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The mismatch between meta and object levels can be partially dealt 
with by understanding much of the context of an inference rule as 
ambient. However, this generalization is not sufficient for 
describing calculi like ordered logic or the logic of bunched 
implications. We briefly discuss two ways around this problem, one 
which is connected to polarized logic [NZ], the other of which is 
connected to hybrid logic [JR]. 
 
This note borrows extensively from the style and content of Alessio 
Guglielmi's 2003 manuscript [AG]. 
 
 
1 The Mismatch Between Meta and Object Level In Classic Sequent 
Calculi 
 
Alessio Guglielmi [AG] describes a problematic mismatch between the 
meta and object level in many calculi. His example of a calculus 
that does not have an issue with mismatch is Gentzen's sequent 
calculus: 
 
   ⊢ A, Γ    ⊢ B, Δ        ⊢ A, B, Γ 
 ∧ =================,   ∨ ============ 
     ⊢ A ∧ B, Γ, Δ         ⊢ A ∨ B, Γ 
 
This is because, if we give the conjunction between branches the 
meaning of meta-level `and' and give the horizontal stroke the 
meaning of meta-level `implies,' we get the correct meaning of the 
rules: 
 
 (A ∨ Δ) ∧ (B ∨ Δ) ⇒ ((A ∧ B) ∨ Γ ∨ Δ) 
 (A ∨ B ∨ Δ) ⇒ ((A ∨ B) ∨ Δ) 
  
However, in a classical linear sequent calculus, there is a 
mismatch, because in the rule for multiplicative conjunction and the 
rule for additive conjunction, the conjunction between the branches 
absolutely must have different meanings for the two definitions of 
conjunction. 
 
    ⊢ A, B, Γ       ⊢ A, Γ    ⊢ B, Δ       ⊢ A, Γ    ⊢ B, Γ 
 ℘ ===========    ⊗ =================    & ================= 
   ⊢ A ℘ B, Γ         ⊢ A ⊗ B, Γ, Δ            ⊢ A & B, Γ 
 
  (A ℘ B ℘ Γ) ⊸ ((A ℘ B) ℘ Γ) 
  (A ℘ Γ) ⊗ (B ℘ Δ) ⊸ ((A ⊗ B) ℘ Γ ℘ Δ) 
  (A ℘ Γ) & (B ℘ Γ) ⊸ ((A & B) ℘ Γ) 
 
  (A ℘ Γ) & (B ℘ Δ) -/o ((A ⊗ B) ℘ Γ ℘ Δ) 
  (A ℘ Γ) ⊗ (B ℘ Γ) -/o ((A & B) ℘ Γ) 



2 Resolving Mismatch In Intuitionstic Logic 
 
We can get a little bit more pre-mismatch mileage out of the more-
or-less standard way of interpreting intuitionstic systems of 
sequent calculus and natural deduction. Critically, the context is 
usually not explicitly mentioned in these presentations; therefore 
when we talk about "what does conjunction between branches mean" the 
consideration of exactly how the branches are split naturally 
follows. This addresses the aforementioned problem in linear logic, 
as more choices for how to split the branches should naturally lead 
to more varieties of conjunction. However, it also brings up more 
questions about how the judgment stroke "⊢" and the horizontal line 
should be represented. 
 
We often describe this problem as being one of wanting to correctly 
encode the propositional rules of our language, for instance 
encoding the and-introduction rule as "pf(A) ∧ pf(B) ⇒ pf(A ∧ B)", 
but we will mostly neglect this view in this section. 
 
2.1 Reconsidering Propositional Logic 
 
These are the usual rules for conjunction in a natural deduction 
presentation of propositional logic: 
 
    Γ ⊢ A    Γ ⊢ B         Γ ⊢ A ∧ B         Γ ⊢ A ∧ B 
 ∧I ===============,  ∧E1 ===========,  ∨E2 ===========  
      Γ ⊢ A ∧ B              Γ ⊢ A             Γ ⊢ B 
 
If we define propositional logic so that it is never necessary to 
split the context, it is natural that we only need one notion of 
conjunction, and the rules are obvious: 
 
 A ∧ B ⇒ A ∧ B 
 A ∧ B ⇒ A 
 A ∧ B ⇒ B 
 
Both possible sequent calculus left rules also make sense: 
 
    Γ, A, B ⊢ C            Γ, A ⊢ C             Γ, B ⊢ C 
 ∧L =============,   ∧L1 =============,   ∧L2 ============= 
    Γ, A ∧ B ⊢ C         Γ, A ∧ B ⊢ C         Γ, A ∧ B ⊢ C 
   
 (A ⇒ B ⇒ C) ⇒ (A ∧ B ⇒ C) 
 (A ⇒ C) ⇒ (A ∧ B ⇒ C) 
 (B ⇒ C) ⇒ (A ∧ B ⇒ C) 
 
These left rules have forced us to explain how we understand not 
only the judgment stroke "⊢" but the relationship between it and the 
context formation operator ",". Here we have chosen to see both "⊢" 
and "," as being described by implication, so that writing "Γ, A, B 



⊢ C" is essentially like writing "Γ ⊢ (A ⊢ (B ⊢ C))". We could have 
chosen the alternative of understanding "," as conjunction, in which 
case the translation of the first rule would have been an instance 
of identity: 
 
 (A ∧ B ⇒ C) ⇒ (A ∧ B ⇒ C) 
 
2.2 Mismatch-Free Linear Logic 
 
In linear logic, we need two be able to describe kinds of 
conjunction: 
 
    Γ ⊢ A    Δ ⊢ B        Γ ⊢ A ⊗ B    Δ, A, B ⊢ C  
 ⊗I ===============,  ∧E ========================== 
     Γ, Δ ⊢ A ⊗ B                Γ, Δ ⊢ C 
 
    Γ ⊢ A    Γ ⊢ B         Γ ⊢ A & B          Γ ⊢ A & B 
 &I ===============,   &E1 ==========,   &E2 ==========  
      Γ ⊢ A & B              Γ ⊢ A            Γ ⊢ B 
 
These can be captured just fine, because a "context splitting" 
(multiplicative) conjunction is represented by ⊗ and a "context 
duplicating" (additive) conjunction is represented by &: 
 
 A ⊗ B ⊸ A ⊗ B. 
 (A ⊗ B) ⊗ (A ⊸ B ⊸ C) ⊸ C 
 A & B ⊸ A & B 
 A & B ⊸ A 
 A & B ⊸ B 
 
The rule for disjunction elimination is neat: it uses both context 
splitting and context duplicating conjunction: 
 
    Γ ⊢ A ⊕ B    Δ, A ⊢ C    Δ, B ⊢ C 
 ∧E =================================== 
            Γ, Δ ⊢ C 
 
 (A ⊕ B) ⊗ ((A ⊸ C) & (B ⊸ C)) ⊸ C 
  
Again, the left rules for the sequent calculus presentation all work 
without fuss: 
 
     Γ, A, B ⊢ C           Γ, A ⊢ C            Γ, A ⊢ C   Γ, B ⊢ C 
 ⊗L ==============,   &L1 =============,   ∨L ==================== 
     Γ, A ⊗ B ⊢ C          Γ, A & B ⊢ C          Γ, A ⊕ B ⊢ C 
 
 (A ⊸ B ⊸ C) ⊸ (A ⊗ B ⊸ C) 
 (A ⊸ C) ⊸ (A & B ⊸ C) 
 (A ⊸ C) & (B ⊸ C) ⊸ (A ⊕ B ⊸ C) 



3 Encountering Mismatch Again In Ordered Logic 
 
In ordered logic, we re-encounter what seems to be a new kind of 
mismatch when we look at some of the sequent calculus rules 
 
     Ω₁ ⊢ A    Ω₂ ⊢ B           Ω₁, A, B, Ω₂ ⊢ C 
 •R ==================,   •L ======================   
      Ω₁, Ω₂ ⊢ A • B            Ω₁, A • B, Ω₂ ⊢ C 
 
The •R rule can be perfectly well represented: 
 
 (A • B) -• (A • B)  
 
Interestingly, the implication -• can equally well represent left 
implication ↣ or right implication ↠. But how to represent •L?  
 
As a slight digression, the pattern continues with the rules for 
those connectives: 
     
      Ω, A ⊢ B             ΩA ⊢ A    Ω₁, B, Ω₂ ⊢ C 
 ↠R =============,   ↠L ========================== 
     Ω ⊢ A ↠ B            Ω₁, A ↠ B, ΩA, Ω₂ ⊢ C 
 
      A, Ω ⊢ B           ΩA ⊢ A    Ω₁, B, Ω₂ ⊢ C 
 ↣R =============,   ↣L ======================== 
      Ω ⊢ A ↣ B           Ω₁, ΩA, A ↣ B, Ω₂ ⊢ C 
 
The right rules are representable, and use the ambivalent -• for the 
horizontal bar but use the corresponding connective in the premise. 
 
 (A ↠ B) -• (A ↠ B) 
 (A ↣ B) -• (A ↣ B) 
 
Since all these rules essentially just look like the identity, it's 
probably easier to explain all of these right rules in terms of 
encoding the propositional fragment in the first order fragment, 
where we would see something like this: 
 
 (pf(A) • pf(B)) -• pf(A • B) 
 (pf(A) ↠ pf(B)) -• pf(A ↠ B) 
 (pf(A) ↣ pf(B)) -• pf(A ↣ B) 
 
So we have two problems. The seemingly small issue is that we no 
longer have an implication that really represents the vertical bar 
faithfully in the right rules. The seemingly large issue is that 
there appears to be no way to correctly represent the left rules 
without mentioning the context, which has been our entire program up 
to this point. 
 
Similar issues arise in the logic of bunched implications, which has 
a context represented by nested bunches of additive (persistent 



predicate logic-like) and multiplicative (linear logic-like) 
contexts. These again show up primarily in left or elimination 
rules, where we have to "frame out" a part of the context in order 
to examine or modify it. 
 
    Γ(A, B) ⊢ C           Δ ⊢ A * B    Γ(A, B) ⊢ C 
 *L =============,     *E ========================= 
    Γ(A * B) ⊢ C                 Γ(Δ) ⊢ C 
 
The logic of bunched implications is also similar to ordered logic 
in that there are two implications "-*" and "⇒" and the 
interpretation of the "⊢" is ambiguous between the two. 
 
4 Dealing With Mismatch  
 
We discuss two ways of dealing with the problems described above. 
The first method is to give a different interpretation to left 
rules, one that is justified by polarized logic. 
 
4.1 Polarized Metalogic 
 
Let's consider the linear logic rule ⊸L: 
 
     Δ ⊢ A     Γ, B ⊢ C 
 ⊸L ==================== 
      Γ, Δ, A ⊸ B ⊢ C 
 
If we remember that our first step before was to ignore the excess 
context Γ and Δ, we can consider ignoring the right-hand side C as 
well as an unnecessary part of the "context." In that case, we 
interpret the rule in a bottom-up way as 'If we can frame off a part 
of the context that is the formula "A ⊸ B" and another part of the 
context that implies A, then we can replace that entire framed-off 
part of the context with B.' Since we're working entirely on the 
left, treating implication in that bottom-up direction makes a lot 
of sense, and this reading naturally corresponds to the formula: 
 
 A ⊗ (A ⊸ B) ⊸ B 
 
This is a little clearer from the perspective of polarized logic, 
where we would describe the rule as follows:  
 
 conc⁻(A) ⊗ hyp⁺(A ⊸ B) ⊸ hyp⁺(B) 
 
This strategy lets us give polarized encodings to the left rules in 
ordered logic that we were unable to give before. 
 
 •L: hyp⁺(A • B) -• (hyp⁺(A) • hyp⁺(B)) 
 ↣L: conc⁻(A) • hyp⁺(A ↣ B) -• hyp⁺(B) 
 ↠L: hyp⁺(A ↠ B) • conc⁻(A) -• hyp⁺(B) 
 



4.2 Hybrid Metalogic 
 
The solution that is in line with the tools Jason Reed explored in 
his thesis advocate a hybrid approach where computation remains 
"bound" to the right-hand side [JR]. In this setting, we give up on 
a close correspondence between the metalogic and the logic, and 
instead use equational properties of the unrestricted logic to 
encode the appropriate context discipline: 
 
 •L: (Πβ,γ. hyp(A)@β → hyp(B)@γ → conc(C)@(w·β·γ·w')) → 
                  (hyp(A • B)@α → conc(C)@(w·α·w')) 
 ↣L: (Πβ. conc(C)@wa → hyp(B)@β → conc(C)@(w·β·w')) → 
       (hyp(A ↣ B)@α → conc(C)@(w·wa·α·w')) 
 ↠L: (Πβ. conc(C)@wa → hyp(B)@β → conc(C)@(w·β·w')) → 
       (hyp(A ↠ B)@α → conc(C)@(w·α·wa·w')) 
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