
An Educational Proof Assistant
for Language Theory
Jonathan Aldrich Robert J. Simmons Key Shin
 Carnegie Mellon University Microsoft

SASyLF Design Goals
Gentle learning curve. • Professors don’t have time to spend teaching tools!
Familiar syntax. • Th e surface syntax of SASyLF mirrors paper proofs.
Explicit notation. • Making clear what is going on aids the learning process.
Minimal math context. • SASyLF is based exclusively on rule induction—
set theory, etc. is omitted.
Support for variable binding. • Encoding variables is diffi cult and distract-
ing.
Incremental proof development.• Can write “unproved” for any statement
and the assistant will assume it is true (but will yield a warning).
Local checking and localized errors. • Understanding what went wrong is
critical to learning, so all checks are local and errors point to the specifi c
low-level step that failed.

e ::= x
 | e e
 | fn x : tau => e[x]
 | “(“ “)”

tau ::= unit
 | tau -> tau

Gamma ::= *
 | Gamma, x : tau

judgment value: e value

------------- val-unit
“(“ “)” value

--------------------------- val-fn
fn x1 : tau => e1[x1] value

judgment step: e -> e

e1 -> e1’
--------------- c-app-l
e1 e2 -> e1’ e2

e1 value
e2 -> e2’
------------------- c-app-r
(e1 e2) -> (e1 e2’)

e2 value
-------------------------------- r-app
(fn x : tau => e[x]) e2 -> e[e2]

judgment has-type: Gamma |- e : tau
assumes Gamma

---------------------- t-unit
Gamma |- “(“”)” : unit

----------------------- t-var
Gamma, x:tau |- x : tau

Gamma, x1:tau |- e[x1] : tau’
------------------------------------- t-fn
Gamma |- fn x : tau => e[x] : tau -> tau’

Gamma |- e1 : tau’ -> tau
Gamma |- e2 : tau’
------------------------- t-app
Gamma |- e1 e2 : tau

theorem preservation: forall dt: * |- e : tau
 forall ds: e -> e’
 exists * |- e’ : tau.

dt’ : * |- e’ : tau by induction on ds :
 case rule
 d1 : e1 -> e1’
 -------------------- c-app-l
 d2 : e1 e2 -> e1’ e2
 is
 dt’ : * |- e’ : tau by case analysis on dt :
 case rule
 d3 : * |- e1 : tau’ -> tau
 d4 : * |- e2 : tau’
 -------------------------- t-app
 d5 : * |- (e1 e2) : tau
 is
 d6 : * |- e1’ : tau’ -> tau by induction hypothesis on d3, d1
 dt’ : * |- e1’ e2 : tau by rule t-app on d6, d4
 end case
 end case analysis
 end case

 case rule... // case for rule c-app-r is similar

 case rule
 d1 : e2 value
 -- r-app
 d2 : (fn x : tau’ => e1[x]) e2 -> e1[e2]
 is
 dt’ : * |- e’ : tau by case analysis on dt :
 case rule
 d4 : * |- fn x : tau’ => e1[x] : tau’’ -> tau
 d5 : * |- e2 : tau’’
 --- t-app
 d6 : * |- (fn x : tau’ => e1[x]) e2 : tau
 is
 dt’ : * |- e’ : tau by case analysis on d4 :
 case rule
 d7: *, x:tau’ |- e1[x] : tau
 --- t-fn
 d8: * |- fn x : tau’ => e1[x] : tau’ -> tau
 is
 d9: * |- e1[e2] : tau by substitution on d7, d5
 end case
 end case analysis
 end case
 end case analysis
 end case
end induction
end theorem

Teaching with SASyLF
We used SASyLF for an assignment on reasoning about the dynamic semantics of programs in
a Spring 2008 graduate course at CMU. Our fi ndings in a controlled experiment were generally
promising:

11 of 13 students who used the SASyLF tool found that it helped them fi nd errors in their proofs•

12 of 13 said the tool increased their confi dence that their proofs were correct.•

In contrast, 14 of 16 members of the control (no tool) group wished they had earlier feedback on •
their mistakes.

Some students dropped out due to usability issues with the tool, many of which we have since ad-•
dressed. Still, 7 of 11 surveyed students who completed the study with the tool would use the tool
again, and another three would use it if the usability issues were addressed.

Comparing the tool to handwritten proofs, one student said, “I actually did the entire assignment
on paper fi rst and then moved over to using the tool. I found the paper approach really easy.
But once I started using the tool I started understanding the concepts better.”

SASyLF Proofs
 We have
 e2 : τ by the
progress lemma on the assumption that e1 : τ
and the fi rst premise, and so by the induction
hypothesis on the second premise e3 is not stuck.

e1 ↦ e2 e2 ↦* e3

e1 ↦* e3

case rule
 d1 : e1 -> e2
 d2 : e2 ->* e3
 --------------- multistep
 d3 : e1 ->* e3
is
 d4 : e2 : t by theorem progress on dt, d1
 d5 : e4 notstuck
 by induction hypothesis on d2, d4
end case

Case

SASyLF Defi nitions

e1 ↦ e2 e2 ↦* e3

e1 ↦* e3

e ↦* e

--------- singlestep
e ->* e

e1 -> e2
e2 ->* e3
--------- multistep
e1 ->* e3

www.sasylf.org
Open source release of SASyLF•
Paper(s) describing the tool and our •
teaching experience

Documentation and examples•
A solution to part 2A of the POPLmark •
challenge for mechanized metatheory

Related Work
Proof Assistants used for
PL Metatheory

 Twelf•
 Coq•
 Isabelle/HOL•
 Abella•

Educational Tools
for Logic

 Tarski’s World•
 Tutch•

Educational Tools
for PL Th eory

 DrScheme•

The Challenge of Teaching Proofs
Concepts like induction are inherently complex•
Easy to get details wrong, without realizing it•
Feedback in a typical course may take a week due to grading time•

Wouldn’t it be nice if there were an easy-to-use tool that provides students with
immediate feedback on mistakes in their proofs?

Introducing SASyLF: a Second-order Abstract Syntax Logical Framework
 (“Sassy Elf ”)

We defi ne the syntax of the sim-
ply-typed λ-calculus using BNF.

Th e notation e[x] means that x
is free in e. Th e x in “fn x …” is
the binding occurrence. x is
mentioned in the grammar for e,
so the tool knows x is a variable
representing an e.

Parentheses are special to SASyLF,
so we quote them when they
appear in the target language.

Oft en grammars are ambiguous,
so parentheses can be used to
disambiguate expressions.
SASyLF uses a GLR parser to
support ambiguous grammars, as
long as individual expressions are
not ambiguous.

In a rule, primes and numerical
suffi xes are used to distinguish
diff erent instances of the same
syntactic class.

Inference rules are defi ned with
one premise per line above the
bar, and the conclusion below it.

Declaring a judgment form.

e[e2] means substitute e2 for x
in e (binding and substitution are
built in).

t-var shows how to use an
assumption in Gamma, and also
defi nes the meaning of that
assumption.

Hypothetical judgments are built
in; here we state that Gamma is the
context holding assumptions.

Variable names aren’t signifi cant;
we can use x1 for x as long as
we’re consistent within the
premise.

Like Twelf, SASyLF supports
proving so-called ∀∃-statements
of the form “for all judgments J1..Jn
there exists a judgment Jout.”

Because SASyLF builds in
hypothetical judgments, x:tau’
in Gamma for judgment d7 really
means that the judgment holds
exactly when x can be replaced
with a judgment showing that some
e2 has type tau’. But we have
judgment d5 that tells us
exactly that (the t-fn case
analysis is enough to show that
tau’’=tau’), so we can get d9 by
substituting d5 into d7!
As in Twelf, no substitution
lemma is required, although we
could prove one for pedagogical
purposes if we want.

We can use the induction
hypotheses or apply a rule to get
the results we want. In either case,
we need to state the judgment
names to which the rule applies.
Th e last judgment in the derivation
must prove the theorem (for this
case).

When we case-analyze, we give
each possible rule with the
conclusion instantiated to the thing
we are case analyzing. We can
introduce variables (e.g. e1, e2,
and tau’) that can be used later.

Proofs are a sequence of statements
of the form:
<name> : <judgment> <justifi cation>
Th e name is used to refer to the
fact later. Th e judgment is the fact,
while the justifi cation is an
argument for while the fact holds.
Here the fact holds due to
induction.

