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SASyLF Design Goals
Gentle learning curve. •  Professors don’t have time to spend teaching tools!
Familiar syntax. •  Th e surface syntax of SASyLF mirrors paper proofs.
Explicit notation. • Making clear what is going on aids the learning process.
Minimal math context. •  SASyLF is based exclusively on rule induction—
set theory, etc. is omitted.
Support for variable binding. •  Encoding variables is diffi  cult and distract-
ing.
Incremental proof development.•   Can write “unproved” for any statement 
and the assistant will assume it is true (but will yield a warning).
Local checking and localized errors. •  Understanding what went wrong is 
critical to learning, so all checks are local and errors point to the specifi c 
low-level step that failed.

e ::= x
  |   e e
  |   fn x : tau => e[x]
  |   “(“ “)”

tau ::= unit
    |   tau -> tau

Gamma ::= *
      |   Gamma, x : tau

judgment value: e value

------------- val-unit
“(“ “)” value

--------------------------- val-fn
fn x1 : tau => e1[x1] value

judgment step: e -> e

e1 -> e1’
--------------- c-app-l
e1 e2 -> e1’ e2

e1 value
e2 -> e2’
------------------- c-app-r
(e1 e2) -> (e1 e2’)

e2 value
-------------------------------- r-app
(fn x : tau => e[x]) e2 -> e[e2]

judgment has-type: Gamma |- e : tau
assumes Gamma

---------------------- t-unit
Gamma |- “(“”)” : unit

----------------------- t-var
Gamma, x:tau |- x : tau

Gamma, x1:tau |- e[x1] : tau’
------------------------------------- t-fn
Gamma |- fn x : tau => e[x] : tau -> tau’

Gamma |- e1 : tau’ -> tau
Gamma |- e2 : tau’
------------------------- t-app
Gamma |- e1 e2 : tau

theorem preservation: forall dt: * |- e : tau
                      forall ds: e -> e’
                      exists     * |- e’ : tau.

dt’ : * |- e’ : tau                 by induction on ds :
  case rule
    d1 : e1 -> e1’
    -------------------- c-app-l
    d2 : e1 e2 -> e1’ e2
  is 
    dt’ : * |- e’ : tau             by case analysis on dt :
      case rule
        d3 : * |- e1 : tau’ -> tau
        d4 : * |- e2 : tau’
        -------------------------- t-app
        d5 : * |- (e1 e2) : tau
      is
        d6 : * |- e1’ : tau’ -> tau by induction hypothesis on d3, d1
        dt’ : * |- e1’ e2 : tau     by rule t-app on d6, d4
      end case
    end case analysis
  end case

  case rule... // case for rule c-app-r is similar

  case rule
    d1 : e2 value
    ---------------------------------------- r-app
    d2 : (fn x : tau’ => e1[x]) e2 -> e1[e2]
  is
    dt’ : * |- e’ : tau             by case analysis on dt :
      case rule
        d4 : * |- fn x : tau’ => e1[x] : tau’’ -> tau
        d5 : * |- e2 : tau’’
        --------------------------------------------- t-app
        d6 : * |- (fn x : tau’ => e1[x]) e2 : tau
      is
        dt’ : * |- e’ : tau         by case analysis on d4 :
          case rule
            d7: *, x:tau’ |- e1[x] : tau
            ------------------------------------------- t-fn
            d8: * |- fn x : tau’ => e1[x] : tau’ -> tau
          is
            d9: * |- e1[e2] : tau   by substitution on d7, d5
          end case
        end case analysis 
      end case
    end case analysis
  end case
end induction
end theorem

Teaching with SASyLF
We used SASyLF for an assignment on reasoning about the dynamic semantics of programs in 
a Spring 2008 graduate course at CMU.  Our fi ndings in a controlled experiment were generally 
promising:

11 of 13 students who used the SASyLF tool found that it helped them fi nd errors in their proofs• 

12 of 13 said the tool increased their confi dence that their proofs were correct.• 

In contrast, 14 of 16 members of the control (no tool) group wished they had earlier feedback on • 
their mistakes.

Some students dropped out due to usability issues with the tool, many of which we have since ad-• 
dressed.  Still, 7 of 11 surveyed students who completed the study with the tool would use the tool 
again, and another three would use it if the usability issues were addressed.

Comparing the tool to handwritten proofs, one student said, “I actually did the entire assignment 
on paper fi rst and then moved over to using the tool.  I found the paper approach really easy.  
But once I started using the tool I started understanding the concepts better.”

SASyLF Proofs
                                                      We have 
                                                      e2 : τ by the 
progress lemma on the assumption that e1 : τ  
and the fi rst premise, and so by the induction 
hypothesis on the second premise e3 is not stuck.

e1 ↦ e2            e2 ↦* e3

e1 ↦* e3

case rule
     d1 : e1 -> e2
     d2 : e2 ->* e3
     --------------- multistep
     d3 : e1 ->* e3
is 
 d4 : e2 : t by theorem progress on dt, d1
 d5 : e4 notstuck 
         by induction hypothesis on d2, d4
end case

Case

SASyLF Defi nitions

e1 ↦ e2            e2 ↦* e3

e1 ↦* e3

 
e ↦* e

--------- singlestep
e ->* e

e1 -> e2
e2 ->* e3
--------- multistep
e1 ->* e3

www.sasylf.org
Open source release of SASyLF• 
Paper(s) describing the tool and our • 
teaching experience

Documentation and examples• 
A solution to part 2A of the POPLmark • 
challenge for mechanized metatheory

Related Work
Proof Assistants used for 
PL Metatheory

 Twelf• 
 Coq• 
 Isabelle/HOL• 
 Abella• 

Educational Tools
for Logic

 Tarski’s World• 
 Tutch• 

Educational Tools 
for PL Th eory

 DrScheme• 

The Challenge of Teaching Proofs
Concepts like induction are inherently complex• 
Easy to get details wrong, without realizing it• 
Feedback in a typical course may take a week due to grading time• 

Wouldn’t it be nice if there were an easy-to-use tool that provides students with 
immediate feedback on mistakes in their proofs?

Introducing SASyLF: a Second-order Abstract Syntax Logical Framework
                  (“Sassy Elf ”)

We defi ne the syntax of the sim-
ply-typed λ-calculus using BNF.

Th e notation e[x] means that x 
is free in e.  Th e x in “fn x …” is 
the binding occurrence. x is 
mentioned in the grammar for e, 
so the tool knows x is a variable 
representing an e.

Parentheses are special to SASyLF, 
so we quote them when they 
appear in the target language.

Oft en grammars are ambiguous, 
so parentheses can be used to 
disambiguate expressions.  
SASyLF uses a GLR parser to 
support ambiguous grammars, as 
long as individual expressions are 
not ambiguous.

In a rule, primes and numerical 
suffi  xes are used to distinguish 
diff erent instances of the same 
syntactic class.

Inference rules are defi ned with 
one premise per line above the 
bar, and the conclusion below it.

Declaring a judgment form.

e[e2] means substitute e2 for x 
in e (binding and substitution are 
built in).

t-var shows how to use an 
assumption in Gamma, and also 
defi nes the meaning of that 
assumption.

Hypothetical judgments are built 
in; here we state that Gamma is the 
context holding assumptions.

Variable names aren’t signifi cant; 
we can use x1 for x as long as 
we’re consistent within the 
premise.

Like Twelf, SASyLF supports 
proving so-called ∀∃-statements 
of the form “for all judgments J1..Jn 
there exists a judgment Jout.”

Because SASyLF builds in 
hypothetical judgments, x:tau’ 
in Gamma for judgment d7 really 
means that the judgment holds 
exactly when x can be replaced 
with a judgment showing that some 
e2 has type tau’.  But we have 
judgment d5 that tells us 
exactly that (the t-fn case 
analysis is enough to show that 
tau’’=tau’), so we can get d9 by 
substituting d5 into d7!
As in Twelf, no substitution 
lemma is required, although we 
could prove one for pedagogical 
purposes if we want.

We can use the induction 
hypotheses or apply a rule to get 
the results we want.  In either case, 
we need to state the judgment 
names to which the rule applies.  
Th e last judgment in the derivation 
must prove the theorem (for this 
case).

When we case-analyze, we give 
each possible rule with the 
conclusion instantiated to the thing 
we are case analyzing.  We can 
introduce variables (e.g. e1, e2, 
and tau’) that can be used later.

Proofs are a sequence of statements 
of the form:
<name> : <judgment> <justifi cation>
Th e name is used to refer to the 
fact later.  Th e judgment is the fact, 
while the justifi cation is an 
argument for while the fact holds.  
Here the fact holds due to 
induction.


