∗Σparse y : parsed E), then (x : eval E ;∗Σe

y : retn(n N)).

4.9 Concurrent equivalence
The two expressions below both represent a complete parse of the L0 program that we have been
using in our example:

parse/num(x3)� (y3); parse/num(x1)� (y1); parse/plus(y1 · x2 · y3)� (y)

parse/num(x1)� (y1); parse/num(x3)� (y3); parse/plus(y1 · x2 · y3)� (y)

In fact, these two expressions represent the same parse if we look at the parse not as a list of
transitions but as a tree of string rewrites:

x1 : num(s z) x2 :+ x3 : num z

y1 : parse(n(s z)) y3 : parse(n z)

y : parse(plus (n z) (n(s z)))

The notion of concurrent (or permutative) equivalence E1 ≈ E2 captures the notion that, while
we represent expressions as sequences, they are perhaps more appropriately thought of as directed
acyclic graphs. Concurrent equivalence is the least equivalence relation such that

(E1; c(g[σ])� p; c′(g′[σ′])� p′; E2) ≈ (E1; c′(g′[σ′])� p′; c(g[σ])� p; E2)

whenever σ does not include any variables bound by p′ and σ′ likewise does not mention any variables
bound by p.

4.10 Metatheory
In this section, I list some of the metatheoretic results that I expect to hold in the logical frame-
work presented in this section. I mostly present decidability results; another important part of
the metatheory of this framework is showing that the focused logic underlying this framework is
complete with respect to an unfocused logic.

Even if taking for granted that there is a decidable syntactic equality in the presence of associative
operations like concatenation of contexts and sequential composition of expressions, the more coarse
equivalences we have discussed need to be shown to be decidable.
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Conjecture 2 (Decidability of equivalences). The three different equivalences we consider are all
decidable.

• For all persistent contexts Γ and Γ′, it is decidable whether Γ ≈ Γ′.

• For all ephemeral contexts ∆ and ∆′, it is decidable whether ∆ ≈ ∆′.

• For all expressions E and E ′, it is decidable whether E ≈ E ′.

One way to approach this conjecture is to follow the proof of decidability for concurrent equivalence
in CLF [WCPW02]. First, a syntax-directed version of the equivalence relation is given, and then this
syntax-directed (and therefore obviously decidable) definition is shown to be reflexive, symmetric,
and transitive.

The decidability of typing is another important component of the metatheory of this framework.
I expect to prove the following statements about the finalized framework:

Conjecture 3 (Decidability of typing). Given a signature Σ,

• For all Γ, ∆, Γ′, ∆′, and σ, it is decidable whether Γ; ∆ `Σ σ : Γ′; ∆′.

• For all A+ and p, it is decidable whether there exist contexts Γ and ∆ such that Γ; ∆ 
 p :: A+.

• For all A−, g, and p, it is decidable whether there exist contexts Γ, ∆, Γ′, and ∆′ such that
Γ; ∆ 
 g :: A− � Γ′; ∆′ 
 p.

• For all transitions T and contexts Γ, ∆, Γ′, and ∆′, it is decidable whether T : (Γ; ∆ ;Σ

Γ′; ∆′).

• For all expressions E and contexts Γ, ∆, Γ′, and ∆′, it is decidable whether E : (Γ; ∆ ;Σ

Γ′; ∆′).

Since we treat expressions as typed objects, we need to ensure that concurrent equivalence does
not tamper with typing:

Conjecture 4 (Typed concurrent equivalence). If we treat persistent and ephemeral contexts up to
context equivalence, then if E1 ≈ E2 and E1 : (Γ; ∆ ;∗Σ Γ′; ∆′), then E2 : (Γ; ∆ ;∗Σ Γ′; ∆′).

Because expressions do not include an end point, they have a frame-like monotonicity property;
extra state can be freely added to both the beginning and the end of the expression.

Conjecture 5 (Frame property).
If T : Γ1; ∆1 ;Σ Γ2; ∆2, then T : Γ,Γ1; ∆L,∆1,∆R ;Σ Γ,Γ2; ∆L,∆2,∆R, and
if E : Γ1; ∆1 ;∗Σ Γ2; ∆2, then E : Γ,Γ1; ∆L,∆1,∆R ;∗Σ Γ,Γ2; ∆L,∆2,∆R

4.11 Logic programming
I created the Ollibot logic programming language for the purpose of representing the examples from
the LICS 2009 paper on substructural operational semantics in ordered logic.9 It implements a
committed-choice operational semantics for the forward-chaining portion of this language; in other
words, the current incarnation of Ollibot can execute the parse/. . . rules as a logic program but not
the calc/. . . rules — the logic programming semantics for the latter rules would require backward
chaining to search for a proof of addNMX where N and M are known and X is unknown.

9http://ollibot.hyperkind.org/examples-0.1/
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Ollibot may or may not form the core of the eventual tool for verifying safety properties of
SSOS specifications, but I am interested in extending the expressiveness of Ollibot in a number
of ways in the course of this thesis. In particular, adding a backward-chaining semantics for the
deductive fragment of the logical framework will significantly improve the language’s ability to act
as an interpreter for the SSOS specifications such as the ones introduced in the next section.

I am also interested in improving this efficiency of the (not the least bit efficient) Ollibot, both
by adapting compilation techniques from rewriting systems like Maude and by investigating the
implementation of Ollibot in parallel programming languages like X10 [CGS+05].

4.12 Notational conventions
We have discussed a number of notational conventions, such as omitting the shift operator ↑ and
simplifying the way that goals are written down. In discussions of SSOS in Section 5, we will
use a more concise shorthand notation for describing transitions and expressions; this section will
introduce this shorthand notation.

Consider the last transition in the parse of our example L0 program:

parse/plus(y1 · x2 · y3)� (y)
: (y1 : parsed(n(s z)), x2 :+, y3 : parsed(n z)) ;Σparse (y : parsed(plus (n(s z)) (n z)))

The variables that describe what parts of the context changed are not strictly necessary here; we can
convey the exact same information in a more concise form by omitting the mention of any variables:

parse/plus : parsed(n(s z)),+, parsed(n z) ;Σparse parsed(plus (n(s z)) (n z))

This notation must be used carefully: for instance, if we say that the complete parse is represented
by the expression (parse/num; parse/num; parse/plus), it is unclear whether the first token or the
last token was rewritten first (although in this case, both of the traces are concurrently equivalent!)

It is not always the case that the name of a rule alone is sufficient. The exception is when one
of the premises to a rule is a canonical form, such as the last step in the calculation of our example
L0 program:

calc/plus(y1 · x2 · y3 · (add/s add/z))� (y)
: (y1 : calc(s z), x2 :+, y3 : calc z) ;Σcalc (y : calc(s z))

The shorthand version of this rule only mentions the canonical form (add/s add/z : add (s z) z (s z))
— unlike variable names, that part of the original transition conveys more information than just a
position.

calc/plus(add/s add/z) : calc(s z),+, calc z ;Σcalc calc(s z)

Finally, in the following section I will refer to states Γ; ∆ generally as S, and will use the notation
S[∆] to describe a state that includes somewhere inside of it the ephemeral context ∆ — a “one-hole
context” over contexts, in other words. For instance, we can write the following:

parse/num : S[num(s(s z))] ;Σparse S[parsed(s(s z))]

calc/num : S[num(s(s z))] ;Σcalc S[calc(s(s z))]

calc/plus(plus/z) : S[calc z,+, calc(s(s z))] ;Σcalc S[calc(s(s z))]
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5 Substructural operational semantics
Now that we have discussed the outlines of our logical framework, we can finally return to the dis-
cussion of substructural operational semantics specifications that we motivated in the introduction
and in Section 2. In this section, we consider a series of relatively simple substructural operational
semantics specifications, mostly taken from [PS09]. Substructural operational semantics (or SSOS)
is a style of specifying the operational semantics of programming languages as transitions in sub-
structural logics. Its origin lies in a set of examples illustrating the expressiveness of the logical
framework CLF [CPWW02], though elements were anticipated by Chirimar’s Ph.D. thesis [Chi95]
and by the continuation-based specification of ML with references in LLF [CP02]. A methodology of
SSOS specifications was refined and generalized to include other substructural logics in subsequent
work [Pfe04, PS09].

In this section, we will develop a base language L1 that extends L0 with functions and function
application (Section 5.1) and then extend that language with parallel evaluation of pairs (Section 5.3)
and with exceptions and exception handling (Section 5.4). The novel content of this section is a
presentation of the static semantics of this language and proof of language safety via progress and
preservation lemmas that it enables. We give a proof of safety for L1 in Section 5.2, and then briefly
discuss how that safety proof can be extended when we consider the static semantics of parallel
evaluation and exceptions.

Fundamental components of SSOS specifications Many of the elements of substructural
operational semantics specifications are immediately familiar to anyone who has written or read
traditional SOS-style operational semantics formalized in Twelf. The syntax, for instance, consists of
expressions E, types T, stack frames F, and a judgment (value V) capturing the subsort of expressions
that are also values (we continue to write V for those expressions which are known to be values).

exp : type.
tp : type.
frame : type.
value : exp → type.

Particular to SSOS specifications are three groups of propositions. The active propositions are
those that can always eagerly participate in a transition; the prototypical active proposition is
(eval E), an ordered atomic proposition containing an expression E that we are trying to evaluate to
a value.

eval : exp → typeo .

The latent propositions represent suspended computations. The primary latent proposition we
will consider is (cont F), which stores a part of a continuation (in the form of a stack frame) waiting
for a value to be returned.10

cont : frame → typeo .

Finally, passive propositions are those that do not drive transitions on their own, but which may
take part in transitions when combined with latent propositions. The only passive proposition in the
SSOS specification of an effect-free languages is (retn V), which holds a value being returned from
the evaluation of an expression. On its own, it is passive, representing a completed computation. If
there is a latent stack frame to its left, a transition should occur by returning the value to the stack
frame.

10Latent propositions can also be seen as artifacts of kind of defunctionalization that is performed on “higher-order”
SSOS specifications to make them more amenable to extension and analysis. (See Section 6.4 for a further discussion.)
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retn : exp → typeo .

5.1 Specifying L1

We will introduce SSOS specifications by encoding the operational semantics of the very simple
language L0 that has been used as running example; we extend L0 with call-by-value functions to
make the language less boring, and call the result L1.

5.1.1 Syntax

The syntax of expressions can be given by the following BNF specification:

e ::= x | λx.e | e1(e2) | n | e1 + e2

The encoding of that BNF is standard, including the use of higher-order abstract syntax to represent
binding. The judgments v/n and v/lam indicate that functions and numbers are values.

lam : (exp → exp) → exp.
app : exp → exp → exp.
n : nat → exp.
plus : exp → exp → exp.

v/lam : value (lam λx. E x).

v/n : value (n N).

We also need to define the syntax of frames.

f ::= (−)(e2) | v1(−) | (−) + e | v + (−)

app1 : exp → frame. — this is (−)(e2)
app2 : exp → frame. — this is v1(−)
plus1 : exp → frame. — this is (−) + e2

plus2 : exp → frame. — this is v1 + (−)

5.1.2 Dynamic semantics

The dynamic semantics for L1 is straightforward by analogy with an abstract machine for control.
A function is a value, and therefore it is always returned immediately, and a function application
first evaluates the function part to a value, then evaluates the argument part to a value, and then
finally substitutes the argument into the function. In the usual style of higher-order abstract syntax,
substitution is performed by application in the rule e/app2.

e/lam : eval(lam λx. E x) � retn(lam λx. E x).

e/app : eval(app E1 E2) � cont(app1 E2) · eval E1.

e/app1 : cont(app1 E2) · retn V1 � cont(app2 V1) · eval E2.

e/app2 : cont(app2 (lam λx. E0 x)) · retn V2 � eval(E0 V2).

With one exception, the dynamic semantics of numbers and addition are just as straightforward.
As mentioned before, when both subterms have been evaluated to numerical values, there must be
a primitive operation that actually adds the two numbers together. As discussed in the context
of the calc/. . . rules in the previous section, the solution is to rely on the persistent type family
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(addNMP) that adequately encodes the inductive definition of addition for natural numbers. Given
this definition, the dynamic semantics of addition are also straightforward: a number is a value, and
to evaluate plus E1 E2 we evaluate E1, then evaluate E2, and then add the resulting numbers.

e/n : eval(nat N) � retn(nat N).

e/plus : eval(plus E1 E2) � cont(plus1 E2) · eval E1.

e/plus1 : cont(plus1 E2) · retn(V1) � cont(plus2 V1) · eval E2.

e/plus2 : cont(plus2 (n N1)) · retn(n N2) · !add N1 N2 N3 � retn(n N3).

5.1.3 Example trace

As an example, Figure 1 shows a complete evaluation of an L1 expression that we would write on
paper as ((λx. 2 + x)(1 + 5)). The expression represented by the series of transitions on the right
has the following type:

eval(app (lam(λx.plus (n(s(s z)))x)) (plus (n(s z)) (n(s(s(s(s(s z))))))))
;∗Σe retn(n(s(s(s(s(s(s(s(s z)))))))))

For brevity and clarity, the on-paper notation is used in the figure.

eval((λx. 2 + x)(1 + 5))

;Σe cont((−)(1 + 5)), eval(λx. 2 + x) by e/app
;Σe cont((−)(1 + 5)), retn(λx. 2 + x) by e/lam
;Σe cont((λx. 2 + x)(−)), eval(1 + 5) by e/app1

;Σe cont((λx. 2 + x)(−)), cont((−) + 5), eval(1) by e/plus
;Σe cont((λx. 2 + x)(−)), cont((−) + 5), retn(1) by e/n
;Σe cont((λx. 2 + x)(−)), cont(1 + (−)), eval(5) by e/plus1
;Σe cont((λx. 2 + x)(−)), cont(1 + (−)), retn(5) by e/n
;Σe cont((λx. 2 + x)(−)), retn(6) by e/plus2(add/s add/z)
;Σe eval(2 + 6) by e/app2

;Σe cont((−) + 6), eval(2) by e/plus
;Σe cont((−) + 6), retn(2) by e/n
;Σe cont(2 + (−)), eval(6) by e/plus1
;Σe cont(2 + (−)), retn(6) by e/n
;Σe retn(8) by e/plus2(add/s(add/s add/z))

Figure 1: Example trace in L1.

5.2 Static semantics, progress, and preservation
The description of the dynamic semantics of L1 is not enough on its own; there’s nothing we have
said so far that prevents us from attempting to evaluate 5 + λx.x or 3(λx.x + 2), both of which
would get stuck. A state is stuck if it has not evaluated all the way to the single atomic proposition
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(retn E) but which nevertheless cannot take a step. A safe expression is one that cannot lead to a
stuck state:

Definition 1 (Safety). The expression E is safe if (eval E ;∗Σe S) implies that either S ;Σe S ′ for
some S ′ or else S = retn V for some V.

While this definition of safety is appropriate for our current purposes, it is not necessarily the
only definition of safety we might want to consider. For instance, a system that might deadlock is
usually considered to be safe, but would not be safe according to this definition.

Integral to establishing safety will be the static semantics, a new set of rewriting rules annotated
with t/. . . (so we use Σt to refer to them collectively). The goal of these rewriting rules is to rewrite
the entire state S to a single atomic proposition absT. The atomic proposition absT is intended to
represent an abstraction of states that will produce a value of type T if they produce any value at
all.11 These rewriting rules, which we will refer to as the static semantics, rely on the not-yet-defined
judgments of ET (the expression E has type T) and off FTT’ (the frame F takes values of type T to
states of type T’). The rules themselves are straightforward:

abs : tp → typeo .

t/eval : eval E · !of E T � abs T.

t/retn : retn E · !value E · !of E T � abs T.

t/cont : cont F · abs T · !off F T T’ � abs T’.

These static semantics (together with the not-yet-specified typing rules) allow us to prove progress
and preservation theorems, which in turn allow us to establish type safety for the language.

Progress If S ;∗Σt abs T and S contains no resources absT, then either S ;Σe S ′ for some S ′ or
else S = retn V.

abs T

S
S ′
or

=
retn VΣt

Σe

∗

Preservation If S ;Σe S ′ and S ;∗Σt abs T, then S ′ ;∗Σt abs T.

abs T abs T

S S ′
Σt Σt

Σe

∗ ∗

11This characterization of absT is actually a corollary of the preservation lemma.
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Given progress and preservation as stated above, we can prove the desired type safety theorem:

Theorem 1. If ` of E T, then E is safe.

Proof. The overall picture for safety is this one:

abs T abs T abs T abs T

eval E S1 Sn S
S ′
or

=
retn V

Σe
ΣeΣe

Σt

∗
Σt

∗
Σt

∗
Σt

∗

· · ·

We are given an expression (eval E ;∗Σe S), and we must show that either S ;Σe S ′ for some S ′
or else S = retn V for some V. By rule t/eval and the premise, (eval E ;∗Σt abs T), and by induction
on the length of the trace and progress lemma, (S ;∗Σt abs T). By a similar induction on the trace
and the observation that absT appears nowhere in any of the rules of the form e/. . . , S contains no
resources absT. The result then follows by the progress lemma.

Note that both the proof of type safety and the statements of the progress and preservation
theorems talk about individual transition steps and about taking a series of transitions and extending
them with an additional transition. Both of these notions are naturally represented by the transitions
and expressions of our logical framework, but neither of these are easy to represent in the CLF
framework. The CLF framework has proof terms that express a completed derivations that has
ended by proving something, but a series of transitions in our framework translates to a partial
derivation in CLF, not a complete derivation. It is for this reason that I previously described the
focus on a state-transition-based presentation of logic as the most critical difference between CLF
and the framework presented in this proposal.

In the remainder of this section, we will present the typing rules and static semantics for L1, and
then give proofs of the progress and preservation lemmas above.

5.2.1 Static semantics

Typing rules are completely conventional. The syntax of types can be written as a BNF specification
as τ ::= nat | τ → τ , and the signature for types is the following:

tnat : tp.
arrow : tp → tp → tp.

The typing rules are the familiar ones:

of : exp → tp → type.

of/lam : (Πx. of x T → of (E x) T’) → of (lam λx. E x) (arrow T T’)

of/app : of E1 (arrow T’ T) → of E2 T’ → of (app E1 E2) T

of/n : of (nat N) tnat.

of/plus : of E1 tnat → of E2 tnat → of (plus E1 E2) tnat

Frame typing rules are also straightforward:

off/app1 : of E2 T’ → off (app1 E2) (arrow T’ T) T.

off/app2 : value E1 → of E1 (arrow T’ T) → off (app2 E2) T’ T.

off/plus1 : of E2 tnat → off (plus1 E2) tnat tnat.

off/plus2 : value E1 → of E1 tnat → off (plus2 E1) tnat tnat.
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5.2.2 Preservation

The preservation lemma establishes that our purported invariant is actually an invariant. The form
of the preservation lemma should be very familiar: if the invariant described by the static semantics
holds of a state, the invariant still holds of the state after any transition made under the dynamic
semantics.

Lemma 1 (Preservation). If S ;Σe S ′ and S ;∗Σt abs Tf , then S ′ ;∗Σt abs Tf .

Preservation proofs tend to rely on typing inversion lemmas, and we use traditional typing
inversion lemmas as needed without proof. However, there is another lemma that is critical for
preservation proofs for SSOS specifications. It captures the intuition that if S ;∗Σt abs T, either
S is already a substructural context containing a single resource (absT) or else everything in S
must eventually be consumed in the service of producing a single resource (absT). We call this the
consumption lemma because it represents the obligation that the static semantics consume everything
in the context. Recall that S[∆] is notation representing a state S containing the ephemeral state
∆ inside of it.

Lemma 2 (Consumption).

• If E : S[eval E] ;∗Σt abs Tf ,
then E ≈ (t/eval(Dt); E ′), where Dt : of E T and E ′ : S[abs T] ;∗Σt abs Tf for some T.

• If E : S[retn V] ;∗Σt abs Tf ,
then E ≈ (t/retn(Dv · Dt); E ′), where Dv : value V, Dt : of V T, and E ′ : S[abs T] ;∗Σt abs Tf for
some T.

• If E : S[cont F, abs T] ;∗Σt abs Tf ,
then E ≈ (t/cont(Df ); E ′), where Df : off F T T′ and E ′ : S[abs T′] ;∗Σt abs Tf for some T′.

Proof. Each of the statements can be proved independently by induction on the structure of E . The
eval and retn cases are quite similar to each other and are both simpler versions of the cont case,
which we give below.

Case: E = �
This case cannot occur, as there is no way for S[cont F, abs T] to be equivalent to (abs Tf).

Case: E = t/eval(D′t); E ′
D′t : of E Te,
E ′ : (S ′[abs Te] ;∗Σt abs Tf), and
S[cont F, abs T] ≈ S ′[eval E]

Because S[cont F, abs T] ≈ S ′[eval E], it must be the case that both of these are also equivalent
to S ′′[cont F, abs T][eval E] for some S ′ and E ′ : (S ′′[cont F, abs T][abs Te] ;∗Σt abs Tf).

E ′ ≈ (t/cont(Df ); E ′′) By i.h.
Df : off E T T′ ”
E ′′ : (S ′′[abs T′][abs Te] ;∗Σt abs Tf) ”
E ≈ (t/eval(D′t); t/cont(Df ); E ′′) By construction
E ≈ (t/cont(Df ); t/eval(D′t); E ′′) By concurrent equivalence

Case: E = t/retn(D′v · D′t); E ′

Similar to previous case.
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Case: E = t/cont(D′f ); E ′
D′f : off F1 T1 T′1,
E ′ : (S ′[abs T′1] ;

∗
Σt abs Tf), and

S[cont F, abs T] ≈ S ′[cont F1, abs T1]

Because S[cont F, abs T] ≈ S ′[cont F1, abs T1], there are two possibilities. The first possibility
is that S[abs T′] ≈ S ′[abs T′], F = F1, and T = T1, in which case we are done.

The other possibility is S[cont F, abs T] ≈ S ′[cont F1, abs T1] ≈ S ′′[cont F, abs T][cont F1, abs T1]
for some S ′′. In that case, E ′ : (S ′′[cont F, abs T][abs T′1]) and we proceed with the following
reasoning:

E ′ ≈ (t/cont(Df ); E ′′) By i.h.
Df : off E T T′ ”
E ′′ ≈ (S ′′[abs T′][abs T′1]) ”
E ≈ (t/cont(D′f ); t/cont(Df ); E ′′) By construction
E ≈ (t/cont(Df ); t/cont(D′f ); E ′′) By concurrent equivalence

This completes the proof.

It’s worth emphasizing what may be obvious: the proof of the consumption lemma is a bit more
general than necessary. In the static semantics we have defined so far, S ;∗Σt abs T means that
S contains precisely one atomic proposition of the form (eval E), (retn E), or (absT), which means
that most of the cases we consider are actually impossible. However, this impossibility is also a fact
that must be proven by induction on the structure of expressions. The proof we have given is both
straightforward in its own right and allows the proof of preservation to “scale” to specifications with
parallel evaluation (see Section 5.3). Furthermore, the theorem statement is not at all complicated
as a result of handling the general case. If we wanted to write a version of the consumption lemma
for the special case of sequential SSOS specifications, the only difference is that we would write “If
E : (S, eval E ;∗Σt abs Tf), then. . . ” instead of “If E : (S[eval E] ;∗Σt abs Tf), then. . . ” because we
know that eval E appears only on the right-hand edge of the ephemeral context.

Now we can consider the actual proof of preservation:

Proof of the Preservation Lemma (Lemma 1). The proof proceeds by case analysis on the transition
T : (S ;Σe S ′), followed in each case by applying the consumption lemma to the expression
E : (S ;∗Σt abs Tf).

Case: T = e/lam : S[eval(lamλx.E x)] ;Σe S[retn(lamλx.E x)]

E ≈ (t/eval(Dt); E ′) By consumption lemma
Dt : of (lamλx.E x) T ”
E ′ : (S[abs T] ;∗Σt abs Tf) ”
(t/retn(v/lam · Dt); E ′) : (S[retn(lamλx.E x)] ;∗Σt abs Tf) By construction

Case: T = e/app : S[eval(app E1 E2)] ;Σe S[cont(app1 E2), eval E1]

E ≈ (t/eval(Dt); E ′) By consumption lemma
Dt : of (app E1 E2) T ”
E ′ : S[abs T] ;∗Σt abs Tf ”
Dt = of/appD1D2 By inversion on Dt

D1 : of E1 (arrow T′ T) ”
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D2 : of E2 T′ ”
(t/cont(off/app1D2); E ′) : (S[cont(app1 E2), abs(arrow T′ T)] ;∗Σt abs Tf) By construction
(t/eval(D1); t/cont(off/app1D2); E ′) : (S[cont(app1 E2), eval E1] ;∗Σt abs Tf) By construction

Case: T = e/app1 : S[cont(app1 E2), retn V1] ;Σe S[cont(app2 V1), eval E2]

E ≈ (t/retn(Dv · Dt); E ′) By consumption lemma
Dv : value V1 ”
Dt : of V1 T ”
E ′ : (S[cont(app1 E2), abs T] ;∗Σt abs Tf) ”
E ′ ≈ t/cont(Df ); E ′′ By consumption lemma
Df : off (app1 E2) T T′ ”
E ′′ : (S[abs T′] ;∗Σt abs Tf) ”
Df = off/app1(D′t) By inversion on Df

T = arrow T0 T′ ”
D′t : of E2 T0 ”
(t/cont(off/app2Dv Dt); E ′′) : (S[cont(app2 V1), abs T0] ;∗Σt abs Tf) By construction
(t/eval(D′t); t/cont(off/app2Dv Dt); E ′′) : (S[cont(app2 V1), eval E2] ;∗Σt abs Tf)

By construction

Case: T = e/app2 : S[cont(app2(lamλx.E x)), retn V2] ;Σe S[eval(E V2)]

E ≈ t/retn(Dv · Dt); E ′ By consumption lemma
Dt : of V2 T ”
E ′ : (S[cont(app2(lamλx.E x)), abs T] ;∗Σt abs Tf) ”
E ′ ≈ t/cont(Df ); E ′′ By consumption lemma
Df : off (app2(lamλx.E x)) T T′ ”
E ′′ : (S[abs T′] ;∗Σt abs Tf) ”
Df = off/app2D′v (λx. λd.D′t x d) By inversion on Df

(λx. λd.D′t x d) : Πx. of xT→ of (Ex) T′ ”
D′t V2Dt : of (E V2) T′ By substitution
(t/eval(D′t V2Dt); E ′′) : (S[eval(E V2)] ;∗Σt abs Tf) By construction

The remaining cases for e/nat, e/plus, e/plus1, and e/plus2 are similar.

5.2.3 Progress

Preservation theorems, and in particular big-step preservation theorems, have traditionally been
the primary correctness criteria for language specifications in substructural logics [CP02]. However,
preservation alone is insufficient to ensure language safety as specified by Definition 1. The preserva-
tion lemma ensures that the invariant is maintained; the progress lemma ensures that the invariant
actually establishes safety.

The critical lemma for progress, the analogue to the consumption lemma in the preservation
lemma, is actually quite a bit more general. It relies on a general property of the static semantics,
namely that it is contractive, because each rule has at most one conclusion.

Definition 2 (Contractive signature). If every rule in Σ has at most one atomic proposition in the
conclusion, and that conclusion is an ordered or linear atomic proposition, then Σ is contractive.
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When a signature is contractive, then different pieces of the context at the end of an expression
can be traced backwards to different pieces at the beginning of the expression.

Lemma 3 (Splitting). If Σ is contractive and E : (S ;∗Σ S ′1,S ′2), then S ≈ S1,S2, and there exist
expressions E1 and E2 such that E1 : (S1 ;∗Σ S ′1) and E2 : (S2 ;∗Σ S ′2), where E has the same number
of transitions as E1 and E2 combined.

Proof. By induction on the structure of E . If E = �, the result is immediate, and if E = (E ′; T ) then
we apply the induction hypothesis on E ′ and add T to the end of the appropriate smaller expression:
E1 if the conclusion of T was bound in S1, E2 otherwise.

A stronger version of the splitting lemma would also establish that E ≈ (E1; E2) ≈ (E2; E1), but
this lemma is sufficient to allow us to prove the progress lemma.

Lemma 4 (Progress). If S ;∗Σt abs T and S contains no resources absT, then either S ;Σe S ′ for
some S ′ or else S = retn V for some value V with type T.

At a high level, this proof works by showing that any state S that satisfies the typing invariant
must be one of the following:

• S = retn V, a safe state that takes no step,

• S = eval E, in which case we can always take a step because eval E is an active proposition,

• S = (comp F,S ′) where S ′ ;Σe S ′′; in this case, the larger state takes a step as well, or

• S = (comp F, retn V), in which case we use canonical forms lemmas (which are standard, and
which we therefore use without proof) to ensure that we can perform a reduction.

Proof. By induction on the number of transitions in E . We note that E 6= �, because that would
mean that S = abs T, contradicting the premise that S does not contain any atomic propositions of
the form abs T. So we can assume E = (E ′; T ) and do case analysis on the form of the transition T .

Case: T = t/retn(Dv · Dt) and E ′ : S ;∗Σt retn V
where Dv : value V and Dt : of E T.

There are no transitions in Σt that can appear as the last transition in E ′, so E ′ = � and
S = retn V; therefore, we are done.

Case: T = t/eval(Dt) and E ′ : S ;∗Σt eval E.

There are no transitions in Σt that can appear as the last transition in E ′, so E ′ = � and
S = eval E. We proceed by case analysis on the structure of E.

Subcase: E = lamλx.E x — e/lam : eval(lamλx.E x) ;Σe retn(lamλx.E x)

Subcase: E = app E1 E2 — e/app : eval(app E1 E2) ;Σe (cont(app1 E2), eval E1)

Subcase: E = n N — e/n : eval(n N) ;Σe retn (n N)

Subcase: E = plus E1 E2 — e/plus : eval(plus E1 E2) ;Σe (cont(plus1 E2), y2 : eval E1)

Case: T = t/cont(Df ) and E ′ : (S ;∗Σt cont F, abs T′), where Df : off F T′ T.

By the splitting lemma, S ≈ S1,S2 and there exist two expressions E1 : (S1 ;∗Σt cont F) and
E2 : (S2 ;∗Σt abs T′). There are no transitions in Σt that can appear as the last transition in
E1, so E1 = � and S1 = cont F.
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We then apply the induction hypothesis on E2 (which has one transition less than E , justifying
the call to the induction hypothesis). If T : S2 ;Σe S ′2, then T : (cont F, S2 ;Σe cont F, S ′2)
by the frame property (Conjecture 5), and we are done.
Otherwise, we have S2 = retn V, Dv : value V, and Dt : of V T′. We proceed by case analysis on
the proof term Df establishing that the frame F is well typed.

Subcase: Df = off/app1Dt2, so F = app1 E2.

e/app1 : (cont(app1 E2), retn V) ;Σe (cont(app2 V), eval E2).
Subcase: Df = off/app2Dv1Dt1, so F = app2 V1,

Dv1 : value V1, and Dt1 : of E1 (arrow T′ T).
By the canonical forms lemma on Dv1 and Dt1, V1 = lamλx.E0 x.
e/app2 : (cont(app2(lamλx.E0 x)), retn V) ;Σe eval(E0 V).

Subcase: Df = off/plus1Dt2, so F = plus1 E2.
e/plus1 : (cont(plus1 E2), retn V)) ;Σe (cont(plus2 V), eval E2).

Subcase: Df = off/plus2Dv1Dt1, so F = plus2 V1 and T = T′ = tnat
Dv1 : value E1, and Dt1 : of E1 tnat.
By the canonical forms lemma on Dv1 and Dt1, V1 = n N1.
By the canonical forms lemma on Dv and Dt, V = n N2.
By the effectiveness of addition on N1 and N2, there exists a natural number N3 and a
proof term Da : add N1 N2 N3.
e/plus2(Da) : (cont(app2(n N1)), retn(n N2)) ;Σe retn(n N3).

This completes the proof; we have assumed standard canonical forms lemmas and the effectiveness
of addition, provable by induction on the structure of N1.

5.3 Parallel evaluation
One way in which parallel evaluation has been incorporated into functional programming languages
is by allowing pairs (or, more generally, tuples) to evaluate in parallel [FRRS08]. In this section we
will consider L2, the first modular extension to the language L1 with parallel pairs. The syntax and
typing rules pairs are a straightforward and standard addition:

pair : exp → exp → exp.
fst : exp → exp.
snd : exp → exp.

v/pair : value E1 → value E2 → value (pair E1 E2).

pairtp : tp → tp → tp.

of/pair : of E1 T1 → of E2 T2 → of (pair E1 E2) (pairtp T1 T2).

of/fst : of E (pairtp T1 T2) → of (fst E) T1.

of/snd : of E (pairtp T1 T2) → of (snd E) T2.

5.3.1 Dynamic semantics

Nothing in the previous signature indicates that pairs are any more interesting than the language
features we have already presented. It is in the specification of the dynamic semantics that we add a
new capability to the language: parallel evaluation. Our dynamic semantics will evaluate both parts
of a pair in parallel. First, we add a new type of latent ordered proposition, (cont2 F), representing
a frame waiting on two values to be returned to it.
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cont2 : frame → typeo .

fst0 : frame.
snd0 : frame.
pair0 : frame.

e/fst : eval(fst E) � cont fst0 · eval E
e/fst0 : cont fst0 · retn(pair V1 V2) � retn V1

e/snd : eval(snd E) � cont snd0 · eval E
e/snd0 : cont snd0 · retn(pair V1 V2) � retn V2

e/pair : eval(pair E1 E2) � cont2 pair0 · eval E1 · eval E2.

e/pair0 : cont2 pair0 · retn V1 · retn V2 � retn(pair V1 V2).

Our specification no longer corresponds to an on-paper description of a stack machine with one
expression evaluating on top of the stack: with this change, we have made the substructural context
a treelike structure where multiple independent groups of propositions may be able to transition at
any given time.

5.3.2 Static semantics

Beyond the typing rules for pairs given at the beginning of this section, we need a new typing
judgment for frames waiting on two values:

off2 : frame → tp → tp → tp → type.

The fst0 and snd0 frames lead to new cases for the regular frame typing rule, and we give a parallel
frame typing rule for the pair0 frame:

off/fst0 : off fst0 (pairtp T1 T2) T1.

off/snd0 : off fst0 (pairtp T1 T2) T2.

off2/pair0 : off2 pair0 T1 T2 (pairtp T1 T2).

And a rule in the static semantics explaining how parallel frames interact with (abs T):

t/cont2 : cont2 F · abs T1 · abs T2 · !off2 F T1 T2 T’
� abs T’.

Those three declarations entirely describe the static semantics of parallel evaluation. The typing
rule off2/pair0 and the rewriting rule t/cont2 could easily be merged, but by separating them it is
possible to incorporate additional parallel features into the language in a modular way.

5.3.3 Safety

We have just seen that it is possible to modularly extend both the static and dynamic semantics of
L1 to obtain the language L2 with parallel evaluation of pairs. We are also able to straightforwardly
extend the safety proof of L1 to incorporate parallel evaluation. We have to do the following things
to extend the existing proof:

• Add a new consumption lemma:
If E : S[cont2 F, abs T1, abs T2] ;∗Σt abs Tf ,
then E ≈ (t/cont(Dt); E ′), where Df : off2 F T1 T2 T′ and E ′ : S[abs T′] ;∗Σt abs Tf for some
T′.
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• Add a case for t/cont2 to the proof of each of the other consumption lemmas.

• Add cases for e/pair and e/pair0, e/fst, etc. to the proof of preservation lemma.

• Add new subcases for E = pair E1 E2, E = fst E, and E = snd E to the second case of the progress
lemma where it is the case that S = eval E.

• Add new subcases for Df = off/fst0 and Df = off/snd0 to the third case of the progress lemma,
both of which will appeal to a canonical forms lemma.

• Add a case for T = t/cont2(Df ) to the proof of the progress lemma.

The essential structure of the safety proof is preserved under the extension of the language with
parallel pairs. This is significant because, with the exception of the proof of the consumption lemma,
the safety proof for L1 did not need to explicitly prepare for the possibility of parallel evaluation.

5.4 Exceptions
Exceptions and exception handling are another example of a feature that we can add to L1 or L2

in a modular fashion, though there is an important caveat. While we can add parallel evaluation or
exceptions to L1 without reconsidering any aspects of the original specification, we cannot extend
the base language with both exceptions and parallelism without considering their interaction. This
should not be seen as a troublesome lack of modularity, however — rather, the SSOS specification
in this section illustrates that exceptions and parallel evaluation are not truly orthogonal language
features. Seen in this light, it is natural that we must clearly describe how the features interact.

The syntax of exceptions includes error, which raises an exception, and trycatch, which includes
a primary expression E and a secondary expression E′ that is evaluated only if the evaluation of E
returns an error. It would not be much more difficult to allow exceptions to carry a value, but we
do not do so here.

error : exp.
trycatch : exp → exp → exp.

of/error : of error T.

of/trycatch : of E T → of E’ T → of (trycatch E E’) T.

5.4.1 Dynamic semantics

To give the dynamic semantics of exceptions and exception handling, we introduce two new ordered
atomic propositions. The first, handle E′, represents an exception-handling stack frame. The second,
raise, represents an uncaught exception.

raise : typeo .
handle : exp → typeo .

e/raise : eval(error) � raise.

e/trycatch : eval(trycatch E E’) � handle E’ · eval E.
e/vhandle : handle E’ · retn V � retn V.

e/xhandle : handle E’ · raise � eval E’.

e/xcont : cont F · raise � raise.
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As mentioned before, we must deal explicitly with the interaction of parallel evaluation and
exception handling by explaining how exceptions interact with cont2 frames. The following is one
possibility in which both sub-computations must terminate before an error is returned.

e/xvcont : cont2 F · raise · retn V � raise.

e/vxcont : cont2 F · retn V · raise � raise.

e/xxcont : cont2 F · raise · raise � raise.

Another obvious candidate for the interaction between parallel evaluation of pairs and exceptions
would be for a pair to immediately raise an exception if either of its components raises an exception.
However, it is not obvious how to gracefully implement this in the ordered SSOS style we have
presented so far. This is a symptom of a broader problem, namely that ordered SSOS specifications
don’t, in general, handle non-local transfer of control particularly well. This is a limitation of the
specification style and not the framework, a point which is discussed further in Section 6.2.

5.4.2 Static semantics

The static semantics of exception handling are extremely simple; there are just two rules. An
uncaught exception has any type, and an exception handler must have the same type as its sub-
computation.

t/raise : raise � abs T.

t/handle : handle E · abs T · !of E T � abs T.

5.4.3 Safety

The existing structure of the safety proof also extends straightforwardly to handle the addition of
exceptions to the language; the most significant change is to the definition of safety itself, as a safe
state either steps, is a returned value retn V, or is an unhandled exception raise.

5.5 Discussion: modular proofs and their verification
So far in this section we have explored the basics of substructural operational semantics, presented a
strategy for giving static semantics to these languages, and shown how invariants established by the
static semantics can be used in proofs of language safety. Not only is it possible to straightforwardly
extend the dynamic and static semantics by inserting more rules, it is also possible to straightfor-
wardly extend safety proofs by adding more cases. For this reason, I hope to be able to show in
my thesis work that SSOS specification supports not only modular specification of a programming
language’s semantics but also a modular specification of a programming language’s safety theorem.

There is, however, still work to be done before this argument can be made with complete confi-
dence. Both of the extensions in this section can be generally described as adding control features
to the language — language extensions that do not add new control features (such as inductive
types, sums, fixed points, etc. . . ) should in general be even easier to add. The other stated goal of
SSOS specification is to allow modular specification of stateful features. The specification of mutable
state, presented in Appendix A.1, extends the dynamic and static semantics presented so far in a
modular way, but the safety proof presented in this section needs to be modified to prove safety for
the extended semantics.

Another challenge is the consumption lemma. Every time we added a new relevant feature to
the language, we needed to add both a new consumption lemma and a new case to all the existing
consumption lemmas. On paper, this kind of behavior is easy to sweep under the rug with language
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such as “all the other cases are similar.” When considering mechanically-verified proofs, however,
this quadratic “proof complexity” can be an obstacle to the formal verification and modular extension
of proofs. The obvious solution is to provide tactics that can automatically verify proofs of theorems
like the consumption lemma with a constant or linear amount of work by the human author.12 Insofar
as it is possible, routine proofs with super-linear proof complexity should be left to computers.

The above considerations have to do with constructing proofs. The most significant obstacle to
mechanically verifying the proofs of the safety properties in this section is probably exemplified by
the following reasoning, extracted from one of the cases of the consumption lemma:

Given:
S[cont F, abs T] ≈ S ′[cont F1, abs T1], there are two possibilities.

The first possibility is that S[abs T′] ≈ S ′[abs T′], F = F1, and T = T1.

The other possibility is that, for some S ′′,
S[cont F, abs T] ≈ S ′[cont F1, abs T1] ≈ S ′′[cont F, abs T][cont F1, abs T1].

Implicit in this reasoning is a kind of exhaustiveness or coverage checking: the two cases that we claim
capture all possibilities do, in fact, capture all possibilities. Similar issues arose in the mechanical
verification of HLF specifications, but the solution was somewhat ad-hoc [Ree09a]. One of the
primary goals of my proposed work is to develop general solutions to coverage checking problems
that involve algebraic properties of expressions and ephemeral contexts, but I expect this to be a
significant challenge.

5.6 Regular worlds and context generators
In the discussion of safety in Section 5.2, we needed a special “context invariant” lemma saying
that the dynamic semantics preserves the property that a substructural context contains no (abs T)
propositions. Another way of specifying this context invariant is in terms of a transition system
that generates the context. The degenerate “rewriting rules” that capture the context invariant for
parallel evaluation are as follows:

gen/eval : ∀E. eval E.
gen/retn : ∀E. retn E.
gen/cont : ∀F. cont F.
gen/cont2 : ∀F. cont2 F.

This changes the picture of safety presented in Section 5.2 to the following picture, which shows
the two invariants given by the context generating rules and the static semantics. The context
generating rules construct the context, and the static semantics then analyze it.

eval E S1 Sn S
S ′
or

=
retn V

Σe
ΣeΣe · · ·

abs T abs T abs T abs T

Σt

∗
Σt

∗
Σt

∗
Σt

∗

· · · ·
Σgen

∗

Σgen

∗

Σgen

∗

Σgen

∗

12An obvious analogy is cut elimination. Coverage checking a cut elimination argument for a logic with n inference
rules generally requires a proof assistant to consider O(n2) cases, but an assistant like Twelf or Agda can verify the
theorem given at most three cases for each inference rule (a principal case, a left commutative case, and a right
commutative case).
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This account of context generating rules bears a strong resemblance to the regular worlds specifi-
cations mentioned in Section 3 and implemented in the LF/Twelf metalogical framework [PS99];
I am interested in exploring the use of transition rules as a logical justification for regular worlds
specifications. In this setting, however, there is no reason why we need to limit ourselves to regular
worlds-like context generators. Another possibility is the use of context generators that capture the
tree-like structure of the ordered context:

gen/eval : ∀E. gen � eval E.
gen/retn : ∀E. gen � retn E.
gen/cont : ∀F. gen � cont F · gen.
gen/cont2 : ∀F. gen � cont2 F · gen · gen.

But what if we don’t stop there? We could also have the gen atomic proposition carry a type,
and then only allow the generation of well-typed tree structures (we return to leaving quantification
implicit):

gen/eval : gen T · !of E T � eval E.
gen/retn : gen T · !value E · !of E T � retn E.
gen/cont : gen T · !off F T’ T � cont F · gen T’.
gen/cont2 : gen T · !off2 F T1 T2 T � cont2 F · gen T1 · gen T2.

The static semantics of the language now have been captured entirely within the generation rules,
seemingly removing any need for a second invariant that analyzes the state. The statement of the
safety theorem would remain as it was in Theorem 1, but its proof would look like this:

eval E S1 Sn S
S ′
or

=
retn V

Σe
ΣeΣe · · ·

genT genT genT genT
Σgen

∗

Σgen

∗

Σgen

∗

Σgen

∗

The perspective suggested by this picture is quite different from our usual intuitions about static
semantics. Usually, static semantics are seen as a way of analyzing or abstractly evaluating a state
in order to generate an approximation (the type) that is invariant under evaluation and sufficient to
ensure safety; here, the static semantics is more of a template for generating safe states. We have not
explored this style of analysis in depth, but it does seem to address certain significant complications
that have been encountered in the process of proving safety for the linear-destination-passing-style
specifications introduced in Section 6.2.

5.7 Beyond language safety
The discussion in this section has centered on specifying substructural operational semantics in
ordered logic and reasoning about type language safety. Type safety is an interesting and critical
property, and it is one that seems to have been overlooked by many related approaches to modular
specification of stateful and concurrent programming languages. However, type safety is just one of
many interesting properties of such programming languages!

I also plan to explore the use of other techniques for reasoning about concurrent systems,
particularly those that can be used to statically preclude race conditions and deadlocks (per-
haps along the lines of Abadi et. al [AFF06]). Methods I plan to consider formalizing include
simulation/bisimulation-based reasoning, session types, fractional permissions, and information flow
type systems.
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6 Transformations of SSOS specifications
The logical basis of our framework gives us a number of potentially powerful tools for transforming
specifications in ways that either preserve or approximate the meaning of the original specification;
in this section, I discuss a variety of interesting transformations on SSOS specifications. This section
is a change of pace from the previous sections, which were primarily motivated by the problem of
giving modular SSOS specifications and proving them type safe. That said, the investigations in
this section represent other strategies for reasoning about SSOS specifications.

6.1 Transformations for approximation
In the paper “Linear logical algorithms,” coauthored with Frank Pfenning, we observed that pro-
gram analyses such as control flow analysis and alias analysis could be derived directly from SSOS
specifications in linear logic [SP09]. In a submitted journal paper, this approach was extended to
SSOS specifications in ordered logic [SP10]. I will give a very brief overview of this approach here.

A control flow analysis can be derived from the functions-only fragment of L1 by taking the four
rules describing function application and passing them through an automatic, meaning-preserving
transformation. The ordering constraints on the context are represented by adding two arguments
to every atomic proposition: these extra arguments chain together an ordered sequence of linear
propositions in the manner of a doubly-linked list.

el/lam : eval (lam λx. E x) D D’ ( retn (lam λx. E x) D D’.

el/app : eval (app E1 E2) D D’
( ∃d1. cont (app1 E2) D d1 ⊗ eval E1 d1 D’.

el/app1 : cont (app1 E2) D D1 ⊗ retn V1 D1 D’
( ∃d2. cont (app2 V1) D d2 ⊗ eval E2 d2 D’.

el/app2 : cont (app2 (lam λx. E0 x)) D D2 ⊗ retn V2 D2 D’
( eval (E0 V2) D D’.

The existential quantifier in the conclusion of a rule creates new parameters (called destinations)
that maintain the ordering invariant that was previously maintained by the structure of the ordered
context. When SSOS specifications are passed through this transformation, the result is similar
to the linear destination-passing style that was used in original SSOS specifications. The only
essential difference is that the transformation adds a somewhat useless second argument to eval
and retn propositions; these vestigial destinations are grayed-out in the specification above. This
first transformation into linear logic does not change provability or the structure of proofs, and can
therefore be seen as a way of representing forward-chaining ordered logical specifications in a linear
logical framework like CLF.

Destinations, and parameters more generally, are quite useful in SSOS specifications — while
the examples in Section 5 did not use them, they are used in many of the examples in the appendix.
For instance, destinations can be used to represent an environment semantics where a parameter is
substituted into an expression rather than substituting the value itself; a new persistent proposition is
then introduced which permanently associates the fresh parameter with the value. The specification
above can be modified to demonstrate this; the modified rule el/app2 and the new rule el/bind are
the only major changes, though the vestigial D’ argument was removed throughout:

el/lam : eval (lam λx. E x) D ( retn (lam λx. E x) D.

el/app : eval (app E1 E2) D
( ∃d1. cont (app1 E2) D d1 ⊗ eval E1 d1.
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el/app1 : cont (app1 E2) D D1 ⊗ retn V1 D1

( ∃d2. cont (app2 V1) D d2 ⊗ eval E2 d2.

el/app2 : cont (app2 (lam λx. E0 x)) D D2 ⊗ retn V2 D2

( ∃x. eval (E0 (var x)) D ⊗ !bind x V2.

el/bind : eval (var X) D ⊗ !bind X V ( retn V D.

Once we have obtained a linear logic specification, we are in a setting where program approx-
imation can be considered. By making all the linear propositions persistent, a sort of collecting
semantics arises. If we then use equality constraints to unify introduced parameters and existing
terms, it is possible to get a logical specification that, when run as a saturating, forward-chaining
logic program, terminates and can be interpreted as a control flow analysis. The following rules,
for instance, describe a basic control flow analysis for the lambda calculus when run as a saturating
logic program. In particular, if the function lamλx. E x may be called at runtime from the call site
represented by the expression E1 in the actual semantics, then the atomic retn (lamλx. E x) E1 will
appear in the saturated database produced by the control flow analysis.

ea/lam : eval (lam λx. E x) D → retn (lam λx. E x) D .

ea/app : eval (app E1 E2) D
→ ∃d1. d1 = E1, cont (app1 E2) D d1, eval E1 d1.

ea/app1 : cont (app1 E2) D D1, retn V1 D1

→ ∃d2. d2 = E2, cont (app2 V1) D D2, eval E2 d2.

ea/app2 : cont (app2 (lam λx. E0 x)) D D2, retn V2 D2

→ ∃x. x = (lam λx. E0 x), eval (E0 (var x)) D, bind x V2.

ea/bind : eval (var X) D, bind X V2 → retn E2 D.

This is an extremely brief overview; more detail can be found in [SP09, SP10].

6.2 Transformations for modularity
There is one known and significant failing of SSOS specifications in ordered logic: they are unable
to capture the expected semantics of first-class continuations, because the context representing
the entire control stack cannot necessarily be reified as a term. There is a way to give an SSOS
specification of first-class continuations in linear logic, however! If stack frames are all persistent,
then a destination can be used to uniquely identify a continuation. A value can then be “thrown”
to a different continuation simply by returning the value to a different destination, as shown in the
el/throw2 rule below:

el/letcc : eval (letcc λx. E x) D ( eval (E (continue D)) D.

el/continue : eval (continue Dcont) D ( retn (continue Dcont) D.

el/throw : eval (throw E1 E2) D
( ∃d1. !cont (throw1 E2) D d1 ⊗ eval E1 d1.

el/throw1 : !cont (throw1 E2) D D1 ⊗ retn V1 D1

( ∃d2. !cont (throw2 V1) D d2 ⊗ eval E2 d2.

el/throw2 : !cont (throw2 (continue Dcont)) D D2 ⊗ retn V2 D2

( retn V2 Dcont.

40



The original motivation for introducing ordered logic into SSOS specifications was to represent
control stacks without the bureaucracy of destinations, but the trade-off is that this style of specifi-
cation cannot easily capture first-class continuations and other kinds of non-local transfer of control.
The only real hope of modularly composing ordered SSOS specifications and specifications of first-
class continuations may be to extend the meaning-preserving transformations described above and in
[SP10] to allow ordered SSOS specifications to be simply and gracefully transformed into a form that
is compatible with linear-destination-passing style SSOS specifications. Even if this is possible, it
may well be too challenging or unpleasant to allow proofs of language safety to be compatible across
these transformations, meaning that the modularity of proofs may be lost even if the modularity of
specifications can be restored.

6.3 Transformation for implementation
Logical transformations can also be used to give alternate logic programming interpretations to
SSOS specifications. The transformation of ordered SSOS specifications to linear SSOS specifications
described in Section 6.1, for instance, outputs specifications that can be run by logic programming
languages based on CLF like Lollimon [LPPW05] and Celf [SNS08].

Additionally, the output of the translation into linear logic can be further transformed into
an LLF specification. Any linear transition rule A+ ( B+ can be transformed into the LLF
logical framework by introducing a new atomic proposition rhs and rewriting every rule as (B+ (
rhs)( (A+ ( rhs).13 At this point, a backward-chaining logic programming language like Lolli or
HLF/Twelf could be used as an implementation of the logic programming semantics of the framework.
In theory, the metatheoretic capabilities HLF/Twelf could even be used to reason directly about
properties of ordered SSOS specifications that had been transformed into LLF. However, as this
transformation adds complexity and destroys concurrent equivalence, this does not necessarily seem
like a promising approach.

Yet another interesting use of program transformations for implementation goes back to the
parsing rules for L0 first introduced in Section 4.7. If we take that specification, apply the transfor-
mation into linear logic, and then apply the approximation transformation into persistent logic, we
get the following specification, which can be run as a saturating logic program:

parsea/num : (num N D1 D2) → parsed (n N) D1 D2.
parsea/plus : (parsed E1 D1 D2), (+ D2 D3), (parsed E2 D3 D4) → parsed (plus E1 E2) D1 D4.

The most interesting aspect of this transformed specification is that it encodes the CKY parsing
algorithm when run as a saturating logic program. This means that the transformation did not
produce an approximation of the original logic program in this instance, it produced a precise
version of the original program that is amenable to a very different execution strategy.

6.4 Defunctionalization and refunctionalization
As previously mentioned, atomic propositions in SSOS specifications can be categorized as active
(like eval), passive (like retn and raise) or latent (like cont and handle). The first SSOS specifications
had only active and passive atomic propositions. To see why, we can look at an SSOS specification
for parallel pairs that uses a style similar to original SSOS specifications (the difference is that the
original specifications were linear, not ordered):

13LLF does not support positive propositions, but because both A+ and B+ appear on the left of an arrow, they
can be mechanically Curried into acceptable LLF specifications.
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e/pair-alt : eval (pair E1 E2)
� (∀V1, V2. retn V1 · retn V2 � retn (pair V1 V2))

· eval E1 · eval E2.

This specification is not supported by the logical framework we have presented because the conclusion
of the rule contains a non-atomic negative proposition; however, it would not be conceptually difficult
to add this to the framework. There are two reasons that we do not want to use this style of
specification. First, it interferes with our ability to write a static semantics, and second, it interferes
with our ability to write modular language extensions. The latter problem is easier to see: if we
wanted to incorporate exceptions into the original-style SSOS specification of parallel pairs, it would
have to look something like this:

e/pair-alt-raise :
eval (pair E1 E2)
� ((∀V1, V2. retn V1 · retn V2 � retn (pair V1 V2)) &

(∀V1. retn V1 · raise � raise) &
(∀V2. raise · retn V1 � raise) &
(raise · raise � raise))
· eval E1 · eval E2.

This shows that the original style of SSOS specification makes modular extension much more
difficult. Furthermore, no expressiveness is lost when we disallow negative atomic propositions from
appearing in the conclusion of transition rules. In a the signature for L2, an atomic proposition
(cont2 pair0) behaves in precisely the same way the negative atomic proposition (∀V1, V2. retn V1 ·
retn V2 � retn (pair V1 V2)) would behave. There is a separate question as to whether e/pair-alt is
a cleaner specification than e/pair combined with e/pair0; I am not convinced that that this is the
case.

There is obviously a sort of transformation that connects the two specifications, but the “defunc-
tionalized” style first presented in [Pfe04] and developed in [PS09] and Section 5 seems to be clearly
superior as a basis for modular specification of programming languages features. It will be inter-
esting to consider if there is a formal connection between this kind of defunctionalization and the
defunctionalization that appears in Danvy’s rational reconstructions of abstract machines [Dan08].

7 Conclusion
In this proposal, I have presented an logical framework based on a state-transition-based view of
ordered linear logic and presented preliminary results indicating that the framework allows for both
modular specification of programming languages and formal reasoning about their safety properties.
I have also discussed how transformations of specifications in ordered logic can be used to explore
program approximations and alternative evaluation strategies. In this conclusion, I will return to
a discussion of related work, give an outline of the thesis I am proposing, and discuss my plan for
getting there.

7.1 Related work
We have discussed most of the relevant related work throughout this proposal, but I want to empha-
size two particular strands of related work. From the logical framework perspective, the most closely
related work is the LF/LLF/OLF/CLF/HLF family of logical frameworks, though the focus that the
framework presented here gives to state transitions exists elsewhere only in the CLF framework, and
even there state transitions are second-class citizens. The only published work on proving properties
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of SSOS specifications in CLF is Schack-Nielsen’s proof of the equivalence of a big-step operational
semantics and an original-style SSOS specification [SN08].

The notion that ideas at the intersection of abstract machine specifications and linear logic
can capture stateful and concurrent programming language features in a modular way is one with
a fairly long history [Chi95, CP02, CPWW02, Pfe04, Mil09, PS09]. However, while the power
of these frameworks for specification has long been recognized, formal reasoning about properties
of these specifications has typically concentrated on properties like approximation [Mil08, SP09]
and equivalence [SN08] rather than on familiar properties like progress and preservation that I
demonstrate in the transition-based framework. I am aware of two exceptions to this pattern,
though in both cases only preservation lemmas were formalized, not progress lemmas. As discussed
in Section 6.3, Cervesato’s LLF specification of MLR can be seen as a transition-based specification
that has been flipped around and turned into a backward-chaining specification, and Reed’s HLF is
able to mechanically verify Cervesato’s preservation theorem [Ree09a]. Felty and Momigliano used
a similar style of specification in their work on Hybrid to encode abstract machines in ordered logic
and reason about subject reduction in either Isabelle/HOL or Coq [FM08].

While the theoretical basis of this proposal is found in the study of logical frameworks, the most
similar project in terms of goals and strategies is the rewriting logic semantics project [MR07], and in
particular the K framework for language specifications [ŞR10, RŞ10]. Based on the Maude rewriting
framework, these two projects have proven successful in specifying, model-checking, and efficiently
executing operational semantics of stateful and concurrent programming languages, including a
number of large formalizations of object oriented [HR07] and functional [MHR07] programming
languages.

Many specifications in the K framework bear a strong resemblance to SSOS specifications, and
the two approaches to language formalization seem to share a great deal of fundamental structure,
even if they differ substantially in emphasis. I am only aware of one discussion of safety via progress
and preservation for a K specification [EŞR08]; there was no discussion of formalizing that proof.
The primary limitation of K relative to our approach is a lack of LF-like canonical forms and higher-
order abstract syntax, both of which were critical to our specifications and to reasoning about their
type safety. The primary limitation of our approach relative to K is the absence of any mechanism
for capturing arbitrary sets of propositions at the rule level — in K there is no distinction between
terms and propositions, so it is as if we could write this rule:

CONT · eval(callcc(λx.E x))� CONT · eval(E(continue CONT))

where CONT captures all the propositions cont F to the left of eval(callcc(λx. E x)). This makes K’s
approach to the modular specification of continuations infeasible in our framework. In addition, the
existing interpreters for fragments of the framework described in this proposal (i.e. Ollibot, Lollimon,
and Celf) are nowhere near competitive with the performance of the fine-tuned and extensively
engineered Maude interpreter for rewriting logic.

7.2 Outline
While the ultimate structure of my thesis will obviously depend significantly on the outcome of the
research I am proposing to do, I would currently predict that my dissertation will have the following
outline:

A transition-based view of logic. I will start by presenting all of ordered linear logic (save for,
probably, additive disjunction) based around the organizing principle, presented in Section 3.2
of this proposal, that logic can be treated as a state transition system. I will discuss notions
of local soundness and completeness for this view of logic, give a focused presentation of the
logic, and prove the completeness of the focused presentation.
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A logical framework for evolving systems. By adding proof terms to a focused fragment of
logic presented in the preceding section, I will present a logical framework along the lines of
the framework in Section 4.

Substructural operational semantics. An extension of Section 5 in the proposal. Following
[PS09], I will present SSOS specifications of a number of language features — at minimum, I
expect to present parallel evaluation, mutable storage, and exceptions in addition to presenting
function evaluation with a substitution semantics, an environment semantics, and a call-by-
need semantics. In addition, this section will present a static semantics for each of these
specifications and a proof of language safety via progress and preservation proofs.

Implementing and reasoning about SSOS specifications. This section will consider three lev-
els of implementation. First, an implementation of the framework, which involves (mostly
well-understood) issues such as reconstructing implicitly quantified parameters. Second, a
logic programming language based on the logical framework that gives a backwards-chaining
interpretation to the canonical forms fragment and a forward-chaining interpretation to the
transition fragment. Third, a constructive framework for formally reasoning about specifica-
tions.

Transforming SSOS specifications An extension of Section 6 in this proposal. By detailing a
transformation on SSOS specifications that naturally gives rise to linear destination-passing
style, I present the SSOS specification and type safety proofs of a language with first-class con-
tinuations. I will also discuss how transformations on SSOS specifications can be used to derive
program approximations (as presented in [SP10]). Ideally, the tools described in the previous
section should provide a degree of automated support for applying these transformations.

Another kind of program transformation is a compiler transformation; in this section, I will
consider how the logical framework can specify and relate different internal languages within
a compiler.

Reasoning beyond safety. The SSOS specifications considered up to this point in the thesis will
all have a notion of safety that does not allow deadlocks — a well-typed machine state must
either step or be a returned value. In this section, I will consider the specification of systems
that can communicate and potentially deadlock, and will consider the application of coinductive
notions such as bisimulation that are used to reason about such communicating processes;
this will also be where I discuss other techniques for reasoning about properties of SSOS
specifications along the lines of those discussed in Section 5.7.

7.3 Goals and plan
I plan to concentrate first on the development of the logical framework and its properties while also
writing on-paper specifications and safety proofs for a variety of programming language features.
There are quite a number of potential framework designs that are close to the design of the logical
framework presented in Section 4. While the logical framework in that section is not necessarily
the final word with respect to my thesis, it is most definitely not the final word on substructural
specification frameworks. My thesis statement addresses a class of logical frameworks, but my
proposal is to gather evidence about a particular logical framework. I do want to generalize the
framework as much as possible, but I anticipate placing a higher priority on keeping the process of
formal reasoning simple and on presenting a wide variety of examples.

After I have a larger collection of example safety proofs and have settled on the framework’s
design, I will consider the coverage checking problem in more detail. This investigation will inform
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the design of a tool for formally verifying safety properties. I am still considering a range of options
for implementing the framework for formally verifying these properties. For example, the framework
could be embedded in the Agda programming language [Nor07] in the manner of Licata’s thesis
work [Lic08] or it could be developed as a standalone language utilizing the infrastructure of Twelf,
Celf, and/or Ollibot.

While I propose to describe principles for formally reasoning about specifications in the frame-
work I present, I anticipate that these principles, and any mechanical verification tools I build, will
be somewhat specific to the problem of verifying properties of programming languages. In particular,
I very much do not expect to develop a system that exhibits the kind of uniformity between specifi-
cation and reasoning about specifications that is seen in metalogical frameworks such as LF/Twelf
and HLF/Twelf. Instead, I expect that the tool for formally reasoning about specifications will more
closely resemble metatheoretic frameworks for reasoning about specifications (such as M+

ω [Sch00]
and L+

ω [MS08]) and languages for functional programming with LF terms (such as Delphin [Pos08]
and Beluga [PD10]).

I do not attach artificial timelines to the specific goals in the next section. However, I generally
anticipate spending less than a year designing the framework, establishing its metatheory, and
specifying and proving properties of SSOS specifications; I then expect to spend about a year
developing and using a tool for reasoning about specifications. I would like to graduate in 2012.

7.3.1 Specific goals

Goals are classified as primary, open-ended, and secondary. The primary goals are the major
expected original components of this thesis proposal and deserve the most attention. Open-ended
goals are intentionally somewhat unspecified; they are areas where I hope to make some progress but
also expect to leave significant future work. Secondary goals are mostly related topics that would
strengthen the thesis but which may become future work.

A concurrent ordered logical framework

• Primary: The logical framework.
I intend to settle on a specific version of the framework in Section 4 that I will use as the basis
of my thesis work. This framework will need to have a full specification, and I will formally
establish the standard metatheory of the framework.

Regardless of the nature of the specified framework, my implementation efforts may concentrate
on a fragment without full dependent types.

• Secondary: Extend the transition-based account of linear logic in Section 3.2 into a complete
account of intuitionistic linear logic.

• Secondary: Nominal Quantification.
Miller et al.’s ∇ quantifier and the nominal existential quantifier in Cervesato and Scedrov’s ω
rewriting language seem able to capture inequality checks on dynamically-generated parame-
ters. If reasoning about the properties of these quantifiers proves to be tractable, they should
be included in the framework.

Properties of programming languages

• Primary: Provide progress and preservation proofs for the programming language features (in-
cluding parallel evaluation, exceptions, mutable state, and call-by-need evaluation) described
in the LICS paper on substructural operational semantics [PS09].
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• Open-ended: Present SSOS specifications and establish safety proofs for larger or more
complicated language specifications (such as Harper’s Modernized Algol [Har10] or Roşu and
Şerbănuţă’s Challenge [RŞ10]), or more realistic languages.

• Open-ended: Reason about properties like deadlock-avoidance, race-freeness, and secure
information flow in SSOS specifications (Section 5.7).

• Secondary: Modularly extend ordered SSOS specifications with first-class continuations via
program transformation (Section 6.2) and establish safety for the resulting language.

Executable specifications

• Primary: Extend the Ollibot forward-chaining logic programming language to implement the
full logical framework.

• Open-ended: Explore compilation and efficient execution of specifications, particularly through
the use of distributed programming languages.

• Secondary: Generate program analyses by approximating specifications of programming lan-
guages (Section 6.1).

Formal verification of language properties

• Primary: Coverage checking.
The largest theoretical barrier to mechanically verifying properties of SSOS specifications may
be reasoning about coverage checking problems in the presence of the equivalence relations on
expressions and contexts. This is an area where I expect to dedicate a good bit of effort.

• Primary: I plan to write a number of proofs about safety properties of stateful and concurrent
programming languages; I also intend to mechanically verify many or all of these proofs using
a framework that is appropriate for that task.

• Open-ended: Context generators.
As discussed in Section 5.6, the use of context generators naturally captures and extends the
language of regular worlds used in the Twelf metalogical framework. Extending the language of
context generators beyond the regular worlds fragment while preserving automatic verification
is an interesting, though open-ended, topic.

• Secondary: Modular proofs.
A primary goal is that the code of specifications should be modular; furthermore, proofs should
be conceptually modular — that is, extending a safety proof to handle modular language
extensions should be a straightforward exercise. However, depending on the specific strategy
used for formalizing proofs, the code of proofs may not be as modular as the specification
language.
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A Other SSOS specifications
In this section, I present sketches of several other substructural operational semantics specifications
that can extend the specifications in Section 5. Each poses some challenge to the framework and to
the methodology described in Section 5, and the specifications are roughly ordered from the ones
presenting the least significant challenge to the ones presenting the most significant challenge. Most
of these sections do not include a full discussion.

• Section A.1: Mutable state. Both the static and dynamic semantics can be extended
in a modular way to handle state; unfortunately, the proof of safety cannot be extended
straightforwardly.

• Section A.2: Call-by-need suspensions. Call-by-need is generally understood as an evalu-
ation strategy for functions, but it can also be presented as a stand-alone language feature that
simultaneously introduces fixed-points. We describe the dynamic semantics of these recursive
suspensions; unfortunately, their static semantics can not be captured appropriately in the
style of Section 5.

• Section A.3: Partial evaluation. This section presents an SSOS specification of the lan-
guage of partial evaluation presented by Davies [Dav96]. In order to represent this system in
our framework, we would need to allow canonical forms to contain sequences of transitions in
the style of CLF.
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• Section A.4: Case analysis on symbols. Harper’s Practical Foundations of Programming
Languages distinguishes strongly between variables, which are given meaning by substitution,
and symbols, which are given meaning by renaming. Our framework can capture much of the
character of both, with two exceptions: we cannot enforce that symbols have a dynamic scope,
and we cannot perform case analysis on symbols. Different forms of nominal quantification
may provide a way to address both of these issues.

A.1 Mutable state
Mutable state is another example of a modular extension to L1, though the safety proof we have
used so far does not extend as straightforwardly to the addition of mutable state. In the dynamic
semantics, a reference into the store will be represented by a variable of type loc.

loc : type.

ref : exp → exp.
deref : loc → exp.
update : loc → exp → exp.
lc : loc → exp.

tref : tp → tp.

v/loc : value (lc L).

ref1 : frame.
deref1 : frame.
update1 : exp → frame.
update2 : exp → frame.

The typing rules and frame typing rules are unsurprising;

celltp : loc → tp → typel .

of/ref : of E T → of (ref E) (tref T).

of/deref : of E (tref T) → of (deref E) T.

of/update : of E1 (tref T) → of E2 T → of (update E1 E2) T.

of/loc : celltp L T → of (lc L) (tref T).

off/ref1 : off ref1 T (tref T).

off/deref1 : off deref1 (tref T) T.

off/update1 : of E2 T → off (update1 E2) (tref T) T.

off/update1 : value E1 → of E1 (tref T) → off (update2 E1) T T.

A.1.1 Dynamic semantics

cell : loc → exp → typel .

e/loc : eval(loc L) � retn(loc L).

e/ref : eval(ref E) � cont ref1 · eval E.
e/ref1 : cont ref1 · retn E � ∃l. retn(loc l) · ¡cell l E.
e/deref : eval(deref E) � cont deref1 · eval E.
e/deref1 : cont deref1 · retn(loc L) · ¡cell L E � retn E · ¡cell L E.
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e/update : eval(update E1 E2) � cont(update1 E2) · eval E1.

e/update1 : cont(update1 E2) · retn E1 � cont(update2 E1) · eval E2.

e/update2 : cont(update2(loc L)) · retn E2 · ¡cell L E
� retn E2 · ¡cell L E2

The dynamic semantics require that we relax the definition of contexts: there can be free param-
eters of type loc as long as each (l : loc) is associated with exactly one linear resource (x : cell l E)
for some E.

A.1.2 Static semantics

In order to deal with circular references in the store, the derivation for a static semantics takes a
cell, makes up some type for it (the L in the conclusion of t/cell is universally quantified on the
outside, not existentially quantified in the conclusion), and then both declares the cell to have that
type by the persistent assumption (celltp LT) and creates the obligation that the cell be typed with
that type by introducing the linear proposition checkcell L ET.

checkcell : dest → exp → typel .

t/cell : ¡cell L E � !celltp L T · ¡checkcell L E T.

t/checkcell : ¡checkcell L E T · !of E T � 1.

A.2 Call-by-need suspensions
Call-by-need suspensions are another use of destinations. When a recursive suspension is evaluated
to a value. A destination D associated with a suspension is always in one of three states. The first
state, waiting, occurs when there is a linear atomic proposition wait DE in the context. The second
state, evaluating, where there is a linear atomic proposition blackholeD in the context; forcing the
destination at this point in a sequential program would normally guarantee nontermination; in the
dynamic semantics below it signals an error.14 The third state is when the destination is permanently
associated with a destination by the introduction of a persistent atomic proposition bindDV.

suspdest : type.
susp : exp → exp.
force : exp → exp.
force1 : exp → frame.
suspv : suspdest → exp

v/suspv : value(suspv D).

wait : suspdest → exp → typel .
blackhole : suspdest → typel .
bind : suspdest → exp → type.

e/susp : eval(susp E) � ∃d. retn(suspv d) · ¡wait d E.

e/force : eval(force E) � comp force1 · eval E.
e/force1 : comp force1 · retn(suspv D) · ¡wait D E � comp(bind1 D) · eval E · ¡blackhole D.

e/force2 : comp force1 · retn(suspv D) · ¡blackhole D E � raise · ¡blackhole D E.

e/force3 : comp force1 · retn(suspv D) · !bind D V � retn V.

e/bind : comp(bind1 D) · retn V · !blackhole D � retn V · !bind D V.
14Some more thought would need to go into the treatment of black holes in parallel programs.
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Call-by-need evaluation can also be presented as a way of evaluating function arguments (as in
[PS09]), and suspensions can be made recursive, which gives a better motivation for the blackhole
rules. However, this specification cannot be shown to be type safe by using the style of static
semantics we have used so far. The rule t/cell works because it consumes the cell atomic proposition,
thus guaranteeing that the location L will only be associated with exactly one type T. No such
guarantee is possible when dealing with bind propositions: if an expression can be typed with two
different types, it is possible to violate type safety by firing the rule twice to assign both types to the
expression. The alternative construction of static semantics in Section 5.6 seems like a promising
way of addressing this issue, however.

A.3 Binding-time analysis
There is an elegant SSOS specification of Davies’ work “A Temporal-Logic Approach to Binding-Time
Analysis” [Dav96] in a variant of the logical framework presented here. The variation is precisely
that we must allow computations to take place inside canonical forms, as seen in the rule seek/prev-z.

The idea of Davies’ binding-time analysis system was that, in a given stage, the syntax next Emay
be encountered, which is an expression that is meant to be evaluated at the next stage. However, the
expression E may contain work that needs to be done at this stage, so we use the backwards-chaining
seek rules to look for available work, and then perform that work using forward-chaining rules when
we find it.

next : exp → exp.
prev : exp → exp.

seek : nat → exp → exp → type.

e/next : eval(next E) · !seek z E E’ � retn(next E’).

seek/next : seek N (next E) (next E’)
← seek (s N) E E’.

seek/prev-s : seek (s N) (prev E) (prev E’)
← seek N E E’.

seek/prev-z : seek z (prev E) E’
← (eval E � retn(next E’)).

seek/lam : seek N (lam λx. E x) (lam λx. E’ x)
← (Πx. seek N x x → seek N (E x) (E’ x)).

seek/app : seek N (app E1 E2) (app E’1 E’2)
← seek N E1 E’1
← seek N E2 E’2

A.4 Symbols
In this section, I sketch a possible SSOS presentation of the static and dynamic semantics of symbols
as presented in Harper’s Practical Foundations of Programming Languages, Chapter 34.15 In order to
represent this variant, I require the ability to check inequality of parameters in the static semantics;
the nominal existential quantifier presented by Cervesato and Scedrov in [CS09] very nearly serves
our purpose, and we write ∃? instead of ∃ to emphasize that we are using a different quantifier. Our
approach has the problem that we need to allow variables bound existentially in the premise of a rule

15Draft as of April 28, 2010
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to appear in the conclusion of that rule; this highly nonstandard and possibly logically problematic
usage is demonstrated in the rule e/match4.

The signature defines a type of symbols, and while free symbols are permitted in both the static
and dynamic semantics, we impose a regular worlds constraint: each free symbol A is associated
with a single persistent assumption (associate A T). The rule in the dynamic semantics (e/new1)
and the rule in the static semantics (of/new) both maintain this regular worlds constraint when they
extend the context.

The frames are precisely the ones that we would expect, and expressions are either containers
for symbols, scoped fresh symbol generators, or and case analyses on symbols. Besides symbols, the
only new syntactic object are the rules, which act as potential matches for a symbol.

%% Syntax
symbol, tp, exp, frame, rules : type.
associate : symbol → tp → type.

symtp : tp → tp.

sym : symbol → exp.
new : tp → (symbol → exp) → exp.
match : (tp → tp) → exp → (symbol → exp) → rules → exp.

localize : symbol → frame.
match1 : (tp → tp) → (symbol → exp) → rules → exp.

ε : rules.
sym? : symbol → exp → rules → rules.

The static semantics are relatively straightforward. Just as there are no non-variable canonical
forms of type symbol, there are no rules defining canonical forms of the proposition associate A T. This
captures the intuition that symbols and their associated types are persistent stateful information,
not hypotheses defined by substitution.

%% Static Semantics
mobile : tp → type.
of : exp → tp → type.
off : exp → tp → tp → type.
ofrule : rule → (tp → tp) → type.

of/new : of (new TA λa. E a) T
← mobile T
← (ΠA. associate A TA → of (E A) T).

of/sym : of (sym A) (symtp T)
← associate A T.

of/match : of (match (λt. T t) E (λa0. E0 a0) R) (T TA)
← of E (symtp TA)
← (ΠA0. associate A0 TA → of (E0 A0) (T TA))
← ofrule R (λt. T t).

ofrule/ε : of ε (λt. T t).

ofrule/sym? of (sym? A E R) (λt. T t)
← associate A TA
← of E (T TA)
← ofrule R (λt. T t).
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The dynamic semantics are a bit more nonstandard and make heavy use of the nominal existential
from Cervesato and Scedrov’s ω rewriting language. The use in e/new1 is the familiar use case where
a fresh parameter is generated whenever the rule fires. The use in e/new2, however, is significant:
because Cervesato and Scedrov’s nominal quantifier must capture all instances of a variable, the
rule will fail to match if the symbol A appears in the value being returned. Therefore, this dynamic
semantics is the ephemeral or stack-like semantics of symbols; the persistent semantics of symbols
could be achieved by either modifying e/new1 to not leave the stack frame cont(localize A) or by
modifying e/new2 to universally quantify over the symbol A rather than using the nominal existential
in the rule’s premise.

%% Dynamic Semantics
eval : exp → typeo .
retn : exp → typeo .
cont : frame → typeo .
e/sym : eval(sym A)

� retn(sym A).

e/new1 : eval(new T λa.E a)
� ∃?A. !associate A T · cont(localize A) · eval(E A).

e/new2 : (∃?A. cont(localize A) · retn V)
� retn V.

e/match1 : eval(match (λt. T t) E (λa0. E0 a0) R)
� cont(match1 (λt. T t) (λa0. E0 a0) R) · eval(E).

e/match2 : cont(match1 (λt. T t) (λa0. E0 a0) ε) · retn(sym A)
� eval(E0 a)

e/match3 : cont(match1 (λt. T t) (λa0. E0 a0) (sym? A E R)) · retn(sym A)
� eval(E)

e/match4 : (∃?A1. ∃?A. cont(match1 (λt. T t) (λa0. E0 a0) (sym? A1 E R))
· retn(sym A))

� cont(match1 (λt. T t) (λa0. E0 a0) R) · retn(sym A)

The only other use of existential quantification is e/match4 where it is used to check for the
inequality of the symbols A1 and A; our use is nonstandard because A is also mentioned in the
conclusion, but this problematic usage could probably be avoided if necessary.

55


	Introduction
	Modular and non-modular specification
	Logics of deduction and transition
	A canonical-forms-based view of logic
	Verifications and canonical forms
	Definitions, atomic propositions, and adequacy

	A state-transition-based view of logic
	Canonical transitions

	Combining transitions and canonical forms
	Introduction to adjoint logic
	Combining transitions and canonical forms with adjoint logic


	A logical framework for evolving systems
	Representing terms
	Judgments as types
	States as contexts
	Substitutions
	Positive types as patterns
	Negative types as transition rules
	Transitions and expressions
	Expressions
	Concurrent equivalence
	Metatheory
	Logic programming
	Notational conventions

	Substructural operational semantics
	Specifying L1
	Syntax
	Dynamic semantics
	Example trace

	Static semantics, progress, and preservation
	Static semantics
	Preservation
	Progress

	Parallel evaluation
	Dynamic semantics
	Static semantics
	Safety

	Exceptions
	Dynamic semantics
	Static semantics
	Safety

	Discussion: modular proofs and their verification
	Regular worlds and context generators
	Beyond language safety

	Transformations of SSOS specifications
	Transformations for approximation
	Transformations for modularity
	Transformation for implementation
	Defunctionalization and refunctionalization

	Conclusion
	Related work
	Outline
	Goals and plan
	Specific goals


	Other SSOS specifications
	Mutable state
	Dynamic semantics
	Static semantics

	Call-by-need suspensions
	Binding-time analysis
	Symbols


