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In my note "Mismatch II," I noted that the Ordered Logical Framework could 
not encode the sequent calculus for ordered logic, and proposed one 
solution to the problem: a polarized logical framework. In this note I 
expand on this idea, giving a sketch of a (not fully dependent) polarized 
logical framework for linear logic and describing the adequacy of an 
encoding of propositional linear logic in this framework. Interestingly, 
we do not have, nor do we want, any of the concurrent equality so 
important to the (also polarized) logical framework CLF [KW]. 
 
 
1 Sketch of a Polarized Linear Logical Framework 
 
In this section, we give the outlines of a polarized logical framework 
(where the logic is polarized in the sense of [NZ]) for linear logic. 
We'll ignore the syntactic category "m", which we treat as a canonical 
form from the simply typed lambda calculus (where simple types come from 
the syntactic category "a"), and we will treat the indices to types very 
informally; the treatment of terms is adequately considered elsewhere. In 
particular, there is a separate persistent context of individuals Ψ that 
never changes, and so we ignore it except in the rare instances where it 
matters, for instance in rules for ∀. 
 
Notably missing from this framework is unrestricted implication and 
exponentials, merely because I don't happen to need them. 
 
 Canonical terms m ::= ... 
 Atomic types Q⁺,Q⁻ ::= ... 
 
 Positive types A⁺ ::= Q⁺ | ↓A⁻ | 0 | A⁺ ⊕ B⁺ | 1 | A⁺ ⊗ B⁺ 
 Negative types A⁻ ::= Q⁻ | ↑A⁺ | ∀x:a.A⁻ | A⁺ ⊸ B⁻ | ⊤ | A & B 
 
 Expressions M ::= .T | x⁻·S | c·S  
 Positive terms T ::= x⁺ | .M | «» | «T₁,T₂» | inl T | inr T 
 Negative terms N ::= .R | λx.N | λP.N | ‹› | ‹N₁,N₂›  
 
 Spines      S ::= ○  | P=>R | m,S | T;S | π₁;S | π₂; S 
 Patterns    P ::= x⁺ | .x⁻ | [] | [P | P] | «» | «P, P»  
 Arms        R ::= [] | [R | R] | .M  
 
Let's look at rules. The ones for positive terms and negative terms, which 
correspond to right focus and inversion, aren't too bad, though the fact 
that we need two rules for where negative terms "bottom out" to arms is a 
little bit disappointing. 
 
 
 
 
 



1.1 Positive Terms (Right focus) 
 
                           Γ ⊢ M : A⁻ 
 ===================,   ===============,   ===========, 
  x⁺:Q⁺ ⊢ x⁺ : [Q⁺]     Γ ⊢ .M : [↓A⁻]     · ⊢ «» : 1 
 
 Γ ⊢ T₁ : [A⁺]   Γ ⊢ T₂ : [B⁺]  
 ============================,    
  Γ, Δ ⊢ «T₁,T₂» : [A⁺ ⊗ B⁺]     
 
    Γ ⊢ T : [A⁺]               Γ ⊢ T : [B⁺] 
 =======================,   ==================== 
  Γ ⊢ inl T : [A⁺ ⊕ B⁺]     Γ ⊢ inr T : [A⁺ ⊕ B⁺] 
 
 
1.2 Negative Terms (Right inversion) 
 
 Ψ, x:a; Γ; Ω ⊢ N : A⁻        Γ; Ω, P:A⁺ ⊢ N : B⁻                             
 =========================   =======================,    ===============,     
 Ψ; Γ; Ω ⊢ λx.N : ∀x:a.A⁻    Γ; Ω ⊢ λP.N : A⁺ ⊸ B⁻       Γ; Ω ⊢ ‹› : ⊤       
 
 Γ; Ω ⊢ N₁ : A⁻   Γ; Ω ⊢ N₂ : B⁻      Γ; Ω ⊢ R : Q⁻      Γ; Ω ⊢ R : A⁺ 
 =================================,  ===============,   ================= 
 Γ; Ω ⊢ ‹N₁,N₂› : A⁻ & B⁻             Γ; Ω ⊢ .R : Q⁻     Γ; Ω ⊢ .R : ↑A⁺ 
 
 
1.3 Expressions (Neutral sequent/Begin focus) 
 
The rules for expressions just reveal how we can get started in the first 
place - one of those ways is by focusing on a negative proposition in the 
context, the other is focusing on a negative proposition in the signature. 
 
 Γ ⊢ T : [A⁺]     Γ[A⁻] ⊢ S : C          c:A⁻ ∈ Σ   Γ[A⁻] ⊢ S : C 
 =============,   ====================,  ========================== 
 Γ ⊢ .T : A⁺      Γ, x⁻:A⁻ ⊢ x⁻·S : C     Γ ⊢ c·S : C 
 
 
1.4 Spines (Left focus) 
 
Spines are series of reductions - the negative formula "in focus" is being 
taken from a negative formula down to something else. If that something 
else is a positive formula, then we go to a pattern, but if that something 
else is a positive atomic proposition, then we have to finish. 
 
 Ψ ⊢ m : a    Ψ; Γ[A⁻] ⊢ S : C      Γ ⊢ T : [A⁺]   Δ[B⁻] ⊢ S : C 
 ==============================,    ==============================, 
 Ψ; Γ[∀x:a.A⁻] ⊢ (m; S) : C          Γ,Δ[A⁺ ⊸ B⁻] ⊢ (T; S) : C 
 
 
 
 



    Γ[A⁻] ⊢ S : C             Γ[B⁻] ⊢ S : C           
 ======================,   ======================,   ===============, 
 Γ[A⁻ & B⁻] ⊢ π₁ S : C     Γ[A⁻ & B⁻] ⊢ π₁ S : C       Γ[Q⁻] ⊢ ○ : Q⁻ 
 
 Γ; P:A⁺ ⊢ R : C 
 =================== 
 Γ[↑A⁺] ⊢ P=>R : C 
 
 
1.5 Patterns and Arms (Left inversion) 
 
Finally, we have left inversion, which is messy. This notation is closest 
to Krishnaswami's in [NK]. 
 
 Γ, x⁺:Q⁺; Ω ⊢ R : C     Γ, x⁻:A⁻; Ω ⊢ R : C 
 ====================,   ======================,   ====================, 
 Γ; x⁺:Q⁺, Ω ⊢ R : C     Γ; .x⁻:↓A⁻, Ω ⊢ R : C     Γ; []:0, Ω ⊢ R : C 
 
 Γ; P₁:A⁺, Ω ⊢ R₁ : C 
 Γ; P₂:B⁺, Ω ⊢ R₂ : C                         Γ; Ω ⊢ R : C 
 =======================================,   ======================, 
 Γ; [P₁|P₂]:A⁺ ⊕ B⁺, Ω ⊢ [R₁ | R₂] : C         Γ; «»:1, Ω ⊢ R : C 
 
 Γ; P₁:A⁺, P₂:B⁺, Ω ⊢ R : C          Γ ⊢ M : C 
 ==============================,   ================ 
 Γ; «P₁,P₂»:A⁺ ⊗ B⁺, Ω ⊢ R : C       Γ; · ⊢ .M : C 
 
 
1.6 Alpha Equivalence, But No Concurrent Equality 
 
Note that, other than an appropriate notion of alpha-equivalence on 
variables and patterns, this is really what we want - whereas the example 
of CLF might lead us to expect that the following two (partial) proofs 
should be equated, that will not be the behavior here. 
 
                M 
                ⋮ 
 =========================================== 
 x₁⁺:Q₁⁺, x₂⁺:Q₂⁺, x₃⁺:Q₃⁺, x₄⁺:Q₄⁺ ⊢ C 
 =========================================== 
   ... left focus on x₃₄⁻ ... 
 =========================================== 
 x₁⁺:Q₁⁺, x₂⁺:Q₂⁺, x₃₄⁻:↑(Q₃⁺ ⊗ Q₄⁺) ⊢ C 
 =========================================== 
   ... left focus on x₁₂⁻ ... 
 =========================================== 
 x₁₂⁻:↑(Q₁⁺ ⊗ Q₂⁺), x₃₄⁻:↑(Q₃⁺ ⊗ Q₄⁺) ⊢ C 
 
 Proof term: (x₁₂⁻·(«x₁⁺,x₂⁺» => .(x₃₄⁻·(«x₃⁺,x₄⁺» => .M)))) 
 



                M 
                ⋮ 
 =========================================== 
 x₁⁺:Q₁⁺, x₂⁺:Q₂⁺, x₃⁺:Q₃⁺, x₄⁺:Q₄⁺ ⊢ C 
 =========================================== 
   ... left focus on x₃₄⁻ ... 
 =========================================== 
 x₁₂⁻:↑(Q₁⁺ ⊗ Q₂⁺), x₃⁺:Q₃⁺, x₄⁺:Q₄⁺ ⊢ C 
 =========================================== 
   ... left focus on x₁₂⁻ ... 
 =========================================== 
 x₁₂⁻:↑(Q₁⁺ ⊗ Q₂⁺), x₃₄⁻:↑(Q₃⁺ ⊗ Q₄⁺) ⊢ C 
 
 Proof term: (x₃₄⁻·(«x₃⁺,x₄⁺» => .(x₁₂⁻·(«x₁⁺,x₂⁺» => .M)))) 
 
The proofs are distinct (even if we assume that the omitted rest of the 
proof, represented by M, is the same in both case).  
 
 
2 Encoding (Unpolarized) Linear Logic in the Framework 
 
We can give the following signature for a sequent calculus for linear 
logic. Note that for any proposition A, "hyp A" is a positive atomic 
proposition and "conc A" is a negative atomic proposition. 
 
 
 o : type. 
 atom : type. 
 hyp : o -> type⁺. 
 conc : o -> type⁻. 
 
 atm   : atom -> o. 
 one   : o. 
 and   : o -> o -> o. 
 top   : o. 
 with  : o -> o -> o. 
 zero  : o -> o -> o. 
 or    : o -> o -> o. 
 imp   : o -> o -> o. 
 
 init  : ∀Q:atom. hyp(atm Q) -o conc(atm Q). 
 
 oneR  : conc(one).  
 oneL  : hyp(one) -o ↑1. 
 andR  : ∀A:o.∀B:o. ↓conc(A) ⊗ ↓conc(B) -o conc(and A B). 
 andL  : ∀A:o.∀B:o. hyp(and A B) -o ↑(hyp(A) ⊗ hyp(B)). 
 
 topR  : conc(top) & ⊤. 
 %% no topL   
 withR : ∀A:o.∀B:o. ↓(conc(A) & conc(B)) -o conc(with A B). 
 withL : ∀A:o.∀B:o. hyp(with A B) -o ↑hyp(A) & ↑hyp(B). 
 



 %% no zeroR 
 zeroL : hyp(zero) -o ↑0. 
 orR   : ∀A:o.∀B:o. ↓conc(A) ⊕ ↓conc(B) -o conc(or A B). 
 orL   : ∀A:o.∀B:o. hyp(or A B) -o ↑(hyp A ⊗ hyp B). 
 
 impR  : ∀A:o.∀B:o. ↓(hyp(A) -o conc(B)) -o conc(imp A B). 
 impL  : ∀A:o.∀B:o. hyp(imp A B) ⊗ ↓conc(A) -o ↑hyp(B). 
 
 
2.1 Stating Adequacy 
 
The adequacy theorem goes in two directions. We assume an a priori proof 
of adequacy for the internal term language that gives a preexisting 
bijection between "A ⊗ B" and "⌞A ⊗ B⌟", i.e. "and ⌞A⌟ ⌞B⌟", where ⌞A⌟ is 
the function giving the adequate encoding of the linear logic proposition 
A into the simply typed lambda calculus. As mentioned above, ⌞A ⊗ B⌟ = and 
⌞A⌟ ⌞B⌟, ⌞Q⌟ = atm Q, ⌞⊤⌟ = top, and so on; there is also an implicit 
relation set up between derivations and encodings of derivations that 
we're glossing over. 
 
We will take advantage of this and a presumed notion of subordination-
based transport of adequacy as in [RH] to freely work between linear logic 
propositions and their encodings in the (informal) propositions below. 
 
Proposition 1: Adequacy of the linear logic encoding 
 
1) If there exists a term M in the given signature such that 
 Q1:i,…,Qn:i; x1:hyp A1,…,xn:hyp Ak ⊢ M : conc C 
then there exists a unique linear logic sequent calculus derivation of  
 A1,…,Ak ⊢ C 
 
2) If there exists a linear logic sequent calculus derivation of  
 A1,…,Ak ⊢ C 
that includes as subterms the atomic propositions Q1,…,Qn, then there 
exists a unique term M (up to alpha equality) in the given signature such 
that  
 Q1:i,…,Qn:i; x1:hyp A1,…,xn:hyp Ak ⊢ M : conc C 
 
Together, this proof establishes a bijection between derivations "on 
paper" and terms in the framework, which is the basis of adequacy. 
 
 
2.2 Sketching Adequacy 
 
To give just an example of how this proof would work, we'll give the case 
for impL. In the first direction we have this, because we have chosen to 
focus on impL in the signature: 
 
 Q1:i,…,Qn:i; x1:hyp A1,…,xn:hyp Ak ⊢ impL·S : conc C 
  



By repeated application of inversion we get the following derivation, 
where the Q1:i,…,Qn:i is omitted and Γ = ΔA ⋈ Δ ⋈ hyp(imp A B) = x1:hyp 
A1,…,xn:hyp Ak 
 
                                    ΔA ⊢ conc A 
                                  =============== 
                                  ΔA; · ⊢ conc A    Δ,hyp(B) ⊢ conc C 
                                  ===============   ===================== 
                                  ΔA; · ⊢ conc A    Δ,hyp(B); · ⊢ conc C 
 =============================    ===============   ===================== 
 hyp(imp A B) ⊢ [hyp(imp A B)]    ΔA ⊢ [↓conc A]    Δ; hyp(B) ⊢ conc C 
 ================================================   ===================== 
 ΔA, hyp(imp A B) ⊢ [hyp(imp A B) ⊗ ↓conc(A)]       Δ[↑hyp(B)] ⊢ conc C 
 ========================================================================= 
 Γ [hyp(imp A B) ⊗ ↓conc(A) -o ↑hyp(B)] ⊢ conc C 
 ======================================================= 
 Γ [∀B:o. hyp(imp A B) ⊗ ↓conc(A) -o ↑hyp(B)] ⊢ conc C 
 ============================================================= 
 Γ [∀A:o.∀B:o. hyp(imp A B) ⊗ ↓conc(A) -o ↑hyp(B)] ⊢ conc C 
 ============================================================= 
 Γ ⊢ conc C 
 
The corresponding proof term is  
 
 impL·(A; B; «xi,..MA»; x=>.MC) 
 
Where we have for MA a unique corresponding proof in linear logic that 
⌞ΔA⌟ ⊢ A, and for MC a unique corresponding proof that ⌞Δ,hyp(B)⌟ ⊢ C. Our 
translation should uniquely translate this proof term to ⌞Γ⌟ ⊢ C using the 
⊸L rule. 
 
In the other direction, we have the derivation 
 
    D₁         D₂ 
 ΔA ⊢ A    Δ,B ⊢ C 
 =================== ⊸L 
  Δ,ΔA,B ⊢ C 
 
By induction we get proof terms corresponding to D₁ (M₁) and D₂ (M₂), and 
show that our translation relation uniquely associates those terms with 
the proof term impL·(A; B; «xi,..M₁»; x=>.M₂). 
 
 
 
3 Comparison with a CLF encoding.  
 
We can give (most) of the same encoding that we gave above in the 
concurrent logical framework CLF. This is written for the Celf 
implementation, version 2.4 [AS].  
 



 o : type. 
 atom : type. 
 hyp : o -> type. 
 conc : o -> type. 
 
 atm   : atom -> o. 
 one   : o. 
 and   : o -> o -> o. 
 with  : o -> o -> o. 
 imp   : o -> o -> o. 
 
 init  : hyp(atm Q) -o conc(atm Q). 
  
 oneR  : conc one. 
 oneL  : hyp one -o {1}. 
 andR  : {conc A} * {conc B} -o conc(and A B). 
 andL  : hyp(and A B) -o {hyp A * hyp B}. 
 
 withR : {conc A} & {conc B} -o conc(with A B). 
 withL : hyp(with A B) -o {hyp A} & {hyp B}. 
  
 impR  : (hyp A -o {conc B}) -o conc(imp A B). 
 impL  : hyp(imp A B) * {conc A} -o {hyp B}. 
  
First, we'll discuss what we had to (or chose to) leave out, then we will 
discuss how we changed the encoding, and finally we'll discuss the role of 
concurrent equality.  
 
We'll also throw in some atoms to our signature in order to make life a 
little easier for ourselves:  
 
 a : atom. qA : o = atm a. 
 b : atom. qB : o = atm b. 
 c : atom. qC : o = atm c. 
 d : atom. qD : o = atm d. 
 
We'll also use throughout a judgment to check that two proofs are equal, 
which will come up frequently in our discussion of equality: 
 
 id : conc C -> conc C -> type. 
 refl : id D D. 
 
 
3.1 Omissions 
 
The CLF encoding itself does not have support for 0 (impossibility) or ⊕ 
(disjunction), and this is carried over from the fact that CLF itself has 
neither 0 nor ⊕. There doesn't seem to be any way to remedy this without 
changing the framework. 
 
⊤, the unit of additive conjunction, is also missing, just as ⊤ itself was 
left out of the redesign of CLF due to complications that arose in the 
implementation due to its presence. There is a non-adequate way to encode 



top in our setting, just create a proposition "faketop" that allows us to 
assume anything we want. 
 
 top : o. 
 faketop : type. 
 faketop/z : faketop. 
 faketop/s : faketop o- hyp A * faketop. 
 topR  : faketop -o conc(top). 
  
However, this is not an adequate, because now there will be six proofs of 
the encoded linear logic sequent A, B, C ⊢ ⊤ where there is only supposed 
to be one. 
 
 pfABC : conc (imp qA (imp qB (imp qC top))) =  
   impR \xA.{(impR \xB. {(impR \xC. {(  
    topR (faketop/s (faketop/s (faketop/s faketop/z xA) xB) xC) 
   )})})}. 
 
 pfACB : conc (imp qA (imp qB (imp qC top))) =  
   impR \xA.{(impR \xB. {(impR \xC. {(  
    topR (faketop/s (faketop/s (faketop/s faketop/z xA) xC) xB) 
   )})})}. 
 
 pfBAC : conc (imp qA (imp qB (imp qC top))) =  
   impR \xA.{(impR \xB. {(impR \xC. {(  
    topR (faketop/s (faketop/s (faketop/s faketop/z xB) xA) xC) 
   )})})}. 
 
Maybe this is a problem, maybe it isn't; as we'll see below the encoding 
without ⊤ is already not adequate, but for a different reason - there are 
two few distinct CLF terms, as opposed to the problem here where there are 
too many. 
 
However, for now, we can use the concurrent equality that we will later 
see as a problem by giving a different notion of top that allows us to 
gather hypotheses out of the context in any arbitrary order. 
 
 top : o. 
 faketop : type. 
 faketop/get : faketop -> hyp A -o {1}. 
 topR  : (faketop -> {1}) -o conc(top). 
 
Two of the six proofs of A,B,C ⊢ ⊤ which look different are below: 
 
 pfABC : conc (imp qA (imp qB (imp qC top))) =  
   impR \xA.{(impR \xB. {(impR \xC. {(  
    topR (\!ft. {( 
      let {1} = faketop/get ft xA in 
      let {1} = faketop/get ft xB in 
      let {1} = faketop/get ft xC in 
      1)}) 
   )})})}. 
 



 pfCAB : conc (imp qA (imp qB (imp qC top))) =  
   impR \xA.{(impR \xB. {(impR \xC. {(  
    topR (\!ft. {( 
      let {1} = faketop/get ft xC in 
      let {1} = faketop/get ft xA in 
      let {1} = faketop/get ft xB in 
      1)}) 
   )})})}. 
 
However, while the lets are in a different order, the concurrent equality 
of CLF declares that we will treat as indistinguishable the two proofs 
because we can permute one to the other without difficulty. 
 
 proofs_are_equal : id pfABC pfCAB = refl. 
 
 
3.2 How The Monad Lets Us Replace Polarity 
 
CLF only has negative atomic propositions, so that we are unable to use 
the technique that we used to great effect in the previous encoding, which 
was making atomic propositions "hyp A" positive, so that a premise "hyp A" 
could only be satisfied when the proposition was immediately available in 
the context. 
 
We can get a similar effect from CLF by only allowing conclusions of the 
form "hyp A" under a monad. Then, if we have a premise "hyp A," because 
that premise is negative and non-monadic, we are only allowed to left 
focus if that left focus allows us to prove that "hyp A" is true. But the 
property that we only allow "hyp A" to be a lax conclusion means this is 
impossible. 
 
Roughly, we need a lax monad in the CLF encoding whenever we needed a 
polarity shift in the first encoding. The only difference is when we have 
a downshift ↓ in a premise, such as the premise to impR, ↓(hyp A -o conc 
B). The focusing behavior of this premise is to enter right inversion, add 
hyp A to the context, and then try to prove conc B from a neutral sequent 
that allows left or right focus. In our setting, the ability to prove conc 
C from a neutral sequent that allows left or right focus requires us to be 
proving a lax goal - therefore, the premise translates to (hyp A -o {conc 
B}) in the CLF encoding. 
 
 
3.3 Concurrent Equality Causes Problems  
 
The biggest issue with this CLF encoding is that our encoding of left 
rules is not adequate. In particular, the example from 1.6 of two proofs 
that we wanted to be different is precisely what is violated. Let's look 
at two proofs of ((A ⊗ B) ⊸ (C ⊗ D) ⊸ ((A ⊗ C) ⊗ (B ⊗ D)) that seemingly 
correspond to two different ways of proving this sequent. 
 
 
 
 
 



     ⋮ 
 A, B, C, D ⊢ (A ⊗ C) ⊗ (B ⊗ D) 
 ============================================ ⊗L 
 A, B, C ⊗ D ⊢ (A ⊗ C) ⊗ (B ⊗ D) 
 ============================================ ⊗L 
 A ⊗ B, C ⊗ D ⊢ (A ⊗ C) ⊗ (B ⊗ D) 
 ============================================ ⊸R 
 A ⊗ B ⊢ (C ⊗ D) ⊸ ((A ⊗ C) ⊗ (B ⊗ D)) 
 ============================================ ⊸R 
 ⊢ (A ⊗ B) ⊸ (C ⊗ D) ⊸ ((A ⊗ C) ⊗ (B ⊗ D)) 
 
 pf1 :  
   conc (imp (and qA qB) 
         (imp (and qC qD) 
          (and (and qA qC) (and qB qD)))) =  
    impR \xAB.{(impR (\xCD. { 
    let {[xA,xB]} = andL xAB in  
    let {[xC,xD]} = andL xCD in  
    (andR [{(andR [{(init xA)},{(init xC)}])}, 
           {(andR [{(init xB)},{(init xD)}])}])} 
    ))}. 
 
     ⋮ 
 A, B, C, D ⊢ (A ⊗ C) ⊗ (B ⊗ D) 
 ============================================ ⊗L 
 A ⊗ B, C, D ⊢ (A ⊗ C) ⊗ (B ⊗ D) 
 ============================================ ⊗L 
 A ⊗ B, C ⊗ D ⊢ (A ⊗ C) ⊗ (B ⊗ D) 
 ============================================ ⊸R 
 A ⊗ B ⊢ (C ⊗ D) ⊸ ((A ⊗ C) ⊗ (B ⊗ D)) 
 ============================================ ⊸R 
 ⊢ (A ⊗ B) ⊸ (C ⊗ D) ⊸ ((A ⊗ C) ⊗ (B ⊗ D)) 
 
 pf2 : 
   conc (imp (and qA qB) 
         (imp (and qC qD) 
          (and (and qA qC) (and qB qD)))) =  
    impR \xAB.{(impR (\xCD. { 
    let {[xC,xD]} = andL xCD in  
    let {[xA,xB]} = andL xAB in  
    (andR [{(andR [{(init xA)},{(init xC)}])}, 
           {(andR [{(init xB)},{(init xD)}])}])} 
    ))}. 
 
Because the left rule acting on A ⊗ B and the left rule acting on C ⊗ D 
act on independent parts of the context, the concurrent equality of CLF 
declares that these two proofs, which in our "on paper" encoding are 
different, are really the same. 
 
 proofs_are_equal_12 : id pf1 pf2 = refl. 
 



However, the final remaining proof of the formula will be treated as a 
distinct proof by CLF. 
 
     ⋮ 
 A, B, C, D ⊢ (A ⊗ C) ⊗ (B ⊗ D) 
 ============================================ ⊗L 
 A, B, C ⊗ D ⊢ (A ⊗ C) ⊗ (B ⊗ D) 
 ============================================ ⊸R 
 A, B ⊢ (C ⊗ D) ⊸ ((A ⊗ C) ⊗ (B ⊗ D)) 
 ============================================ ⊗L 
 A ⊗ B ⊢ (C ⊗ D) ⊸ ((A ⊗ C) ⊗ (B ⊗ D)) 
 ============================================ ⊸R 
 ⊢ (A ⊗ B) ⊸ (C ⊗ D) ⊸ ((A ⊗ C) ⊗ (B ⊗ D)) 
 
 pf3 : conc (imp (and qA qB) 
         (imp (and qC qD) 
          (and (and qA qC) (and qB qD)))) =  
    impR \xAB.{ 
    let {[xA,xB]} = andL xAB in  
    (impR (\xCD. { 
    let {[xC,xD]} = andL xCD in  
    (andR [{(andR [{(init xA)},{(init xC)}])}, 
           {(andR [{(init xB)},{(init xD)}])}])}))}. 
 
The equating of the seemingly distinct first two proofs is problematic, 
because it means that our encoding is not adequate - there is not a 
bijection between CLF terms and on-paper proofs. Exactly the property that 
saved us from having too many proofs when we were dealing with the 
encoding of ⊤ now means that we have too few. 
 
 
3.4 Potential Remedies 
 
There are a few remedies, some speculative and some more-or-less standard, 
which we will now consider as we conclude. 
 
One solution is that we can modify the encoding to pass around a linear 
token "tok", which is a previously recognized way of forcing a concurrent 
computation to act sequential.  
 
 tok : type. 
 oneR  : tok -o conc one. 
 oneL  : tok * hyp one -o {tok}. 
 andR  : tok * (tok -o {conc A}) * (tok -o {conc B}) -o conc(and A B). 
 andL  : tok * hyp(and A B) -o {tok * hyp A * hyp B}. 
 
 withR : tok * (tok -o ({conc A} & {conc B})) -o conc(with A B). 
 withL : tok * hyp(with A B) -o {tok * hyp A} & {tok * hyp B}. 
 
 impR  : tok * (tok * hyp A -o {conc B}) -o conc(imp A B). 
 impL  : tok * hyp(imp A B) * (tok -o {conc A}) -o {tok * hyp B}. 
 



Then, instead of trying to prove (conc C), we will try to prove (tok -o 
conc C). The repeated consumption and re-introduction of the token 
prevents any application of concurrent equality, because no two rule 
applications can ever be independent if they are competing for a single 
token. 
 
This is a relatively ugly solution, though - as you can see, it has made 
the framework much less pleasing. 
 
Another solution would be to remove concurrent equality from CLF, but this 
would take away many of the interesting benefits that drew us to CLF in 
the first place. In our example, we can see that it would prevent us from 
making an adequate encoding for ⊤, for instance. 
 
A third approach would be to add the polarized connectives and atomic 
propositions to CLF without giving them any notion of concurrent equality. 
 
A final approach would be two modify the object language by introducing 
the same idea of concurrent equality that was imposed by CLF to linear 
logic. This would mean that we would say that there were, in fact, only 
two proofs of (A ⊗ B) ⊸ (C ⊗ D) ⊸ ((A ⊗ C) ⊗ (B ⊗ D)), the first of 
which corresponds to both pf1 and pf2 (as those two proofs are 
equivalent), and the second of which corresponds to pf3. The 
correspondence between this suggestion and Miller et al.'s work on multi-
focusing may deserve investigation [KC]. 
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