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Abstract

Ever since Andreoli’s pioneering work in linear logic, it has been understood that the technique of
focusing can be used to obtain the operational semantics of a logic programming language from
a logic. In previous work, Polakow presented ordered linear logic and gave a backward-chaining
operational semantics semantics for the uniform fragment of the logic, and the authors have pre-
viously presented a fragment of ordered linear logic suitable to a forward-chaining operational
semantics. In this report we give a so-called weakly focused sequent calculus for a polarized first-
order ordered linear logic with equality assumptions, generalizing and extending both of these
previous proposals. The polarized sequent calculus and the cut admissibility theorem for this logic
are standard, but the proof of the identity theorem requires a new technique. We show how the
cut and identity theorem can be used in a straightforward manner to establish the completeness of
the weakly focused sequent calculus with respect to an non-focused sequent calculus for ordered
linear logic.





1 Ordered linear logic
The sequent calculus for first-order ordered logic with equality is pretty straightforward, though the defini-
tion of resource contexts is non-standard. See Polakow’s thesis for background on first-order linear logic,
[1]. We add first-order equality (see Section 1.2.5) and leave out the units of disjunction (0) and additive
conjunction (>), but both could be included without difficulty.

Propositions: A,B,C ::= Q | !A | ¡A | 1 | A •B | A� B | A� B |
A⊕B | A&B | ∀x.A | ∃x.A | t .= s

Variable contexts: Σ ::= · | Σ, x
Persistent contexts: Γ ::= · | Γ, A
Resource contexts: ∆ ::= · | A | A | ∆,∆′

1.1 Context equivalence
When we write A in a resource context, it should be seen as shorthand for the judgment “A ordered”
representing an ordered resource, and when we write A in a resource context, it should be seen as shorthand
for the judgment “A mobile” representing a mobile (linear) resource. The intuition is that the relative
position of ordered resources is significant, but the relative order of linear resources relative to each other
and relative to the ordered resources is unimportant.

This intuition is validated by the context equivalence ∆ ≡ ∆′, which is the least equivalence relation
closed under the following:

• A,B ≡ B,A

• A,B ≡ B,A

• ·,∆ ≡ ∆ ≡ ∆, ·

• (∆1,∆2),∆3 ≡ ∆1, (∆2,∆3)

• ∆ ≡ ∆′ implies ∆L,∆,∆R ≡ ∆L,∆
′,∆R

This makes context equivalence a special case of an algebraic structure known as a trace monoid.

1.2 Unfocused sequent calculus
The only sequent is Γ; ∆ `Σ C, where all the variables in Σ are presumed to be unique and any free variables
in Γ, ∆, or C are required to be present in Σ.

Many rules (for instance •R, !R, and every left rule) make some presumption about the shape of the
context; we adopt the view that these left rules are “really” shorthand for a more precise rule that references
the structural equivalence explicitly. For instance, the precise version of 1L looks like this:

∆ ≡ ∆L,1,∆R Γ; ∆L,∆R `Σ C

Γ; ∆ `Σ C
1L

The notation ∆ in ¡L indicates that this rules application is restricted to the case where the resource context
∆ contains only mobile resources A.

The following are the sequent calculus rules:
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1.2.1 Structural rules
A ∈ Γ Γ; ∆L, A,∆R `Σ C

Γ; ∆L,∆R `Σ C
copy

Γ; ∆L, A,∆R `Σ C

Γ; ∆L, A,∆R `Σ C
place

Γ;Q `Σ Q
init

1.2.2 Exponentials
Γ; · `Σ A

Γ; · `Σ !A
!R

Γ, A; ∆L,∆R `Σ C

Γ; ∆L, !A,∆R `Σ C
!L

Γ; ∆ `Σ A

Γ; ∆ `Σ ¡A
¡R

Γ; ∆L, A,∆R `Σ C

Γ; ∆L, ¡A,∆R `Σ C
¡L

1.2.3 Multiplicative connectives

Γ; · `Σ 1
1R

Γ; ∆L,∆R `Σ C

Γ; ∆L,1,∆R `Σ C
1L

Γ; ∆L `Σ A Γ; ∆R `Σ B

Γ; ∆L,∆R `Σ A •B •R
Γ; ∆L, A,B,∆R `Σ C

Γ; ∆L, A •B,∆R `Σ C
•L

Γ; ∆, A `Σ B

Γ; ∆ `Σ A� B
�R

Γ; ∆A ` A Γ; ∆L, B,∆R `Σ C

Γ; ∆L, A� B,∆A,∆R `Σ C
�L

Γ;A,∆ `Σ B

Γ; ∆ `Σ A� B
�R

Γ; ∆A ` A Γ; ∆L, B,∆R `Σ C

Γ; ∆L,∆A, A� B,∆R `Σ C
�L

1.2.4 Additive connectives
Γ; ∆ `Σ Ai

Γ; ∆ `Σ A1 ⊕A2
⊕Ri

Γ; ∆L, A,∆R `Σ C Γ; ∆L, B,∆R `Σ C

Γ; ∆L, A⊕B,∆R `Σ C
⊕L

Γ; ∆ `Σ A Γ; ∆ `Σ B

Γ; ∆ `Σ A&B
&R

Γ; ∆L, Ai,∆R `Σ C

Γ; ∆L, A1 &A2,∆R `Σ C
&Li

1.2.5 First-order connectives

The left rule for equality uses a higher-order judgment: it says that, if we assume that t and s are equal, then
we have to prove the sequent under all unifying substitutions of t and s, of which there may be a countably
infinite number. In reading the .

=L rule, it is important to distinguish t .= s, which is a proposition in ordered
logic, from t = s, which is a meta-level judgment.

Γ; ∆ `Σ,x A

Γ; ∆ `Σ ∀x.A
∀Rx

Σ ` t Γ; ∆L, A[t/x],∆R `Σ C

Γ; ∆L, ∀x.A,∆R `Σ C
∀L

Σ ` t Γ; ∆ `Σ A[t/x]

Γ; ∆ `Σ ∃x.A
∃R

Γ; ∆L, A,∆R `Σ,x C

Γ; ∆L, ∃x.A,∆R `Σ C
∃Lx

Γ; · `Σ t
.
= t

.
=R

∀(Σ′ ` θ : Σ): θt = θs −→ θΓ; θ∆L, θ∆R `Σ′ θC

Γ; ∆L, t
.
= s,∆R `Σ C

.
=L
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2 Polarized ordered linear logic
While many presentations of focusing do not change the language of propositions, this presentation is a
“shifty” presentation of focusing that does change the language of propositions. In addition to splitting
propositions into positive and negative propositions, we also make new syntactic categories of persistent and
linear propositions. We could add other propositions to those categories, and even introduce both positive
and negative persistent and mobile propositions, but at this point we are only interested having atoms (which
act as positive atoms) in both the persistent and mobile syntactic categories.

Persistent propositions Ap ::= A− | Qp
Mobile (linear) propositions Al ::= A− | Ql
Positive propositions A+, B+ ::= Q+ | ↓A+ | !Ap | ¡Al | 1 | A+ •B+ | A+ ⊕B+ |

∃x.A+ | t .= s
Negative propositions A−, B− ::= Q− | ↑A− | A+ � B− | A+ � B− | A−&B− | ∀x.A−
Focal contexts: ℵ ::= · | α::[A+] | γ::[A−] | ℵ,ℵ′
Variable contexts: Σ ::= · | Σ, x
Persistent contexts: Γ ::= · | Γ, A− | Γ, Qp
Resource contexts: ∆ ::= · | α | A+ | Al | ∆,∆′
Conclusions: C ::= γ | A−

The equivalence on resource contexts is the same as before. Our formulation of polarized ordered logic
contains an innovation, the use of a focal context, written as ℵ, that obeys a linear resource discipline (so
conjunction of focal contexts is treated as being associative and commutative with unit ·). Focal contexts
are critical to the completeness lemmas for ordered linear logic, though the linearity of the focal context is
not critical – we could also allow focal contexts to obey a persistent resource discipline with contraction,
exchange, and weakening.

2.1 Weakly focused sequent calculus
A neutral sequent has the form ℵ; Γ; ∆ ⇒Σ C, a right-focused sequent has the form ℵ; Γ; ∆ ⇒Σ [A+],
and a left-focused sequent has the form ℵ; Γ; ∆L[A−]∆R ⇒Σ C. Once again, all the variables in Σ are
presumed to be unique and any free variables in ℵ, Γ, ∆, or C are required to be present in Σ.

2.1.1 Focal hypotheses

α::[A+]; Γ;α⇒Σ [A+]
initα

γ::[A−]; Γ; [A−]⇒Σ γ
initγ

2.1.2 Entering focus, shifts

A− ∈ Γ ℵ; Γ; ∆L[A−]∆R ⇒Σ C

ℵ; Γ; ∆L,∆R ⇒Σ C
copy

ℵ; Γ; ∆L[A−]∆R ⇒Σ C

ℵ; Γ; ∆L, A
−,∆R ⇒Σ C

place

·; Γ; [Q−]⇒Σ Q−
init−

ℵ; Γ; ∆⇒Σ [A+]

ℵ; Γ; ∆⇒Σ ↑A+
↑R

ℵ; Γ; ∆L, A
+,∆R ⇒Σ C

ℵ; Γ; ∆L[↑A+]∆R ⇒Σ C
↑L
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·; Γ;Q+ ⇒Σ [Q+]
init+

ℵ; Γ; ∆⇒Σ A−

ℵ; Γ; ∆⇒Σ [↓A−]
↓R

ℵ; Γ; ∆L[A−]∆R ⇒Σ C

ℵ; Γ; ∆L, ↓A−,∆R ⇒Σ C
↓L

2.1.3 Exponentials

ℵ; Γ, Ap; ∆L,∆R ⇒Σ C

ℵ; Γ; ∆L, !Ap,∆R ⇒Σ C
!L

·; Γ; · ⇒Σ A−

·; Γ; · ⇒Σ [!A−]
!R

Qp ∈ Γ

·; Γ; · ⇒Σ [!Qp]
!Rq

ℵ; Γ; ∆L, Al,∆R ⇒Σ C

ℵ; Γ; ∆L, ¡Al,∆R ⇒Σ C
¡L

·; Γ; ∆⇒Σ A−

·; Γ; ∆⇒Σ [¡A−]
¡R

·; Γ;Ql⇒Σ [¡Ql]
¡Rq

2.1.4 Multiplicative connectives

·; Γ; · ⇒Σ [1]
1R

ℵ; Γ; ∆L,∆R ⇒Σ C

ℵ; Γ; ∆L,1,∆R ⇒Σ C
1L

ℵ1; Γ; ∆L ⇒Σ [A+] ℵ2; Γ; ∆R ⇒Σ [B+]

ℵ1,ℵ2; Γ; ∆L,∆R ⇒Σ [A+ •B+]
•R

ℵ; Γ; ∆L, A
+, B+,∆R ⇒Σ C

ℵ; Γ; ∆L, A
+ •B+,∆R ⇒Σ C

•L

ℵ; ∆, A+ ⇒Σ B−

ℵ; Γ; ∆⇒Σ A+ � B−
�R

ℵ1; Γ; ∆A ⇒Σ [A+] ℵ2; ∆L[B−]∆R ⇒Σ C

ℵ1,ℵ2; Γ; ∆L[A+ � B−]∆A,∆R ⇒Σ C
�L

ℵ;A+,∆⇒Σ B−

ℵ; Γ; ∆⇒Σ A+ � B−
�R

ℵ1; Γ; ∆A ⇒Σ [A+] ℵ2; ∆L[B−]∆R ⇒Σ C

ℵ1,ℵ2; Γ; ∆L,∆A[A+ � B−]∆R ⇒Σ C
�L

2.1.5 Additive connectives
ℵ; Γ; ∆⇒Σ [A+

i ]

ℵ; Γ; ∆⇒Σ [A+
1 ⊕A

+
2 ]
⊕Ri

ℵ; Γ; ∆L, A
+,∆R ⇒Σ C ℵ; Γ; ∆L, B

+,∆R ⇒Σ C

ℵ; Γ; ∆L, A
+ ⊕B+,∆R ⇒Σ C

⊕L

ℵ; Γ; ∆⇒Σ A ℵ; Γ; ∆⇒Σ B

ℵ; Γ; ∆⇒Σ A&B
&R

ℵ; Γ; ∆L[A−i ]∆R ⇒Σ C

ℵ; Γ; ∆L[A−1 &A−2 ]∆R ⇒Σ C
&Li

2.1.6 First-order connectives
ℵ; Γ; ∆⇒Σ,x A

−

ℵ; Γ; ∆⇒Σ ∀x.A−
∀Rx

Σ ` t ℵ; Γ; ∆L[A−[t/x]]∆R ⇒Σ C

ℵ; Γ; ∆L[∀x.A−]∆R ⇒Σ C
∀L

Σ ` t ℵ; Γ; ∆⇒Σ [A+[t/x]]

ℵ; Γ; ∆⇒Σ [∃x.A+]
∃R

ℵ; Γ; ∆L, A
+∆R ⇒Σ,x C

ℵ; Γ; ∆L,∃x.A+,∆R ⇒Σ C
∃Lx

ℵ; Γ; · ⇒Σ [t
.
= t]

.
=R

∀(Σ′ ` θ : Σ): θt = θs −→ θℵ; θΓ; θ∆L, θ∆R ⇒Σ′ θC

ℵ; Γ; ∆L, t
.
= s,∆R ⇒Σ C

.
=L
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2.2 Notation
In may cases (for example, the proof of soundness) we expect the focal context ℵ to be empty; in these cases
we will occasionally omit ℵ altogether and write (Γ; ∆⇒Σ C) instead of (·; Γ; ∆⇒Σ C).

3 Metatheory
In this section, we will give an overview of the metatheory of the weakly focused sequent calculus. The
standard results are those of generalized weakening, both for persistent contexts (Theorem 1) and variable
contexts (Theorem 2); cut admissibility (Theorem 3), which implies that the logic is internally sound; and
identity expansion (Theorem 6), which implies that the logic is internally complete.

In addition, we have three new properties of the logic that we need to consider. The first, substitution
of focal hypotheses (Theorem 5), is a natural consequence of the generalization of the weakly focused
sequent calculus to include the focal context ℵ. The second, unfocused admissibility of the focused rules
(Theorem 8), establishes the logical completeness of the weakly focused sequent calculus relative to the
unfocused calculus presented in Section 1.

3.1 Weakening
Critical to the proof of the cut admissibility theorem is the weakening property, which the judgmental
methodology treats as one of the language’s defining principles. In the case of our sequent calculus, we
will separate out these principles into three parts: we show that we can add, exchange, or contract the per-
sistent premises in Section 3.1.1 and we show that we can apply substitutions to change the variable context
in Section 3.1.2. In Section 3.1.3, we define a notion of the size of contexts that allows us to apply both of
these kinds of weakening to derivations and then call an induction hypothesis on the result; this third part is
a prerequisite for the cut admissibility theorem in Section 3.2.

3.1.1 Generalized weakening (context renaming)

The generalized weakening theorem – which is also known as context renaming – subsumes the usual
properties of contraction, exchange, and weakening.

Theorem 1 (Generalized weakening). If Γ ⊆ Γ′, then

• If (ℵ; Γ; ∆⇒Σ C), then (ℵ; Γ′; ∆⇒Σ C),

• If (ℵ; Γ; ∆⇒Σ [A+]), then (ℵ; Γ′; ∆⇒Σ [A+]), and

• If (ℵ; Γ; ∆L[A−]∆R ⇒Σ C), then (ℵ; Γ′; ∆L[A−]∆R ⇒Σ C).

Proof. Straightforward mutual induction over derivations.

3.1.2 Variable weakening

In order to deal with equality, we also must consider a variable weakening lemma, where we “weaken” the
variable context by applying a substitution θ to all parts of the derivation.
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Theorem 2 (Variable weakening). If Σ′ ` θ : Σ, then

• If (ℵ; Γ; ∆⇒Σ C), then (θℵ; θΓ; θ∆⇒Σ′ θC),

• If (ℵ; Γ; ∆⇒Σ [A+]), then (θℵ; θΓ; θ∆⇒Σ′ [θA+]), and

• If (ℵ; Γ; ∆L[A−]∆R ⇒Σ C), then (θℵ; θΓ′; θ∆L[θA−]θ∆R ⇒Σ′ θC).

Proof. Let D be the derivation Σ′ ` θ : Σ; we will give two of the critical cases.

Case: E =

∀(Σ′′ ` σ : Σ) : σt
.
= σs

E1

−→ σℵ;σΓ;σ∆L, σ∆R ⇒Σ′′ σC

ℵ; Γ; ∆L, t
.
= s,∆R ⇒Σ C

.
=L

To show: θℵ; θΓ; θ∆L, θt
.
= θs, θ∆R ⇒Σ′ θC

(1) ∀(Σ′′ ` τ : Σ′): τ(θt)
.
= τ(θs) −→ τ(θℵ); τ(θΓ); τ(θ∆L), τ(θ∆R)⇒Σ′′ τ(θC)

by the following hypothetical reasoning:
Assume an arbitrary Σ′′ and τ such that (2) Σ′′ ` τ : Σ′ and (3) τ(θt)

.
= τ(θs)

(4) Σ′′ ` τ ◦ θ : Σ (composition of substitutions on D and (2))
(5) (τ ◦ θ)t .= (τ ◦ θ)s (associativity of substitutions on (3))
(6) (τ ◦ θ)ℵ; (τ ◦ θ)Γ; (τ ◦ θ)∆L, (τ ◦ θ)∆R ⇒Σ′′ (τ ◦ θ)C (E1 on (4) and (5))
τ(θℵ); τ(θΓ); τ(θ∆L), τ(θ∆R)⇒Σ′′ τ(θC) (associativity of substitutions on (6))

θℵ; θΓ; θ∆L, θt
.
= θs, θ∆R ⇒Σ′ θC ( .=L on (1))

Case: E =

E1

ℵ; Γ; ∆⇒Σ,x A
−

ℵ; Γ; ∆⇒Σ ∀x.A−
∀Rx

To show: θℵ; θΓ; θ∆⇒Σ′ ∀x.(θ, x/x)A−

(1) Σ, x ` θ, x/x : Σ′, x (extending the substitution D)
(2) (θ, x/x)ℵ; (θ, x/x)Γ; (θ, x/x)∆⇒Σ′,x (θ, x/x)A− (IH on E1)
(3) θℵ; θΓ; θ∆⇒Σ′,x (θ, x/x)A− (x not free in ℵ,Γ,∆ in (2))
θℵ; θΓ; θ∆⇒Σ′ ∀x.(θ, x/x)A− (∀L on (3))

The other cases are just straightforward mutual induction over derivations.

3.1.3 The size of derivations

In the cut admissibility theorem in the next section, we will frequently need to apply the two preceding
weakening theorems, and often we will apply the induction hypothesis to the weakened derivation. Shapes
are indexed by variable contexts, and a Ψ-shape captures the shape of a derivation of τ(ℵ; Γ; ∆ ⇒Ψ C),
which is equal to τℵ; τΓ; τ∆⇒Σ τC, for any substitution Σ ` τ : Ψ.

• The Ψ-shape of the 1R axiom is a unit.

• Given the Ψ-shape s1 of the derivation D :: τ(ℵ; Γ; ∆L,∆R ⇒Ψ C), the Ψ-shape of the 1L rule
applied to D is a one-element tuple containing s1.
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• Given the Ψ-shape s1 of the derivation D1 :: τ(ℵ1; Γ; ∆L ⇒Ψ [A+]) and the Ψ-shape s2 of the
derivation D2 :: τ(ℵ2; Γ; ∆R ⇒Ψ [B+]), the Ψ-shape of the •R rule applied to D1 and D2 is a
two-element tuple containing s1 and s2.

• . . . the other derivations follow exactly the same pattern save for the left rule for equality . . .

• Given a function sf from substitutions Σ′ ` θ : Ψ where θt .= θs to Σ′-shapes
and a function D from substitutions Σ′ ` σ : Σ where σ(τt)

.
= σ(τs) to derivations of

D(σ) :: (σ ◦ τ)ℵ; (σ ◦ τ)Γ; (σ ◦ τ)∆L, (σ ◦ τ)∆R ⇒Σ′ (σ ◦ τ)C with the property that for all σ,
sf (σ ◦ τ) is the shape of D(σ), the Ψ-shape of the .

=L rule applied to D is a one-element tuple
containing sf .

This critical last case is where all of the interesting work happens. We rely on two lemmas, which are
again straightforward to prove: first, that we can derive a Σ-shape for any derivation Γ; ∆ ⇒Σ C, and
second, that we can weaken a derivation without changing its shape. This second lemma will implicitly
justify our calls to the induction hypothesis in the next section.

Both our formulation of first-order equality and our treatment of the size of derivations differs from the
approach in the literature, which is detailed by Schroeder-Heister [3]. Our particular treatment is influenced
by the first author’s investigations of formalizing self-reflective logics in dependent type theory [6].

3.2 Cut admissibility
We prove cut admissibility with an empty focal context, so we just omit the focal context from mention for
this section.

Theorem 3 (Cut admissibility).

• For all A−:

1. If (Γ; ∆⇒Σ A−) and (Γ; ∆L[A−]∆R ⇒Σ C), then (Γ; ∆L,∆,∆R ⇒Σ C).

2. If (Γ; ∆′L[B−]∆′R ⇒Σ A−) and (Γ; ∆L[A−]∆R ⇒Σ C), then (∆L,∆
′
L[B−]∆′R,∆R ⇒Σ C).

• For all A+:

3. If (Γ; ∆⇒Σ [A+]) and (Γ; ∆L, A
+,∆R ⇒Σ C), then (Γ; ∆L,∆,∆R ⇒Σ C).

4. If (Γ; ∆⇒Σ [A+]) and (Γ; ∆L, A
+,∆R ⇒Σ [B+]), then (Γ; ∆L,∆,∆R ⇒Σ [B+]).

5. If (Γ; ∆⇒Σ [A+]) and (Γ; ∆L, A
+,∆′L[B−]∆R ⇒Σ C),

then (Γ; ∆L,∆,∆
′
L[B−]∆R ⇒Σ C).

6. If (Γ; ∆⇒Σ [A+]) and (Γ; ∆L[B−]∆R, A
+,∆′R ⇒Σ C),

then (Γ; ∆L[B−]∆R,∆,∆
′
R ⇒Σ C).

Proof. By lexicographic induction, first on the size of the formula A+ or A− (where we get the size of a
formula by simply erasing all the terms from atomic propositions), and second on the Ψ-sizes of the two
input derivations D and E (as discussed in Section 3.1.3 – note that we do not require Ψ to be equal to Σ).
The proof is basically standard and has been presented elsewhere; we give the cases for equality t .= s since
those cases are not standard.
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Case: (Part 3, principal cut)

D = Γ; · ⇒Σ [t
.
= t]

.
=R E =

∀(Σ′ ` θ : Σ) : θt = θt
E1

−→ θΓ; θ∆L, θ∆R ⇒′Σ θC

Γ; ∆L, t
.
= t,∆R ⇒Σ C

.
=L

To show: Γ; ∆L,∆R ⇒Σ C
(1) t = t (reflexivity of equality)
Γ; ∆L,∆R ⇒Σ C (E1 on the identity substitution and (1)

Case: (Part 3, right commutative cut)

D
Γ; ∆⇒Σ [A+] E =

∀(Σ′ ` θ : Σ) : θt
.
= θs

E1

−→ θΓ; θ∆L1, θ∆L2, θA
+, θ∆R ⇒Σ′ θC

Γ; ∆L1, t
.
= s,∆L2, A

+,∆R ⇒Σ C
.
=L

To show: Γ; ∆L1, t
.
= s,∆L2,∆R ⇒Σ C

(1) ∀(Σ′ ` θ : Σ): θt
.
= θs −→ θΓ; θ∆L1, θ∆L2, θ∆, θ∆R ⇒Σ′ θC

by the following hypothetical reasoning:
Assume that for arbitrary Σ′ and θ we have (2) Σ′ ` θ : Σ and (3) θt

.
= θs

(4) θΓ; θ∆⇒Σ′ [θA+] (variable weakening on D)
(5) θΓ; θ∆L1, θ∆L2, θA

+, θ∆R ⇒Σ′ θC (E1 on (2) and (3))
θΓ; θ∆L1, θ∆L2, θ∆, θ∆R ⇒Σ′ θC (IH(θA+) on (4) and (5))

Γ; ∆L1, t
.
= s,∆,∆R ⇒Σ C ( .=L on (1))

Note that in this case we were relying on the fact that the size of θA+ is the same as the size as A+

and on the fact that the Ψ-size of D under the substitution θ is the same as the Ψ-size of D.

Case: (Part 3, right commutative cut)

D
Γ; ∆⇒Σ [A+] E =

∀(Σ′ ` θ : Σ) : θt
.
= θs

E1

−→ θΓ; θ∆L, θA
+, θ∆R1, θ∆R2 ⇒Σ′ θC

Γ; ∆L, A
+,∆R1, t

.
= s,∆R2 ⇒Σ C

.
=L

(Essentially the same as the previous case)

Case: (Part 1, left commutative cut)

D =

∀(Σ′ ` θ : Σ) : θt
.
= θs

D1

−→ θΓ; θ∆, θ∆′ ⇒Σ′ θA−

Γ; ∆, t
.
= s,∆′ ⇒Σ A−

.
=L E

Γ; ∆L, A
−,∆R ⇒Σ C

To show: Γ; ∆L,∆, t
.
= s,∆′,∆R ⇒Σ C

(1) ∀(Σ′ ` θ : Σ): θt
.
= θs −→ θΓ; θ∆L, θ∆, θ∆

′, θ∆R ⇒Σ′ θC
by the following hypothetical reasoning:

Assume that for arbitrary Σ′ and θ we have (2) Σ′ ` θ : Σ and (3) θt
.
= θs

(4) θΓ; θ∆, θ∆′ ⇒Σ′ θA− (D1 on (2) and (3))
(5) θΓ; θ∆L, θA

−, θ∆R ⇒Σ′ θC (variable weakening on E)
θΓ; θ∆L, θ∆, θ∆

′, θ∆R ⇒Σ′ θC (IH(θA−) on (4) and (5)
Γ; ∆L,∆, t

.
= s,∆′,∆R ⇒Σ C ( .=L on (1))

The cases for other connectives are straightforward extensions of standard cut-admissibility arguments.
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3.2.1 Does cut admissibility make sense in a non-empty focal context?

It greatly simplifies matters to prove cut admissibility over proofs where the focal context is empty. Even if
the statement of cut in the obvious extension with the focal context is true, the theorem introduces a large
number of new cases, such as the following one, which I am unclear how to finish:

Case: (Principal(?) cut)

D = α::[A+ •B+]; Γ;α⇒Σ [A+ •B+]
initα E =

E1

ℵ; Γ; ∆L, A
+, B+,∆R ⇒Σ C

ℵ′; Γ; ∆L, A
+ •B+,∆R ⇒Σ C

•L

To show: ℵ′, α::[A+ •B+]; Γ; ∆L, α,∆R ⇒Σ C
(1) α1::[A+]; Γ;α1 ⇒Σ [A+] (Rule initα)
(2) α2::[B+]; Γ;α2 ⇒Σ [B+] (Rule initα)
(3) α1::[A+], α2::[B+]; Γ;α1, α2 ⇒Σ [A+ •B+] (Rule •R on (1) and (2))
(4) ℵ, α1::[A+]; Γ; ∆L, α1, B

+,∆R ⇒Σ C (Cut on A+, (1), and E1)
(5) ℵ, α1::[A+], α2::[B+]; Γ; ∆L, α1, α2,∆R ⇒Σ C (Cut on B+, (2), and (4))
(6) ?

3.2.2 Unfocused cut

This simple corollary of the cut admissibility theorem is useful:

Theorem 4 (Unfocused cut).

• If (Γ; ∆⇒Σ ↑A+) and (Γ; ∆L, A
+,∆R ⇒Σ C), then (Γ; ∆L,∆,∆R ⇒Σ C)

• If (Γ; ∆⇒Σ A−) and (Γ; ∆L, ↑A−,∆R ⇒Σ C), then (Γ; ∆L,∆,∆R ⇒Σ C)

Proof. In the first case, given (Γ; ∆L, A
+,∆R ⇒Σ C), we can get (Γ; ∆L[↑A+]∆R ⇒Σ C) by rule ↑L,

and then we can apply cut with the cut formula ↑A+. In the second case, given (Γ; ∆⇒Σ A−), we can get
(Γ; ∆⇒Σ [↓A−]) by rule ↓R, and then we can apply cut with the cut formula ↓A−.

3.3 Substitution
The meaning of the focal contexts is defined by substitution.

Theorem 5 (Substitution).

• If (ℵ; Γ; ∆⇒Σ [A+]) and (ℵ′, α::[A+]; Γ; ∆L, α,∆R ⇒Σ C), then (ℵ,ℵ′; Γ; ∆L,∆,∆R ⇒Σ C).

• If (ℵ; Γ; ∆L[A−]∆R ⇒Σ C) and (ℵ′, γ::[A−]; Γ; ∆⇒Σ γ), then (ℵ,ℵ′; Γ; ∆L,∆,∆R ⇒Σ C).

Proof. The two substitutions can be proven separately by generalizing the induction hypothesis.

9



Positive substitution – established by proving the following by mutual induction on the second premise.

If (ℵ; Γ; ∆⇒Σ [A+]) and (ℵ′, α::[A+]; Γ; ∆L, α,∆R ⇒Σ C), then (ℵ′,ℵ; Γ; ∆L,∆,∆R ⇒Σ C).

If (ℵ; Γ; ∆⇒Σ [A+]) and (ℵ′, α::[A+]; Γ; ∆L, α,∆R ⇒Σ [B+]),
then (ℵ′,ℵ; Γ; ∆L,∆,∆R ⇒Σ [B+]).

If (ℵ; Γ; ∆⇒Σ [A+]) and (ℵ′, α::[A+]; Γ; ∆L, α,∆
′
L[B−]∆R ⇒Σ C),

then (ℵ′,ℵ; Γ; ∆L,∆,∆
′
L[B−]∆R ⇒Σ C).

If (ℵ; Γ; ∆⇒Σ [A+]) and (ℵ′, α::[A+]; Γ; ∆L[B−]∆R, α,∆
′
R ⇒Σ C),

then (ℵ′,ℵ; Γ; ∆L[B−]∆R,∆,∆
′
R ⇒Σ C).

Negative substitution – established by proving the following by mutual induction on the second premise.

If (ℵ; Γ; ∆L[A−]∆R ⇒Σ C) and (ℵ′, γ::[A−]; Γ; ∆⇒Σ γ), then (ℵ′,ℵ; Γ; ∆L,∆,∆R ⇒Σ C).

If (ℵ; Γ; ∆L[A−]∆R ⇒Σ C) and (ℵ′, γ::[A−]; Γ; ∆′L[B−]∆′R ⇒Σ γ),
then (ℵ′,ℵ; Γ; ∆L,∆

′
L[B−]∆′R,∆R ⇒Σ C).

The proof proceeds by straightforward induction on the Σ-size of the second derivation.

3.4 Identity expansion
Whereas cut admissibility (soundness) avoided mentioning the focal context, the identity expansion lemma
(completeness) uses it in an absolutely critical manner. This is not accidental; focal contexts were introduced
in order to deal with the complexity of quantifiers in the completeness or identity expansion in a uniform
way.

The ℵ are, in fact, an attempt to capture the “regular worlds” definition used in a Twelf proof of weak
focusing for a polarized propositional persistent logic [5]. Previous attempts to capture this reasoning on
paper require a somewhat complex reasoning about which parts of a proof were parametric and which were
not: see Appendix A.1 of [2], for instance, and note that this proof does not obviously generalize to a logic
with positive conjunction. The ℵ-context, while unique to our presentation, simply embeds into the logic
the uniform and parametric treatment of focal hypotheses that comes naturally in the Twelf encoding.

Theorem 6 (Identity expansion).

• For all A+, for all Σ, ℵ, Γ, ∆L, ∆R, and C,
if (ℵ, α::[A+]; Γ; ∆L, α,∆R ⇒Σ C), then (ℵ; Γ; ∆L, A

+,∆R ⇒Σ C).

• For all A−, for all ℵ, Γ, and ∆,
if (ℵ, γ::[A−]; Γ; ∆⇒Σ γ), then (ℵ; Γ; ∆⇒Σ A−).

Proof. By mutual induction on the size of the proposition A+ or A−.

Case: A+ = Q+

(1) ℵ, α::[Q+]; Γ; ∆L, α,∆R ⇒Σ C (Given)
To show: ℵ; Γ; ∆L, Q

+,∆R ⇒Σ C
(2) ·; Γ;Q+ ⇒Σ [Q+] (Rule init+)
ℵ; Γ; ∆L, Q

+,∆R ⇒Σ C (Substitution on (2) and (1))
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Case: A+ = ↓A−

(1) ℵ, α::[↓A−]; Γ; ∆L, α,∆R ⇒Σ C (Given)
To show: ℵ; Γ; ∆L, ↓A−,∆R ⇒Σ C
(2) γ::[A−]; Γ; [A−]⇒Σ γ (Rule initγ)
(3) γ::[A−]; Γ; ↓A− ⇒Σ γ (Rule ↓L on (2))
(4) ·; Γ; ↓A− ⇒Σ A− (IH(A−) where ℵ = · and ∆ = ↓A− on (3))
(5) ·; Γ; ↓A− ⇒Σ [↓A−] (Rule ↓R on (4))
ℵ; Γ; ∆L, ↓A−,∆R ⇒Σ C (Substitution on (5) and (1))

Case: A+ = !A−

(1) ℵ, α::[!A−]; Γ; ∆L, α,∆R ⇒Σ C (Given)
To show: ℵ; Γ; ∆L, !A

−,∆R ⇒Σ C
(2) γ::[A−]; Γ, A−; [A−]⇒Σ γ (Rule initγ)
(3) γ::[A−]; Γ, A−; · ⇒Σ γ (Rule copy on (2))
(4) ·; Γ, A−; · ⇒Σ A− (IH(A−) where ℵ = · and Γ = (Γ, A−) and ∆ = · on (2)
(5) ·; Γ, A−; · ⇒Σ [!A−] (Rule !R on (4))
(6) ℵ, α::[!A−]; Γ, A−; ∆L, α,∆R ⇒Σ C (Weakening on (1))
(7) ℵ; Γ, A−; ∆L,∆R ⇒Σ C (Substitution on (5) and (6))
ℵ; Γ; ∆L, !A

−,∆R ⇒Σ C (Rule !L on (7))

Case: A+ = !Qp

(1) ℵ, α::[!Qp]; Γ; ∆L, α,∆R ⇒Σ C (Given)
To show: ℵ; Γ; ∆L, !Qp,∆R ⇒Σ C
(2) ·; Γ, Qp; · ⇒Σ [!Qp] (Rule !Rp)
(3) ℵ, α::[!Qp]; Γ, Qp; ∆L, α,∆R ⇒Σ C (Weakening on (1))
(4) ℵ; Γ, Qp; ∆L,∆R ⇒Σ C (Substitution on (2) and (3))
ℵ; Γ; ∆L, !Qp,∆R ⇒Σ C (Rule !L on (4))

Case: A+ = ¡A− (similar to the case for !A−)

Case: A+ = ¡Ql (similar to the case for !Ql)

Case: A+ = 1

(1) ℵ, α::[1]; Γ; ∆L, α,∆R ⇒Σ C (Given)
To show: ℵ; Γ; ∆L,1,∆R ⇒Σ C
(2) ·; Γ; · ⇒Σ [1] (Rule 1R)
ℵ; Γ; ∆L,∆R ⇒Σ C (Substitution on (2) and (1))
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Case: A+ = A+ •B+

(1) ℵ, α::[A+ •B+]; Γ; ∆L, α,∆R ⇒Σ C (Given)
To show: ℵ; Γ; ∆L, A

+ •B+,∆R ⇒Σ C
(2) α1::[A+]; Γ;α1 ⇒Σ [A+] (Rule initα)
(3) α2::[B+]; Γ;α2 ⇒Σ [B+] (Rule initα)
(4) α1::[A+], α2::[B+]; Γ;α1, α2 ⇒Σ [A+ •B+] (Rule •R on (2) and (3))
(5) ℵ, α1::[A+], α2::[B+]; Γ; ∆L, α1, α2,∆R ⇒Σ C (Substitution on (4) and (1))
(6) ℵ, α1::[A+]; Γ; ∆L, α1, B

+,∆R ⇒Σ C
(IH(B+) where ℵ = ℵ, α1::[A+] and ∆L = ∆L, α1 on (5))

(7) ℵ; Γ; ∆L, A
+, B+,∆R ⇒Σ C (IH(A+) where ∆R = B+,∆R on (6))

ℵ; Γ; ∆L, A
+ •B+,∆R ⇒Σ C (Rule •L on (7))

Case: A+ = A+ ⊕B+

(1) ℵ, α::[A+ ⊕B+]; Γ; ∆L, α,∆R ⇒Σ C (Given)
To show: ℵ; Γ; ∆L, A

+ ⊕B+,∆R ⇒Σ C
(2) α1::[A+]; Γ;α1 ⇒Σ [A+] (Rule initα)
(3) α1::[A+]; Γ;α1 ⇒Σ [A+ ⊕B+] (Rule ⊕R1 on (2))
(4) ℵ, α1::[A+]; Γ; ∆L, α1,∆R ⇒Σ C (Substitution on (3) and (1))
(5) α2::[B+]; Γ;α2 ⇒Σ [B+] (Rule initα)
(6) α2::[B+]; Γ;α2 ⇒Σ [A+ ⊕B+] (Rule ⊕R2 on (5))
(7) ℵ, α2::[B+]; Γ; ∆L, α2,∆R ⇒Σ C (Substitution on (6) and (1))
(8) ℵ; Γ; ∆L, A

+,∆R ⇒Σ C (IH(A+) on (4))
(9) ℵ; Γ; ∆L, B

+,∆R ⇒Σ C (IH(B+) on (7))
ℵ; Γ; ∆L, A

+ ⊕B+,∆R ⇒Σ C (Rule ⊕L on (8) and (9))

Case: A+ = ∃x.A+

(1) ℵ, α::[∃x.A+]; Γ; ∆L, α,∆R ⇒Σ C
To show: ℵ; Γ; ∆L, ∃x.A+,∆R ⇒Σ C
(2) α::[A+]; Γ;α⇒Σ,x [A+] (Rule initα)
(3) α::[A+]; Γ;α⇒Σ,x [∃x.A+] (Rule ∃R on (2))
(4) ℵ, α::[A+]; Γ; ∆L, α,∆R ⇒Σ,x C (Substitution on (3) and (1))
(5) ℵ; Γ; ∆L, A

+,∆R ⇒Σ,x C (IH(A+) on (4))
ℵ; Γ; ∆L, ∃x.A+,∆R ⇒Σ C (Rule ∃L on (6))
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Case: A+ = t
.
= s

(1) ℵ, α::[t
.
= s]; Γ; ∆L, α,∆R ⇒Σ C

To show: ℵ; Γ; ∆L, t
.
= s,∆R ⇒Σ C

(2) ∀(Σ′ ` θ : Σ): θt = θs −→ θℵ; θΓ; θ∆L, θ∆R ⇒Σ′ θC
Assume an arbitrary Σ′ ` θ : Σ such that (3) θt = θs
(4) ·; θΓ; · ⇒Σ′ [θt

.
= θt] (Rule .

=R)
(5) ·; θΓ; · ⇒Σ′ [θt

.
= θs] (Equals-for-equals on (3) and (4))

(6) θℵ, α::[θt
.
= θs]; θΓ; θ∆L, α, θ∆R ⇒Σ′ θC (Variable weakening on (1))

θℵ; θΓ; θ∆L, θ∆R ⇒Σ′ θC (Substitution on (5) and (6)
ℵ; Γ; ∆L,∆R ⇒Σ C (Rule .

=L on (2))

Case: A− = Q−

(1) ℵ, γ::[Q−]; Γ; ∆⇒Σ γ (Given)
To show: ℵ; Γ; ∆⇒Σ Q−

(2) ·; Γ; [Q−]⇒Σ Q− (Rule init−)
ℵ; Γ; ∆⇒Σ Q− (Substitution on (2) and (1))

Case: A− = ↑A+

(1) ℵ, γ::[↑A+]; Γ; ∆⇒Σ γ (Given)
To show: ℵ; Γ; ∆⇒Σ ↑A+

(2) α::[A+]; Γ;α⇒Σ [A+] (Rule initα)
(3) α::[A+]; Γ;α⇒Σ ↑A+ (Rule ↑R on (2))
(4) ·; Γ;A+ ⇒Σ ↑A+ (IH(A+) where ℵ = · and ∆L = · and ∆R = · on (3))
(5) ·; Γ; [↑A+]⇒Σ ↑A+ (Rule ↑L on (4))
ℵ; Γ; ∆⇒Σ ↑A+ (Substitution on (5) and (1))

Case: A− = A+ � B−

(1) ℵ, γ::[A+ � B−]; Γ; ∆⇒Σ γ (Given)
To show: ℵ; Γ; ∆⇒Σ A+ � B−

(2) α1::[A+]; Γ;α1 ⇒Σ [A+] (Rule initα)
(3) γ2::[B−]; Γ; [B−]⇒Σ γ2 (Rule initγ)
(4) α1::[A+], γ2::[B−]; Γ; [A+ � B−]α1 ⇒Σ γ2 (Rule �L on (2) and (3)
(5) ℵ;α1::[A+], γ2::[B−]; Γ; ∆, α1 ⇒Σ γ2 (Substitution on (4) and (1))
(6) ℵ, α1::[A+]; Γ; ∆, α1 ⇒Σ B− (IH(B−) where ℵ = ℵ, α1::A+ and ∆ = ∆, α1 on (5))
(7) ℵ; ∆, A+ ⇒Σ B− (IH(A+) where ∆L = ∆ and ∆R = · on (6))
ℵ; ∆⇒Σ A+ � B− (Rule �R on (7))

Case: A− = A+ � B− (similar to the case for A+ � B−)
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Case: A− = A−&B−

(1) ℵ, γ::[A−&B−]; Γ; ∆⇒Σ γ (Given)
To show: ℵ; Γ; ∆⇒Σ A−&B−

(2) γ1::[A−]; Γ; [A−]⇒Σ γ1 (Rule initγ)
(3) γ1::[A−]; Γ; [A−&B−]⇒Σ γ1 (Rule &R1 on (2))
(4) ℵ, γ1::[A−]; Γ; ∆⇒Σ γ1 (Substitution on (3) and (1))
(5) γ2::[B−]; Γ; [B−]⇒Σ γ2 (Rule initγ)
(6) γ2::[B−]; Γ; [A−&B−]⇒Σ γ2 (Rule &R2 on (5))
(7) ℵ, γ2::[B−]; Γ; ∆⇒Σ γ2 (Substitution on (6) and (1))
(8) ℵ; Γ; ∆⇒Σ A− (IH(A−) on (4))
(9) ℵ; Γ; ∆⇒Σ B− (IH(B−) on (7)
ℵ; Γ; ∆⇒Σ A−&B− (Rule &R on (8) and (9))

Case: A− = ∀x.A−

(1) ℵ, γ::[∀x.A−]; Γ; ∆⇒Σ γ (Given)
To show: ℵ; Γ; ∆⇒Σ ∀x.A−
(2) γ′::[A−]; Γ; [A−]⇒Σ,x γ

′ (Rule initγ)
(3) γ′::[A−]; Γ; [∀x.A−]⇒Σ,x γ

′ (Rule ∀L on (2))
(4) ℵ, γ′::[A−]; Γ; ∆⇒Σ,x γ

′ (Substitution on (3) and (1))
(5) ℵ; Γ; ∆⇒Σ,x A

− (IH(A−) on (4))
ℵ; Γ; ∆⇒Σ ∀x.A− (Rule ∀R on (5))

This concludes the proof.

3.4.1 Unfocused identity

Now, our desired completeness theorem for the original logic is a straightforward corollary of the identity
expansion lemma:

Theorem 7 (Unfocused identity). For all A+, Γ;A+ ⇒Σ ↑A+, and for all A−, Γ; ↓A− ⇒Σ A−.

Proof. From rule initα we know that α::[A+]; Γ;α⇒Σ [A+],
and so by ↑R we know α::[A+]; Γ;α⇒Σ ↑A+.
Therefore, by the identity expansion theorem, we know ·; Γ;A+ ⇒Σ ↑A+.

From rule initγ we know that γ::[A−]; Γ; [A−]⇒Σ γ,
and so by rule ↓L we know γ::[A−]; Γ; ↓A− ⇒Σ γ.
Therefore, by the identity expansion theorem, we know ·; Γ; ↓A− ⇒Σ A−.
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3.5 Unfocused admissibility
Unfocused admissibility is what justifies the completeness of the weakly focused sequent calculus relative
to the unfocused sequent calculus. If we then translate sequents into polarized logic by adding shifts every-
where, we can directly translate the a derivation in the unfocused, unpolarized logic into focused, polarized
logic by using admissible rules. We give only the cases relevant to the logic programming fragment of
ordered logic; the remaining cases are similar.

Theorem 8 (Unfocused admissibility). Shifted versions of in-focus rules are admissible when ℵ = ·:

• (copy ′) — If (A− ∈ Γ) and (Γ; ∆L, ↓A−,∆R ⇒Σ C), then (Γ; ∆L,∆R ⇒Σ C).

• (place ′) — If (Γ; ∆L, ↓A−,∆R ⇒Σ C), then (Γ; ∆L, A
−,∆R ⇒Σ C).

• (1R′) — (Γ; · ⇒Σ ↑1).

• (•R′) — If (Γ; ∆1 ⇒Σ ↑A+) and (Γ; ∆2 ⇒Σ ↑B+), then (Γ; ∆1,∆2 ⇒Σ ↑(A+ •B+)).

• (∃R′) — If (Γ; ∆⇒Σ ↑A+[t/x]), then (Γ; ∆⇒Σ ↑∃x.A+).

• (�L′) — If (Γ; ∆A ⇒Σ ↑A+) and (Γ; ∆L, ↓B−,∆R ⇒Σ C),
then (Γ; ∆L, ↓(A+ � B−),∆A,∆R ⇒Σ C).

• (∀L′) — If (Γ; ∆L, ↓A[t/x],∆R ⇒Σ C), then (Γ; ∆L, ↓∀x.A−,∆R ⇒Σ C).

Proof. Each case involves an appeal to identity expansion and unfocused cut admissibility.

Admissible rule copy ′

(1) A− ∈ Γ (Given)
(2) ·; Γ; ∆L, ↓A−,∆R ⇒Σ C (Given)
To show: ·; Γ; ∆L,∆R ⇒Σ C
(3) γ::[A−]; Γ; [A−]⇒Σ γ (Rule initγ)
(4) γ::[A−]; Γ; · ⇒Σ γ (Rule copy on (1) and (3))
(5) ·; Γ; · ⇒Σ A− (Identity expansion on (4))
·; Γ; ∆L,∆R ⇒Σ C (Unfocused cut on (5) and (2))

Admissible rule place ′

(1) ·; Γ; ∆L, ↓A−,∆R ⇒Σ C (Given)
To show: ·; Γ; ∆L, A

−,∆R ⇒Σ C
(2) γ::[A−]; Γ; [A−]⇒Σ γ (Rule initγ)
(3) γ::[A−]; Γ;A− ⇒Σ γ (Rule place on (2))
(5) ·; Γ;A− ⇒Σ A− (Identity expansion on (4))
·; Γ; ∆L, A

−,∆R ⇒Σ C (Unfocused cut on (6) and (2))

Admissible rule 1R′

To show: ·; Γ; · ⇒Σ ↑1
(1) ·; Γ; · ⇒Σ [1] (Rule 1R)
·; Γ; · ⇒Σ ↑1 (Rule ↑R on (1))
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Admissible rule •R′

(1) ·; Γ; ∆L ⇒Σ ↑A+ (Given)
(2) ·; Γ; ∆R ⇒Σ ↑B+ (Given)
To show: ·; Γ; ∆L,∆R ⇒Σ ↑(A+ •B+)
(3) α1::[A+]; Γ;α1 ⇒Σ [A+] (Rule initα)
(4) α2::[B+]; Γ;α2 ⇒Σ [B+] (Rule initα)
(5) α1::[A+], α2::[B+]; Γ;α1, α2 ⇒Σ [A+ •B+] (Rule •R on (3) and (4))
(6) α1::[A+], α2::[B+]; Γ;α1, α2 ⇒Σ ↑(A+ •B+) (Rule ↑R on (5))
(7) α1::[A+]; Γ;α1, B

+ ⇒Σ ↑(A+ •B+) (Identity expansion on (6))
(8) ·; Γ;A+, B+ ⇒Σ ↑(A+ •B+) (Identity expansion on (7))
(9) ·; Γ;A+,∆R ⇒Σ ↑(A+ •B+) (Unfocused cut on (2) and (8))
·; Γ; ∆L,∆R ⇒Σ ↑(A+ •B+) (Unfocused cut on (1) and (9))

Admissible rule ∃R′

(1) ·; Γ; ∆⇒Σ ↑A+[t/x] (Given)
To show: ·; Γ; ∆⇒Σ ↑∃x.A+

(2) α::[A+[t/x]]; Γ;α⇒Σ [A+[t/x]] (Rule initα)
(3) α::[A+[t/x]]; Γ;α⇒Σ [∃x.A+] (Rule ∃R on (2))
(4) α::[A+[t/x]]; Γ;α⇒Σ ↑∃x.A+ (Rule ↑R on (3))
(5) ·; Γ;A+[t/x]⇒Σ ↑∃x.A+ (Identity expansion on (4))
·; Γ; ∆⇒Σ ↑∃x.A+ (Unfocused cut on (1) and (5))

Admissible rule �L′

(1) ·; Γ; ∆A ⇒Σ ↑A+ (Given)
(2) ·; Γ; ∆L, ↑B−,∆R ⇒Σ C (Given)
To show: ·; Γ; ∆L, ↑(A+ � B−),∆A,∆R ⇒Σ C
(3) α::[A+]; Γ;α⇒Σ [A+] (Rule initα)
(4) γ::[B−]; Γ; [B−]⇒Σ γ (Rule initγ)
(5) α::[A+], γ::[B−]; Γ; [A+ � B−], α⇒Σ γ (Rule �L on (3) and (4))
(6) α::[A+], γ::[B−]; Γ; ↑(A+ � B−), α⇒Σ γ (Rule ↑L on (5))
(7) α::[A+]; Γ; ↑(A+ � B−), α⇒Σ B− (Identity expansion on (6))
(8) ·; Γ; ↑(A+ � B−), A+ ⇒Σ B− (Identity expansion on (7))
(9) ·; Γ; ∆L, ↑(A+ � B−), A+,∆R ⇒Σ C (Unfocused cut on (8) and (2))
·; Γ; ∆L, ↑(A+ � B−),∆A,∆R ⇒Σ C (Unfocused cut on (1) and (9))

Admissible rule ∀R′

(1) ·; Γ; ∆L, ↑A−[t/x],∆R ⇒Σ C (Given)
To show: ·; Γ; ∆L, ↑(∀x.A−),∆R ⇒Σ C
(2) γ::[A−[t/x]]; Γ; [A−[t/x]]⇒Σ γ (Rule initγ)
(3) γ::[A−[t/x]]; Γ; [∀x.A−]⇒Σ γ (Rule ∀L on (2))
(4) γ::[A−[t/x]]; Γ; ↑(∀x.A−)⇒Σ γ (Rule ↑L on (3))
(5) ·; Γ; ↑(∀x.A−)⇒Σ A−[t/x] (Identity expansion on (4))
·; Γ; ∆L, ↑(∀x.A−),∆R ⇒Σ C (Unfocused cut on (1) and (5))

This concludes the proof.
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4 Soundness and completeness
In this section, we outline the use of unfocused admissibility (Theorem 8) to show soundness and complete-
ness between the unfocused, unpolarized logic given in Section 1 and the focused, polarized logic given in
Section 2. Note that we can use these soundness and completeness results to establish the admissibility of
cut and identity for the unfocused, unpolarized logic by translation into the focused, polarized logic.

The obvious erasure of polarized formulas to unpolarized formulas, given in Figure 1 below. (A+)⊕ is
the erasure of a positive proposition, (A−)	 is the erasure of a negative proposition, and they are mutually
inductive on the structure of propositions. One important point is that Q+, Q−, Qp, and Ql are all erased to
“plain old atomic propositions,” but they always remain distinct – an unpolarized atomic proposition remains
marked with a polarity assignment even though the polarized framework cannot distinguish them.

(Q+)⊕ = Q+ (Q−)	 = Q−

(↓A−)⊕ = (A+)	 (↑A+)	 = (A+)⊕

(!A−)⊕ = !(A−)	 (A+ � B−)	 = (A+)⊕ � (A−)	

(!Qp)⊕ = !Qp (A+ � B−)	 = (A+)⊕ � (A−)	

(¡A−)⊕ = ¡(A−)	 (A−&B−)	 = (A−)	&(B−)	

(¡Ql)⊕ = ¡Ql (∀x.A−)	 = ∀x.(A−)	

(1)⊕ = 1 (·)	 = ·
(A+ •B+)⊕ = (A+)⊕ • (B+)⊕ (Γ, A−)	 = (Γ)	, (A−)	

(A+ ⊕B+)⊕ = (A+)⊕ ⊕ (A+)⊕ (·)⊕ = ·
(∃x.A+)⊕ = ∃x.(A+)⊕ (∆,∆′)⊕ = (∆)⊕, (∆′)⊕

(t
.
= s)⊕ = t

.
= s (A−)⊕ = (A−)	

(Ql)⊕ = Ql

Figure 1: Erasing the polarization of propositions and contexts.

One strategy that we could use would be to define a particular strategy for going in the other direction
and polarizing unpolarized propositions. We will do something a bit more general and consider all strategies
for polarizing formulas, which are necessarily contained in the (non-deterministic) inverse of the erasure
function. It is important that we know there is some total strategy for polarizing unpolarized formulas, but
this is straightforward.

A version of this proof for persistent logic (formalized in Twelf) was previously given in two parts. The
first part established the correspondence of the unpolarized and polarized logics in an unfocused setting
(in an unfocused polarized logic, which is a little weird, the shifts are meaningless and invertible on both
the left and right) [4]. The second part established the correspondence of the polarized unfocused logic
and the polarized focused logic [5]. Here we compose those two proofs and directly prove the soundness
and completeness. Soundness is simple, as focused proofs are essentially a refinement of focused proofs;
completeness is a bit more interesting.
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4.1 Soundness of the focused, polarized logic
Theorem 9 (Soundness).

• If (Γ; ∆⇒Σ A−), then (Γ	; ∆⊕ `Σ A−	).

• If (Γ; ∆L[A−]∆R ⇒Σ A−), then (Γ	; ∆⊕L , A
−	,∆⊕R `Σ A−	).

• If (Γ; ∆⇒Σ [A+]), then (Γ	; ∆⊕ `Σ A+⊕).

Proof. By straightforward mutual induction on the given polarized, focused derivation.

• For the copy , place , init−, init+, !L, !R, ¡R, 1R, 1L, •R, •L, �R, �L, �R, �L, ⊕Ri, ⊕L,
&R, &L, ∀Rx, ∀L, ∃R, ∃Lx, .=R, and .

=L rules, we apply the induction hypothesis to translate all
subderivations, and then re-apply the unfocused version of the same rule.

• The !Rq rule translates to a use of init followed by copy , and the ¡Rq rule translates to a use of init
followed by place .

• For the ↑R, ↑L, ↓R, ↓L rules, the erasure of the premise and conclusion are the same, so we need
only apply the induction hypothesis to the premise.

Considering all these cases completes the proof.

4.2 Completeness of the focused, polarized logic
Theorem 10 (Completeness). If (Γ	; ∆⊕ `Σ A−	), then (Γ; ∆⇒Σ A−).

Proof. By induction on the given unpolarized, unfocused derivation, along with secondary inductions on
the translation of the principal formula. We give a few representative cases; other cases are similar.

Case:
Γ	; ∆⊕L , A

−	,∆⊕R `Σ C−	

Γ	; ∆⊕L , A
−	,∆⊕R `Σ C−	

place

Since A−	 = (↓A−)⊕, we can apply the IH to the premise to get Γ; ∆L, ↓A−,∆R ⇒Σ C−. The
result then follows from the admissible rule place ′ (Theorem 8).

Case:
Γ	; ∆⊕L `Σ A Γ; ∆⊕R `Σ B

Γ	; ∆⊕L ,∆
⊕
R `Σ A •B

•R
(A−)	 = A •B.

We prove Γ; ∆L,∆R ⇒Σ A− by secondary induction on the structure of A−.

Subcase: A− = ↑↓B−
We have Γ; ∆L,∆R ⇒Σ B− by the induction hypothesis, Γ; ∆L,∆R ⇒Σ [↓B−] by rule ↓R,
and Γ; ∆L,∆R ⇒Σ ↑↓B− by rule ↑R.

Subcase: A− = ↑(A+ •B+) (so A = (A+
1 )⊕ and B = (A+

2 )⊕)
We also have A = (↑A+

1 )	 and B = (↓A+
2 )⊕, so we can apply the induction hypothesis to the

premises of •R to get Γ; ∆L ⇒Σ ↑A+
1 and Γ; ∆R ⇒Σ ↑A+

2 . The result then follows from the
admissible rule •R′ (Theorem 8).
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Case:
Γ	; ∆⊕L , A,B,∆

⊕
R `Σ C−	

Γ	; ∆⊕L , A •B,∆
⊕
R `Σ C−	

•L
(A+)⊕ = A •B.

We prove Γ; ∆L, A
+,∆R ⇒Σ C− by secondary induction on the structure of A+.

Subcase: A+ = ↓↑B+

We have Γ; ∆L, B
+,∆R ⇒Σ C− by the induction hypothesis, Γ; ∆L[↑B+]∆R ⇒Σ C− by

rule ↑L, and Γ; ∆L, ↓↑B+,∆R ⇒Σ C− by rule ↓L.

Subcase: A+ = A+
1 •B

+
1 (so A = (A+

1 )⊕ and B = (A+
2 )⊕)

We can apply the induction hypothesis to the premise to get Γ; ∆L, A
+, B+,∆R ⇒Σ C−. The

result then follows from rule •L.

Case: Γ	; · `Σ t
.
= t

.
=R

(A−)	 = t
.
= t

We prove Γ; · ⇒Σ A− by secondary induction on the structure of A−.

Subcase: A− = ↑↓B−
We have Γ; · ⇒Σ B− by the induction hypothesis, Γ; · ⇒Σ [↓B−] by rule ↓R, and Γ; · ⇒Σ

↑↓B− by rule ↑R.

Subcase: A− = ↑(t .= t)
We have Γ; · ⇒Σ [t

.
= t] by rule .

=R, and Γ; · ⇒Σ ↑(t
.
= t) by rule ↑R.

Case:
∀(Σ′ ` θ : Σ): θt = θs −→ θΓ	; θ∆⊕L , θ∆

⊕
R `Σ′ θC−	

Γ	; ∆⊕L , t
.
= s,∆⊕R `Σ C−	

.
=L

(A+)⊕ = t
.
= s

We prove Γ; ∆L, A
+,∆R `Σ C− by secondary induction on the structure of A+.

Subcase: A+ = ↓↑B+

We have Γ; ∆L, B
+,∆R ⇒Σ C− by the induction hypothesis, Γ; ∆L[↑B+]∆R ⇒Σ C− by

rule ↑L, and Γ; ∆L, ↓↑B+,∆R ⇒Σ C− by rule ↓L.

Subcase: A+ = t
.
= s

We assume Σ′ ` θ : Σ and θt = θs, and applying them to the premise get θΓ	; θ∆⊕L , θ∆
⊕
R `Σ′

θC−	, which by the induction hypothesis gives us θΓ; θ∆L, θ∆R ⇒Σ′ θC−. The result then
follows from rule .

=L.

This completes the proof.
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4.3 Metatheory of the unfocused logic
Note that none of the proofs in this paper have been concerned with any properties of the unfocused logic.
This means that, as long as we have some arbitrary strategy for polarizing an unpolarized sequent, the
results in this section allow us to port all the metatheoretic properties of the focused, polarized logic back to
the unfocused, unpolarized logic from Section 1, giving us the internal soundness and completeness of the
unfocused logic “for free.”

Corollary 1 (Cut admissibility). If (Γ; ∆ `Σ A) and (Γ; ∆L, A,∆R ` C), then (Γ; ∆L,∆,∆R `Σ C)

Proof. We translate the given derivations into the polarized, focused logic (Theorem 10), apply unfocused
cut (Theorem 4), and then translate back (Theorem 9).

Corollary 2 (Identity). For all A, (Γ;A `Σ A)

Proof. We translate A into its polarized version (Theorem 10), apply unfocused identity (Theorem 7), and
then translate back (Theorem 9).
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