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We describe spine form LF, a version of LF syntactically restricted to canon-
ical forms, and use this framework to begin a logical presentation of the
term language used within Twelf, which is (among other things) an im-
plementation of LF. This is not a self-contained document by any means,
it is incomplete and furthermore assumes various levels of background in
focusing systems, dependent types, LF, the Twelf metalogical framework,
and logic programming.

1.1 Canonical LF

Modern presentations of LF generally use the canonical LF style developed
by Watkins et al. in [9] and most recently presented in [4]; the syntax of
canonical LF is reviewed briefly in Figure 1. This presentation syntacti-
cally restricts LF to only allow the existence of canonical (β-normal, η-long)
forms while preserving the natural deduction style of the the earliest pre-
sentations of LF [3]. This presentation is, however, problematic in terms
of an implementation for a number of reasons. One reason is that, in any
implementation of LF, type checking, term reconstruction, logic program-
ming, theorem proving, etc. will all frequently need to compare two terms
for equality, for instance:

((c M1) M2) M3 =
((

c′ M ′
1

)
M ′

2

)
M ′

3

In order to compare the two atomic terms, the implementation must
“burrow down” into the two terms to get at c and c′ to check them for
equality.
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L1.2 Term Representation

Kinds K ::= type | Πx:A.K
Atomic Types P ::= a | PM

Canonical Types A ::= P | Πx:A2.A1

Atomic Terms R ::= c | x | RM
Canonical Terms M ::= R | λx.M

Contexts Γ ::= · | Γ, x:A
Signatures Σ ::= · | Σ, a:K | Σ, c:A

Figure 1: Canonical LF

Another perspective on this complication is that type checking in canon-
ical LF passes information both up and down through a type derivation.
Consider, for instance, the typing rule for term application:

Γ ` R1 ⇒ Πx : A2.A1 Γ ` M2 ⇐ A2 [M2/x](A2)−A1 = A

Γ ` R1M2 ⇒ A

In order to synthesize the type of R1M2 (which then moves down the
derivation tree), the type of R1 must be synthesized from the left branch
and then used to check the type of M2 against A2, which passes infor-
mation up the right branch. This pattern is typical of natural deduction
systems. The next section presents spine form LF, which corresponds by
Curry-Howard to a focusing sequent calculus in the same way that canon-
ical LF corresponds to a natural deduction system. Spine form LF is a way
to present “LF with only canonical forms,” but in this set of notes we will
use “canonical LF” to refer specifically to the presentation in Figure 1 and
“spine form LF” to refer to the presentation in the following section.

1.2 Spine form LF

The modern LF presentation is the natural deduction presentation described
above; an alternative is the spine form LF which was investigated by Cervesato
and Pfenning in [2] as both an explanation of the Curry-Howard correspon-
dence for focusing and a means to efficiently implement canonical forms in
Linear LF. The presentation in this note borrows heavily from Reed’s pre-
sentation of spine form LF with proof irrelevance in [7].

LECTURE NOTES FEBRUARY 20, 2007



Term Representation L1.3

Kinds K ::= type | Πx:A.K
Types A,B ::= a · S | Πx:A.B
Terms M ::= H · S | λx.M
Heads H ::= c | x
Spines S ::= nil | M ;S

Contexts Γ ::= · | Γ, x : A
Signatures Σ ::= · | Σ, a : K | Σ, c : A

Figure 2: Spine form LF

As mentioned in the previous section, spine form LF, like canonical LF,
is a presentation of LF where the syntax is restricted to only permit canon-
ical forms. Spine form LF further leverages the nature of η-long terms to
separate a head (a bare variable or constant) from the elimination forms
(i.e. applications) applied to it. For example, the two atomic terms being
checked for equality in the previous section appear in spine form in a way
that makes it simple to quickly check c for equality with c′.

c · (M1;M2;M3; nil) = c′ · (M ′
1;M

′
2;M

′
3; nil)

The effect of this modification, as shown in Figure 2, is to collapse down
the series of applications applied to atomic types and terms into a single
spine application. We will, however, continue to use P to refer to an atomic
type a · S and R to refer to an atomic term H · S where doing so is conve-
nient. Substitution looks a bit different in this presentation than it does in
canonical LF presentations. Canonical LF presentations have to deal with
the fact that the head of an atomic term R is not immediately apparent,
meaning it is not obvious whether substitution will force a reduction step
to happen (Watkins deals with this by first checking the term, Harper and
Licata do so by presenting hereditary substitution in a non-deterministic
style). In the case of substitution in spine form LF, the nature of the head
of an atomic term is known immediately, removing this complication. The
ability to immediately examine the head of an atomic term also makes era-
sure to simple types slightly simpler.

(a · S)− = a
(Πx:A.B)− = (A)− → (B)−
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ρ(type) = type
ρ(Πy : A.K) = Πy:ρA.ρK

ρ(a · S) = a · (ρS)

ρ(Πy : A.B) = Πy:ρA.ρB
ρ(c · S) = c · (ρS)
ρ(x · S) = (M@τρS) (reduction, remember ρ ≡ [M/x]τ )
ρ(y · S) = y · (ρS) (y 6= x, otherwise reduction starts)

ρ(λy.M) = λy.ρN

ρ() = ()
ρ(N ;S) = (ρN ; ρS)

Figure 3: Hereditary substitution for spine form LF. [M/x]τ is abbreviated
as ρ, and the usual caveats of capture-avoiding substitution apply.

((λx.M)@τ1→τ2(N ;S)) = (([N/x]τ1M)@τ2S)
((H · S)@anil) = (H · S)

Figure 4: Hereditary reduction for spine form LF. If the judgment does not
fit into the above forms (i.e. (H · S)@τ (N ;S) or (λx.M)@τnil) it is an error.

The only interesting case in substitution, defined in Figure 3, is (as
usual) the one where a term is substituted for a variable at the head of a
term. The reduction judgment (M@τS), defined in Figure 4, can be thought
of as normalizing the non-canonical “spine” M · S that has a head M in
canonical form (a head which is presumed to have simple type τ ) and a
spine S of terms in canonical form.

1.3 Typing for spine forms LF

The typing judgments are where the connection between spine forms LF
and focusing systems come into play; however, if you aren’t well-versed in
focused sequent calculi, then these rules should make sense on their own.
Because all terms in LF are, depending on who you’re talking to, “neg-

LECTURE NOTES FEBRUARY 20, 2007



Term Representation L1.5

ative,” “right-asynchronous,” or “left-synchronous,” we only have to be
concerned with two of the four phases of general focusing systems. The
right inversion phase corresponds to type checking, and the left focusing
phase corresponds to type synthesis. The typing judgments are as follows,
annotated with the positions that act as inputs (+) and outputs (−) during
bi-directional typechecking.

Checking Synthesis
(right inversion) (left focusing)

Terms
+
Γ `

+
M ⇐

+
A

+
Γ `

+
S :

+
A >

−
P

Types
+
Γ `

+
A ⇐

+
K

+
Γ `

+
S :

+
K >

−
type

Kinds
+
Γ `

+
K ⇐

+
kind n/a

The notation used here attempts to span a gap between a system that
looks very much like focusing and a system that looks very much like bi-
directional type checking. A sequent that is left-focused on V would be
represented in a focused sequent calculus as Γ;V � P , whereas in both
Cervesato and Pfenning’s presentation, as well as in Reed’s presentation,
it is represented as Γ ` S : V > P to concentrate on the fact that a P is
considered the output in a bi-directional typechecking system, a fact which
we will return to in section 1.3.5.

While we adopt the notation Γ ` S : V > P , it is worth mentioning that
the proposition we are left-focused on (i.e. V ) is presented as a hypothet-
ical assumption in a presentation of focusing without proof terms, and so
placing it on the right-hand side of the judgment stroke ` is strange in this
respect; an alternative would have been to follow Ruy Ley-Wild’s (unpub-
lished) formulation of spine form CLF and use the judgment Γ;S : V � P
for the left-focused sequent.

1.3.1 Term validity

The term checking judgment corresponds to the right-inversion phase of
focusing.

Γ, x : A ` M ⇐ B

Γ ` λx.M ⇐ Πx:A.B
CHECK-TERM

Term synthesis is initiated when term checking encounters an atomic
term H · S. H is then looked up in either the signature or the context, as
appropriate.
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c : A ∈ Σ Γ ` S : A > P ′ P = P ′

Γ ` c · S ⇐ P
FOC-VAR

x : A ∈ Γ Γ ` S : A > P P = P ′

Γ ` x · S ⇐ P
FOC-CON

The rules initiating focusing do not have to explicitly require that the
type P be an atomic type a · S, even though an atomic term H · S should
always have an atomic type. We know that P and P ′ will both be atomic by
virtue of the equality judgment and the fact that the focusing stage can only
return an type P ′ that is of atomic type, generated by the rule INIT-TERM.

Γ ` M ⇐ A Γ ` S : [M/x](A)−B > P

Γ ` (M ;S) : Πx:A.B > P
SYN-TERM

Γ ` nil : a · S > a · S
INIT-TERM

1.3.2 Type validity

The rules for type validity are similar; the primary difference is that no
equality judgment is needed at the transition to focusing (i.e. synthesis)
because type is the only atomic kind.

Γ ` A ⇐ type Γ, x : A ` B ⇐ type

Γ ` Πx:A.B ⇐ type
CHECK-TYPE

a : K ∈ Σ Γ ` S : K > type

Γ ` a · S ⇐ type
FOC-TCON

Γ ` M ⇐ A Γ ` S : [M/x](A)−K > type

Γ ` (M ;S) : Πx:A.K > type
SYN-TYPE

Γ ` nil : type > type
INIT-TYPE
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1.3.3 Kind validity

No focusing phase is needed here, as there is only one hyperkind kind, so
that the end of the left inversion (i.e. checking) phase is initial.

Γ ` A ⇐ type Γ, x:A ` K ⇐ kind

Γ ` Πx:A.K ⇐ kind
CHECK-KIND

Γ ` type ⇐ kind
INIT-KIND

1.3.4 Signature and context validity

This whole series of judgments has been defined in terms of valid signa-
tures and contexts. The rules for valid contexts are straightforward.

` · ctx
CTX-EMPTY

` Γ ctx Γ ` A ⇐ type

` Γ, x : A ctx
CTX-TERM

Furthermore, every judgment above has been implicitly parametrized
by a signature Σ, which must be a valid signature as defined by the follow-
ing judgments (which are mutually recursive with all the others):

` · sig
SIG-EMPTY

` Σ sig · `Σ A ⇐ type

` Σ, c : A sig
SIG-TERM

` Σ sig · `Σ K ⇐ kind

` Σ, a : K sig
SIG-FAM

1.3.5 A note on modes and equality

As we explained before, the left focusing judgment is represented here as
Γ ` S : V > P where V represents an arbitrary classifier (a type or a
kind) and P represents an arbitrary atomic classifier. This is in line with
other presentations, but the notation most consistent with a focusing sys-
tem would seem to be Ley-Wild’s formulation, Γ;S : V � P .

The difference between these two notations can be understood as two
interpretations of where an equality check happens in a focusing system.
Focusing systems often consider both the V and P in Γ;V � P to be in-
puts and enforce an equality check at the left initial sequent, whereas the
notation Γ ` S : V > P interprets P as an output; this is why this output is
checked for equality at the judgment that began the left focusing phase.
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Levels L ::= kind | type
Expressions U, V ::= L | Πd(V1, V2) | λ([V ], U) | H · S

| U@S (redex)
| U [σ] (closure)

Heads H ::= c | i (i ≥ 1)
Spines S ::= nil | U ;S | S[σ]

Substitution σ ::= U.σ | i.σ | ↑k (k ≥ 0)
Contexts Γ ::= · | Γ, A

Signatures Σ ::= · | Σ, c : V

Figure 5: Term representation LF - this presentation is incomplete and will
be extended with metavariables in the next set of notes.

Another point worth mentioning is that the equality judgments in LF
generally happen without the context Γ, although it would be reasonable,
for instance, to write (Γ ` P = P ′ : type) instead of (P = P ′) in the rule
FOC-CON. In fact, the comments in the Twelf implementation often use the
former notation, even though if Γ is used only for debugging and pretty-
printing in equality checks within Twelf. Doing so primarily has docu-
mentation value, as checking terms at different types (and equivalently for
types and kinds) can cause Twelf to throw match exceptions.

1.4 Term representation language

Having presented the rules of spine form LF, we will now begin to describe
a variant of spine form LF that is much closer to an efficient implementa-
tion. The syntax of this language, which we will call term representation LF,
is (partially) described in Figure 5. This section describes the major differ-
ences between spine form LF and term representation LF.

1.4.1 de Bruijn indices

When several different implementations were done at the beginning, a nom-
inal approach (requiring capture-avoiding substitution) was more opaque
and error-prone, though there was some question at the meeting whether
that might be alleviated by using a “wizard” pattern [8]. However, in the
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implementation de Bruijn indices (specifically de Bruijn indices with ex-
plicit substitution, see Section 1.4.5) are used instead. This means that vari-
able labels are omitted in contexts, λ-bindings, and dependent Π-bindings.
These indices start at one, not zero.1

1.4.2 Fewer syntactic categories

Observing the similarity between judgments like CHECK-TYPE and CHECK-
KIND, we collapse types and terms into a single syntactic category of expres-
sions, and we combine the base kind type and the base hyperkind kind into
the syntactic category of levels, denoted by L. This simplifies signatures as
well: they now only have entries of the form c : V where V is a type or a
kind. When there is a thing being classified being related to its classifier,
the convention is to use U for the classified thing (a type, term, or kind)
and V for the classifier (a type, kind, or the token kind, the only hyperkind).
For instance, the rules CHECK-TYPE and CHECK-KIND can be rolled into a
single function.

Γ ` V1 ⇐ type Γ, V1 ` V2 ⇐ L

Γ ` Π(V1, V2) ⇐ L
CHECK-PI

When type checking has reached an atomic term or type, the head H is
either a de Bruijn index i that can be looked up in the context Γ or a constant
c that can be looked up in the signature Σ, and the judgment Γ ` H ⇒ V
represents looking up H : V in either the signature or the context. The con-
stants c are implemented as integers called cids in the Twelf implementa-
tion. The symbols P and P ′ in the rule below represent an atomic classifier,
either c · S or L.

Γ ` H ⇒ V Γ ` S : V > P ′ P = P ′

Γ ` H · S ⇐ P
FOCUS

1.4.3 Dependency flags

The pi-binding ΠdV1, V2 comes with a dependency flag d which may be
no or maybe, where a no indicates that the classifier V2 definitely does not
depend on V1. To give an example in spine form LF, in the type

Πnox:nat.nat

1Sorry about that.
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the type nat is independent of x, whereas in the type

Πmaybex:nat.plus · (z;x;x; nil)

the type plus · (z;x;x; nil) is dependent on x.
This flag is important for avoiding spurious dependencies and has im-

plication for the operational semantics of logic programming in Twelf. The
flag also has different meanings before and after type reconstruction. Twelf
initially does a first order approximation of the user’s input in order to re-
construct that input in Twelf’s internal syntax. After that approximation,
the no flag means that the user wrote an arrow (i.e. A -> B), so that there
is no dependency, and the maybe flag means that the user used brackets
(i.e. {x:A} B), so that there may be a dependency. After reconstruction,
the maybe flags that are unnecessary will be changed to no flags, which will
happen, for instance, if the user wrote s : {x:nat} nat.

Even after the full type reconstruction, the maybe flag does not guaran-
tee the presence of a dependency if there are metavariables, as unification
during proof search may cause dependencies to be eliminated.

1.4.4 Optional type annotations

Type annotations are notably present (though optional) for lambda-bindings;
these are not present in other presentations of canonical forms LF. During
type reconstruction type checking is not always bidirectional and the infor-
mation is sometimes needed. These annotations generate overhead when
they are present; an extra equality check is required when checking the
type of a lambda that has an annotation. It is not clear that this was the best
choice, and it is not clear that it will be the right choice in other systems
such as CLF.

V1 = V2 Γ, V1 ` U ⇐ V

Γ ` λ(V1, U) ⇐ Π(V2, V )
CHECK-ANNOT-LAM

1.4.5 Lazy canonical forms

During the early implementations, it was not just de Bruijn indices but de
Bruijn indices with explicit substitutions that were found to lead to the most
efficient and natural formulations.2 It allows for a lazy approach where

2Bob Harper noted that this approach still seemed quite natural even after spending a
long time away from it.
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terms are normalized towards canonical (spine) form only as far as they
needed to be in order to perform a given operation.

This lazy implementation requires two non-canonical syntactic addi-
tions, which correspond to the two parts of hereditary substitution - a redex
U@S representing partial reduction and a closure U [σ] representing partial
substitution. Type checking is never performed on these syntactic objects,
they are pushed along to normalize terms only as far as is needed. Inciden-
tally, testing for equality (as is done in the FOCUS rule) will force the two
terms to be fully normalized, as non-canonical forms are never checked for
equality, and generally have no first-class status within the implementa-
tion.

The primary means of performing these reductions is called weak head
normalization, which is just a process of driving through reductions and
substitutions until the top layer of a term looks like a canonical form (i.e.
L,H · S, λ([V ], U), or Π(V, V )). There are many functions in the Twelf im-
plementation that have two forms, a check() that can be called on arbitrary
terms and an optimized checkW() that can be called if the term is known
to be in weak head normal form - the functions that can be called on arbi-
trary terms just reduce the term to weak head normal form and then call
the optimized version of the function.

Aleksey Kliger asked about whether these applied reconstructions were
saved, as they were in his LSL system. The Twelf implementation does not
save these, but the reason they seem to be efficient in LSL is that there is no
backtracking - backtracking is one of the major reasons that memoizing re-
construction isn’t worth the cost in Twelf or other systems such as Lambda
Prolog where it was tested.
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